]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_fault.c
MFC r303244, r303399
[FreeBSD/stable/10.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_reserv.h>
105
106 #define PFBAK 4
107 #define PFFOR 4
108
109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111 #define VM_FAULT_READ_BEHIND    8
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117 struct faultstate {
118         vm_page_t m;
119         vm_object_t object;
120         vm_pindex_t pindex;
121         vm_page_t first_m;
122         vm_object_t     first_object;
123         vm_pindex_t first_pindex;
124         vm_map_t map;
125         vm_map_entry_t entry;
126         int lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int faultcount, int reqpage);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158
159         vm_object_pip_wakeup(fs->object);
160         VM_OBJECT_WUNLOCK(fs->object);
161         if (fs->object != fs->first_object) {
162                 VM_OBJECT_WLOCK(fs->first_object);
163                 vm_page_lock(fs->first_m);
164                 vm_page_free(fs->first_m);
165                 vm_page_unlock(fs->first_m);
166                 vm_object_pip_wakeup(fs->first_object);
167                 VM_OBJECT_WUNLOCK(fs->first_object);
168                 fs->first_m = NULL;
169         }
170         vm_object_deallocate(fs->first_object);
171         unlock_map(fs); 
172         if (fs->vp != NULL) { 
173                 vput(fs->vp);
174                 fs->vp = NULL;
175         }
176 }
177
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182         boolean_t need_dirty;
183
184         if (((prot & VM_PROT_WRITE) == 0 &&
185             (fault_flags & VM_FAULT_DIRTY) == 0) ||
186             (m->oflags & VPO_UNMANAGED) != 0)
187                 return;
188
189         VM_OBJECT_ASSERT_LOCKED(m->object);
190
191         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192             (fault_flags & VM_FAULT_WIRE) == 0) ||
193             (fault_flags & VM_FAULT_DIRTY) != 0;
194
195         if (set_wd)
196                 vm_object_set_writeable_dirty(m->object);
197         else
198                 /*
199                  * If two callers of vm_fault_dirty() with set_wd ==
200                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201                  * flag set, other with flag clear, race, it is
202                  * possible for the no-NOSYNC thread to see m->dirty
203                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204                  * around manipulation of VPO_NOSYNC and
205                  * vm_page_dirty() call, to avoid the race and keep
206                  * m->oflags consistent.
207                  */
208                 vm_page_lock(m);
209
210         /*
211          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212          * if the page is already dirty to prevent data written with
213          * the expectation of being synced from not being synced.
214          * Likewise if this entry does not request NOSYNC then make
215          * sure the page isn't marked NOSYNC.  Applications sharing
216          * data should use the same flags to avoid ping ponging.
217          */
218         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219                 if (m->dirty == 0) {
220                         m->oflags |= VPO_NOSYNC;
221                 }
222         } else {
223                 m->oflags &= ~VPO_NOSYNC;
224         }
225
226         /*
227          * If the fault is a write, we know that this page is being
228          * written NOW so dirty it explicitly to save on
229          * pmap_is_modified() calls later.
230          *
231          * Also tell the backing pager, if any, that it should remove
232          * any swap backing since the page is now dirty.
233          */
234         if (need_dirty)
235                 vm_page_dirty(m);
236         if (!set_wd)
237                 vm_page_unlock(m);
238         if (need_dirty)
239                 vm_pager_page_unswapped(m);
240 }
241
242 /*
243  *      vm_fault:
244  *
245  *      Handle a page fault occurring at the given address,
246  *      requiring the given permissions, in the map specified.
247  *      If successful, the page is inserted into the
248  *      associated physical map.
249  *
250  *      NOTE: the given address should be truncated to the
251  *      proper page address.
252  *
253  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *      a standard error specifying why the fault is fatal is returned.
255  *
256  *      The map in question must be referenced, and remains so.
257  *      Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263         struct thread *td;
264         int result;
265
266         td = curthread;
267         if ((td->td_pflags & TDP_NOFAULTING) != 0)
268                 return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271                 ktrfault(vaddr, fault_type);
272 #endif
273         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274             NULL);
275 #ifdef KTRACE
276         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277                 ktrfaultend(result);
278 #endif
279         return (result);
280 }
281
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286         vm_prot_t prot;
287         long ahead, behind;
288         int alloc_req, era, faultcount, nera, reqpage, result;
289         boolean_t dead, growstack, is_first_object_locked, wired;
290         int map_generation;
291         vm_object_t next_object;
292         vm_page_t marray[VM_FAULT_READ_MAX];
293         int hardfault;
294         struct faultstate fs;
295         struct vnode *vp;
296         vm_page_t m;
297         int locked, error;
298
299         hardfault = 0;
300         growstack = TRUE;
301         PCPU_INC(cnt.v_vm_faults);
302         fs.vp = NULL;
303         faultcount = reqpage = 0;
304
305 RetryFault:;
306
307         /*
308          * Find the backing store object and offset into it to begin the
309          * search.
310          */
311         fs.map = map;
312         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
313             &fs.first_object, &fs.first_pindex, &prot, &wired);
314         if (result != KERN_SUCCESS) {
315                 if (growstack && result == KERN_INVALID_ADDRESS &&
316                     map != kernel_map) {
317                         result = vm_map_growstack(curproc, vaddr);
318                         if (result != KERN_SUCCESS)
319                                 return (KERN_FAILURE);
320                         growstack = FALSE;
321                         goto RetryFault;
322                 }
323                 return (result);
324         }
325
326         map_generation = fs.map->timestamp;
327
328         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
329                 panic("vm_fault: fault on nofault entry, addr: %lx",
330                     (u_long)vaddr);
331         }
332
333         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
334             fs.entry->wiring_thread != curthread) {
335                 vm_map_unlock_read(fs.map);
336                 vm_map_lock(fs.map);
337                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
338                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
339                         if (fs.vp != NULL) {
340                                 vput(fs.vp);
341                                 fs.vp = NULL;
342                         }
343                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
344                         vm_map_unlock_and_wait(fs.map, 0);
345                 } else
346                         vm_map_unlock(fs.map);
347                 goto RetryFault;
348         }
349
350         if (wired)
351                 fault_type = prot | (fault_type & VM_PROT_COPY);
352         else
353                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
354                     ("!wired && VM_FAULT_WIRE"));
355
356         /*
357          * Try to avoid lock contention on the top-level object through
358          * special-case handling of some types of page faults, specifically,
359          * those that are both (1) mapping an existing page from the top-
360          * level object and (2) not having to mark that object as containing
361          * dirty pages.  Under these conditions, a read lock on the top-level
362          * object suffices, allowing multiple page faults of a similar type to
363          * run in parallel on the same top-level object.
364          */
365         if (fs.vp == NULL /* avoid locked vnode leak */ &&
366             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
367             /* avoid calling vm_object_set_writeable_dirty() */
368             ((prot & VM_PROT_WRITE) == 0 ||
369             (fs.first_object->type != OBJT_VNODE &&
370             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
371             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
372                 VM_OBJECT_RLOCK(fs.first_object);
373                 if ((prot & VM_PROT_WRITE) != 0 &&
374                     (fs.first_object->type == OBJT_VNODE ||
375                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
376                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
377                         goto fast_failed;
378                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
379                 /* A busy page can be mapped for read|execute access. */
380                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
381                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
382                         goto fast_failed;
383                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
384                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
385                    0), 0);
386                 if (result != KERN_SUCCESS)
387                         goto fast_failed;
388                 if (m_hold != NULL) {
389                         *m_hold = m;
390                         vm_page_lock(m);
391                         vm_page_hold(m);
392                         vm_page_unlock(m);
393                 }
394                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
395                     FALSE);
396                 VM_OBJECT_RUNLOCK(fs.first_object);
397                 if (!wired)
398                         vm_fault_prefault(&fs, vaddr, 0, 0);
399                 vm_map_lookup_done(fs.map, fs.entry);
400                 curthread->td_ru.ru_minflt++;
401                 return (KERN_SUCCESS);
402 fast_failed:
403                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
404                         VM_OBJECT_RUNLOCK(fs.first_object);
405                         VM_OBJECT_WLOCK(fs.first_object);
406                 }
407         } else {
408                 VM_OBJECT_WLOCK(fs.first_object);
409         }
410
411         /*
412          * Make a reference to this object to prevent its disposal while we
413          * are messing with it.  Once we have the reference, the map is free
414          * to be diddled.  Since objects reference their shadows (and copies),
415          * they will stay around as well.
416          *
417          * Bump the paging-in-progress count to prevent size changes (e.g. 
418          * truncation operations) during I/O.  This must be done after
419          * obtaining the vnode lock in order to avoid possible deadlocks.
420          */
421         vm_object_reference_locked(fs.first_object);
422         vm_object_pip_add(fs.first_object, 1);
423
424         fs.lookup_still_valid = TRUE;
425
426         fs.first_m = NULL;
427
428         /*
429          * Search for the page at object/offset.
430          */
431         fs.object = fs.first_object;
432         fs.pindex = fs.first_pindex;
433         while (TRUE) {
434                 /*
435                  * If the object is marked for imminent termination,
436                  * we retry here, since the collapse pass has raced
437                  * with us.  Otherwise, if we see terminally dead
438                  * object, return fail.
439                  */
440                 if ((fs.object->flags & OBJ_DEAD) != 0) {
441                         dead = fs.object->type == OBJT_DEAD;
442                         unlock_and_deallocate(&fs);
443                         if (dead)
444                                 return (KERN_PROTECTION_FAILURE);
445                         pause("vmf_de", 1);
446                         goto RetryFault;
447                 }
448
449                 /*
450                  * See if page is resident
451                  */
452                 fs.m = vm_page_lookup(fs.object, fs.pindex);
453                 if (fs.m != NULL) {
454                         /*
455                          * Wait/Retry if the page is busy.  We have to do this
456                          * if the page is either exclusive or shared busy
457                          * because the vm_pager may be using read busy for
458                          * pageouts (and even pageins if it is the vnode
459                          * pager), and we could end up trying to pagein and
460                          * pageout the same page simultaneously.
461                          *
462                          * We can theoretically allow the busy case on a read
463                          * fault if the page is marked valid, but since such
464                          * pages are typically already pmap'd, putting that
465                          * special case in might be more effort then it is 
466                          * worth.  We cannot under any circumstances mess
467                          * around with a shared busied page except, perhaps,
468                          * to pmap it.
469                          */
470                         if (vm_page_busied(fs.m)) {
471                                 /*
472                                  * Reference the page before unlocking and
473                                  * sleeping so that the page daemon is less
474                                  * likely to reclaim it. 
475                                  */
476                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
477                                 if (fs.object != fs.first_object) {
478                                         if (!VM_OBJECT_TRYWLOCK(
479                                             fs.first_object)) {
480                                                 VM_OBJECT_WUNLOCK(fs.object);
481                                                 VM_OBJECT_WLOCK(fs.first_object);
482                                                 VM_OBJECT_WLOCK(fs.object);
483                                         }
484                                         vm_page_lock(fs.first_m);
485                                         vm_page_free(fs.first_m);
486                                         vm_page_unlock(fs.first_m);
487                                         vm_object_pip_wakeup(fs.first_object);
488                                         VM_OBJECT_WUNLOCK(fs.first_object);
489                                         fs.first_m = NULL;
490                                 }
491                                 unlock_map(&fs);
492                                 if (fs.m == vm_page_lookup(fs.object,
493                                     fs.pindex)) {
494                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
495                                 }
496                                 vm_object_pip_wakeup(fs.object);
497                                 VM_OBJECT_WUNLOCK(fs.object);
498                                 PCPU_INC(cnt.v_intrans);
499                                 vm_object_deallocate(fs.first_object);
500                                 goto RetryFault;
501                         }
502                         vm_page_lock(fs.m);
503                         vm_page_remque(fs.m);
504                         vm_page_unlock(fs.m);
505
506                         /*
507                          * Mark page busy for other processes, and the 
508                          * pagedaemon.  If it still isn't completely valid
509                          * (readable), jump to readrest, else break-out ( we
510                          * found the page ).
511                          */
512                         vm_page_xbusy(fs.m);
513                         if (fs.m->valid != VM_PAGE_BITS_ALL)
514                                 goto readrest;
515                         break;
516                 }
517
518                 /*
519                  * Page is not resident.  If this is the search termination
520                  * or the pager might contain the page, allocate a new page.
521                  * Default objects are zero-fill, there is no real pager.
522                  */
523                 if (fs.object->type != OBJT_DEFAULT ||
524                     fs.object == fs.first_object) {
525                         if (fs.pindex >= fs.object->size) {
526                                 unlock_and_deallocate(&fs);
527                                 return (KERN_PROTECTION_FAILURE);
528                         }
529
530                         /*
531                          * Allocate a new page for this object/offset pair.
532                          *
533                          * Unlocked read of the p_flag is harmless. At
534                          * worst, the P_KILLED might be not observed
535                          * there, and allocation can fail, causing
536                          * restart and new reading of the p_flag.
537                          */
538                         fs.m = NULL;
539                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
540 #if VM_NRESERVLEVEL > 0
541                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
542                                         fs.object->flags |= OBJ_COLORED;
543                                         fs.object->pg_color = atop(vaddr) -
544                                             fs.pindex;
545                                 }
546 #endif
547                                 alloc_req = P_KILLED(curproc) ?
548                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
549                                 if (fs.object->type != OBJT_VNODE &&
550                                     fs.object->backing_object == NULL)
551                                         alloc_req |= VM_ALLOC_ZERO;
552                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
553                                     alloc_req);
554                         }
555                         if (fs.m == NULL) {
556                                 unlock_and_deallocate(&fs);
557                                 VM_WAITPFAULT;
558                                 goto RetryFault;
559                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
560                                 break;
561                 }
562
563 readrest:
564                 /*
565                  * We have found a valid page or we have allocated a new page.
566                  * The page thus may not be valid or may not be entirely 
567                  * valid.
568                  *
569                  * Attempt to fault-in the page if there is a chance that the
570                  * pager has it, and potentially fault in additional pages
571                  * at the same time.  For default objects simply provide
572                  * zero-filled pages.
573                  */
574                 if (fs.object->type != OBJT_DEFAULT) {
575                         int rv;
576                         u_char behavior = vm_map_entry_behavior(fs.entry);
577
578                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
579                             P_KILLED(curproc)) {
580                                 behind = 0;
581                                 ahead = 0;
582                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
583                                 behind = 0;
584                                 ahead = atop(fs.entry->end - vaddr) - 1;
585                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
586                                         ahead = VM_FAULT_READ_AHEAD_MAX;
587                                 if (fs.pindex == fs.entry->next_read)
588                                         vm_fault_cache_behind(&fs,
589                                             VM_FAULT_READ_MAX);
590                         } else {
591                                 /*
592                                  * If this is a sequential page fault, then
593                                  * arithmetically increase the number of pages
594                                  * in the read-ahead window.  Otherwise, reset
595                                  * the read-ahead window to its smallest size.
596                                  */
597                                 behind = atop(vaddr - fs.entry->start);
598                                 if (behind > VM_FAULT_READ_BEHIND)
599                                         behind = VM_FAULT_READ_BEHIND;
600                                 ahead = atop(fs.entry->end - vaddr) - 1;
601                                 era = fs.entry->read_ahead;
602                                 if (fs.pindex == fs.entry->next_read) {
603                                         nera = era + behind;
604                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
605                                                 nera = VM_FAULT_READ_AHEAD_MAX;
606                                         behind = 0;
607                                         if (ahead > nera)
608                                                 ahead = nera;
609                                         if (era == VM_FAULT_READ_AHEAD_MAX)
610                                                 vm_fault_cache_behind(&fs,
611                                                     VM_FAULT_CACHE_BEHIND);
612                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
613                                         ahead = VM_FAULT_READ_AHEAD_MIN;
614                                 if (era != ahead)
615                                         fs.entry->read_ahead = ahead;
616                         }
617
618                         /*
619                          * Call the pager to retrieve the data, if any, after
620                          * releasing the lock on the map.  We hold a ref on
621                          * fs.object and the pages are exclusive busied.
622                          */
623                         unlock_map(&fs);
624
625                         if (fs.object->type == OBJT_VNODE) {
626                                 vp = fs.object->handle;
627                                 if (vp == fs.vp)
628                                         goto vnode_locked;
629                                 else if (fs.vp != NULL) {
630                                         vput(fs.vp);
631                                         fs.vp = NULL;
632                                 }
633                                 locked = VOP_ISLOCKED(vp);
634
635                                 if (locked != LK_EXCLUSIVE)
636                                         locked = LK_SHARED;
637                                 /* Do not sleep for vnode lock while fs.m is busy */
638                                 error = vget(vp, locked | LK_CANRECURSE |
639                                     LK_NOWAIT, curthread);
640                                 if (error != 0) {
641                                         vhold(vp);
642                                         release_page(&fs);
643                                         unlock_and_deallocate(&fs);
644                                         error = vget(vp, locked | LK_RETRY |
645                                             LK_CANRECURSE, curthread);
646                                         vdrop(vp);
647                                         fs.vp = vp;
648                                         KASSERT(error == 0,
649                                             ("vm_fault: vget failed"));
650                                         goto RetryFault;
651                                 }
652                                 fs.vp = vp;
653                         }
654 vnode_locked:
655                         KASSERT(fs.vp == NULL || !fs.map->system_map,
656                             ("vm_fault: vnode-backed object mapped by system map"));
657
658                         /*
659                          * now we find out if any other pages should be paged
660                          * in at this time this routine checks to see if the
661                          * pages surrounding this fault reside in the same
662                          * object as the page for this fault.  If they do,
663                          * then they are faulted in also into the object.  The
664                          * array "marray" returned contains an array of
665                          * vm_page_t structs where one of them is the
666                          * vm_page_t passed to the routine.  The reqpage
667                          * return value is the index into the marray for the
668                          * vm_page_t passed to the routine.
669                          *
670                          * fs.m plus the additional pages are exclusive busied.
671                          */
672                         faultcount = vm_fault_additional_pages(
673                             fs.m, behind, ahead, marray, &reqpage);
674
675                         rv = faultcount ?
676                             vm_pager_get_pages(fs.object, marray, faultcount,
677                                 reqpage) : VM_PAGER_FAIL;
678
679                         if (rv == VM_PAGER_OK) {
680                                 /*
681                                  * Found the page. Leave it busy while we play
682                                  * with it.
683                                  */
684
685                                 /*
686                                  * Relookup in case pager changed page. Pager
687                                  * is responsible for disposition of old page
688                                  * if moved.
689                                  */
690                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
691                                 if (!fs.m) {
692                                         unlock_and_deallocate(&fs);
693                                         goto RetryFault;
694                                 }
695
696                                 hardfault++;
697                                 break; /* break to PAGE HAS BEEN FOUND */
698                         }
699                         /*
700                          * Remove the bogus page (which does not exist at this
701                          * object/offset); before doing so, we must get back
702                          * our object lock to preserve our invariant.
703                          *
704                          * Also wake up any other process that may want to bring
705                          * in this page.
706                          *
707                          * If this is the top-level object, we must leave the
708                          * busy page to prevent another process from rushing
709                          * past us, and inserting the page in that object at
710                          * the same time that we are.
711                          */
712                         if (rv == VM_PAGER_ERROR)
713                                 printf("vm_fault: pager read error, pid %d (%s)\n",
714                                     curproc->p_pid, curproc->p_comm);
715                         /*
716                          * Data outside the range of the pager or an I/O error
717                          */
718                         /*
719                          * XXX - the check for kernel_map is a kludge to work
720                          * around having the machine panic on a kernel space
721                          * fault w/ I/O error.
722                          */
723                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
724                                 (rv == VM_PAGER_BAD)) {
725                                 vm_page_lock(fs.m);
726                                 vm_page_free(fs.m);
727                                 vm_page_unlock(fs.m);
728                                 fs.m = NULL;
729                                 unlock_and_deallocate(&fs);
730                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
731                         }
732                         if (fs.object != fs.first_object) {
733                                 vm_page_lock(fs.m);
734                                 vm_page_free(fs.m);
735                                 vm_page_unlock(fs.m);
736                                 fs.m = NULL;
737                                 /*
738                                  * XXX - we cannot just fall out at this
739                                  * point, m has been freed and is invalid!
740                                  */
741                         }
742                 }
743
744                 /*
745                  * We get here if the object has default pager (or unwiring) 
746                  * or the pager doesn't have the page.
747                  */
748                 if (fs.object == fs.first_object)
749                         fs.first_m = fs.m;
750
751                 /*
752                  * Move on to the next object.  Lock the next object before
753                  * unlocking the current one.
754                  */
755                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
756                 next_object = fs.object->backing_object;
757                 if (next_object == NULL) {
758                         /*
759                          * If there's no object left, fill the page in the top
760                          * object with zeros.
761                          */
762                         if (fs.object != fs.first_object) {
763                                 vm_object_pip_wakeup(fs.object);
764                                 VM_OBJECT_WUNLOCK(fs.object);
765
766                                 fs.object = fs.first_object;
767                                 fs.pindex = fs.first_pindex;
768                                 fs.m = fs.first_m;
769                                 VM_OBJECT_WLOCK(fs.object);
770                         }
771                         fs.first_m = NULL;
772
773                         /*
774                          * Zero the page if necessary and mark it valid.
775                          */
776                         if ((fs.m->flags & PG_ZERO) == 0) {
777                                 pmap_zero_page(fs.m);
778                         } else {
779                                 PCPU_INC(cnt.v_ozfod);
780                         }
781                         PCPU_INC(cnt.v_zfod);
782                         fs.m->valid = VM_PAGE_BITS_ALL;
783                         /* Don't try to prefault neighboring pages. */
784                         faultcount = 1;
785                         break;  /* break to PAGE HAS BEEN FOUND */
786                 } else {
787                         KASSERT(fs.object != next_object,
788                             ("object loop %p", next_object));
789                         VM_OBJECT_WLOCK(next_object);
790                         vm_object_pip_add(next_object, 1);
791                         if (fs.object != fs.first_object)
792                                 vm_object_pip_wakeup(fs.object);
793                         VM_OBJECT_WUNLOCK(fs.object);
794                         fs.object = next_object;
795                 }
796         }
797
798         vm_page_assert_xbusied(fs.m);
799
800         /*
801          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
802          * is held.]
803          */
804
805         /*
806          * If the page is being written, but isn't already owned by the
807          * top-level object, we have to copy it into a new page owned by the
808          * top-level object.
809          */
810         if (fs.object != fs.first_object) {
811                 /*
812                  * We only really need to copy if we want to write it.
813                  */
814                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
815                         /*
816                          * This allows pages to be virtually copied from a 
817                          * backing_object into the first_object, where the 
818                          * backing object has no other refs to it, and cannot
819                          * gain any more refs.  Instead of a bcopy, we just 
820                          * move the page from the backing object to the 
821                          * first object.  Note that we must mark the page 
822                          * dirty in the first object so that it will go out 
823                          * to swap when needed.
824                          */
825                         is_first_object_locked = FALSE;
826                         if (
827                                 /*
828                                  * Only one shadow object
829                                  */
830                                 (fs.object->shadow_count == 1) &&
831                                 /*
832                                  * No COW refs, except us
833                                  */
834                                 (fs.object->ref_count == 1) &&
835                                 /*
836                                  * No one else can look this object up
837                                  */
838                                 (fs.object->handle == NULL) &&
839                                 /*
840                                  * No other ways to look the object up
841                                  */
842                                 ((fs.object->type == OBJT_DEFAULT) ||
843                                  (fs.object->type == OBJT_SWAP)) &&
844                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
845                                 /*
846                                  * We don't chase down the shadow chain
847                                  */
848                             fs.object == fs.first_object->backing_object) {
849                                 /*
850                                  * get rid of the unnecessary page
851                                  */
852                                 vm_page_lock(fs.first_m);
853                                 vm_page_free(fs.first_m);
854                                 vm_page_unlock(fs.first_m);
855                                 /*
856                                  * grab the page and put it into the 
857                                  * process'es object.  The page is 
858                                  * automatically made dirty.
859                                  */
860                                 if (vm_page_rename(fs.m, fs.first_object,
861                                     fs.first_pindex)) {
862                                         unlock_and_deallocate(&fs);
863                                         goto RetryFault;
864                                 }
865 #if VM_NRESERVLEVEL > 0
866                                 /*
867                                  * Rename the reservation.
868                                  */
869                                 vm_reserv_rename(fs.m, fs.first_object,
870                                     fs.object, OFF_TO_IDX(
871                                     fs.first_object->backing_object_offset));
872 #endif
873                                 vm_page_xbusy(fs.m);
874                                 fs.first_m = fs.m;
875                                 fs.m = NULL;
876                                 PCPU_INC(cnt.v_cow_optim);
877                         } else {
878                                 /*
879                                  * Oh, well, lets copy it.
880                                  */
881                                 pmap_copy_page(fs.m, fs.first_m);
882                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
883                                 if (wired && (fault_flags &
884                                     VM_FAULT_WIRE) == 0) {
885                                         vm_page_lock(fs.first_m);
886                                         vm_page_wire(fs.first_m);
887                                         vm_page_unlock(fs.first_m);
888                                         
889                                         vm_page_lock(fs.m);
890                                         vm_page_unwire(fs.m, FALSE);
891                                         vm_page_unlock(fs.m);
892                                 }
893                                 /*
894                                  * We no longer need the old page or object.
895                                  */
896                                 release_page(&fs);
897                         }
898                         /*
899                          * fs.object != fs.first_object due to above 
900                          * conditional
901                          */
902                         vm_object_pip_wakeup(fs.object);
903                         VM_OBJECT_WUNLOCK(fs.object);
904                         /*
905                          * Only use the new page below...
906                          */
907                         fs.object = fs.first_object;
908                         fs.pindex = fs.first_pindex;
909                         fs.m = fs.first_m;
910                         if (!is_first_object_locked)
911                                 VM_OBJECT_WLOCK(fs.object);
912                         PCPU_INC(cnt.v_cow_faults);
913                         curthread->td_cow++;
914                 } else {
915                         prot &= ~VM_PROT_WRITE;
916                 }
917         }
918
919         /*
920          * We must verify that the maps have not changed since our last
921          * lookup.
922          */
923         if (!fs.lookup_still_valid) {
924                 vm_object_t retry_object;
925                 vm_pindex_t retry_pindex;
926                 vm_prot_t retry_prot;
927
928                 if (!vm_map_trylock_read(fs.map)) {
929                         release_page(&fs);
930                         unlock_and_deallocate(&fs);
931                         goto RetryFault;
932                 }
933                 fs.lookup_still_valid = TRUE;
934                 if (fs.map->timestamp != map_generation) {
935                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
936                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
937
938                         /*
939                          * If we don't need the page any longer, put it on the inactive
940                          * list (the easiest thing to do here).  If no one needs it,
941                          * pageout will grab it eventually.
942                          */
943                         if (result != KERN_SUCCESS) {
944                                 release_page(&fs);
945                                 unlock_and_deallocate(&fs);
946
947                                 /*
948                                  * If retry of map lookup would have blocked then
949                                  * retry fault from start.
950                                  */
951                                 if (result == KERN_FAILURE)
952                                         goto RetryFault;
953                                 return (result);
954                         }
955                         if ((retry_object != fs.first_object) ||
956                             (retry_pindex != fs.first_pindex)) {
957                                 release_page(&fs);
958                                 unlock_and_deallocate(&fs);
959                                 goto RetryFault;
960                         }
961
962                         /*
963                          * Check whether the protection has changed or the object has
964                          * been copied while we left the map unlocked. Changing from
965                          * read to write permission is OK - we leave the page
966                          * write-protected, and catch the write fault. Changing from
967                          * write to read permission means that we can't mark the page
968                          * write-enabled after all.
969                          */
970                         prot &= retry_prot;
971                 }
972         }
973         /*
974          * If the page was filled by a pager, update the map entry's
975          * last read offset.  Since the pager does not return the
976          * actual set of pages that it read, this update is based on
977          * the requested set.  Typically, the requested and actual
978          * sets are the same.
979          *
980          * XXX The following assignment modifies the map
981          * without holding a write lock on it.
982          */
983         if (hardfault)
984                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
985
986         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
987         vm_page_assert_xbusied(fs.m);
988
989         /*
990          * Page must be completely valid or it is not fit to
991          * map into user space.  vm_pager_get_pages() ensures this.
992          */
993         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
994             ("vm_fault: page %p partially invalid", fs.m));
995         VM_OBJECT_WUNLOCK(fs.object);
996
997         /*
998          * Put this page into the physical map.  We had to do the unlock above
999          * because pmap_enter() may sleep.  We don't put the page
1000          * back on the active queue until later so that the pageout daemon
1001          * won't find it (yet).
1002          */
1003         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1004             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1005         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1006             wired == 0)
1007                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1008         VM_OBJECT_WLOCK(fs.object);
1009         vm_page_lock(fs.m);
1010
1011         /*
1012          * If the page is not wired down, then put it where the pageout daemon
1013          * can find it.
1014          */
1015         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1016                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1017                 vm_page_wire(fs.m);
1018         } else
1019                 vm_page_activate(fs.m);
1020         if (m_hold != NULL) {
1021                 *m_hold = fs.m;
1022                 vm_page_hold(fs.m);
1023         }
1024         vm_page_unlock(fs.m);
1025         vm_page_xunbusy(fs.m);
1026
1027         /*
1028          * Unlock everything, and return
1029          */
1030         unlock_and_deallocate(&fs);
1031         if (hardfault) {
1032                 PCPU_INC(cnt.v_io_faults);
1033                 curthread->td_ru.ru_majflt++;
1034         } else 
1035                 curthread->td_ru.ru_minflt++;
1036
1037         return (KERN_SUCCESS);
1038 }
1039
1040 /*
1041  * Speed up the reclamation of up to "distance" pages that precede the
1042  * faulting pindex within the first object of the shadow chain.
1043  */
1044 static void
1045 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1046 {
1047         vm_object_t first_object, object;
1048         vm_page_t m, m_prev;
1049         vm_pindex_t pindex;
1050
1051         object = fs->object;
1052         VM_OBJECT_ASSERT_WLOCKED(object);
1053         first_object = fs->first_object;
1054         if (first_object != object) {
1055                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1056                         VM_OBJECT_WUNLOCK(object);
1057                         VM_OBJECT_WLOCK(first_object);
1058                         VM_OBJECT_WLOCK(object);
1059                 }
1060         }
1061         /* Neither fictitious nor unmanaged pages can be cached. */
1062         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1063                 if (fs->first_pindex < distance)
1064                         pindex = 0;
1065                 else
1066                         pindex = fs->first_pindex - distance;
1067                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1068                         pindex = OFF_TO_IDX(fs->entry->offset);
1069                 m = first_object != object ? fs->first_m : fs->m;
1070                 vm_page_assert_xbusied(m);
1071                 m_prev = vm_page_prev(m);
1072                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1073                     m->valid == VM_PAGE_BITS_ALL) {
1074                         m_prev = vm_page_prev(m);
1075                         if (vm_page_busied(m))
1076                                 continue;
1077                         vm_page_lock(m);
1078                         if (m->hold_count == 0 && m->wire_count == 0) {
1079                                 pmap_remove_all(m);
1080                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1081                                 if (m->dirty != 0)
1082                                         vm_page_deactivate(m);
1083                                 else
1084                                         vm_page_cache(m);
1085                         }
1086                         vm_page_unlock(m);
1087                 }
1088         }
1089         if (first_object != object)
1090                 VM_OBJECT_WUNLOCK(first_object);
1091 }
1092
1093 /*
1094  * vm_fault_prefault provides a quick way of clustering
1095  * pagefaults into a processes address space.  It is a "cousin"
1096  * of vm_map_pmap_enter, except it runs at page fault time instead
1097  * of mmap time.
1098  */
1099 static void
1100 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1101     int faultcount, int reqpage)
1102 {
1103         pmap_t pmap;
1104         vm_map_entry_t entry;
1105         vm_object_t backing_object, lobject;
1106         vm_offset_t addr, starta;
1107         vm_pindex_t pindex;
1108         vm_page_t m;
1109         int backward, forward, i;
1110
1111         pmap = fs->map->pmap;
1112         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1113                 return;
1114
1115         if (faultcount > 0) {
1116                 backward = reqpage;
1117                 forward = faultcount - reqpage - 1;
1118         } else {
1119                 backward = PFBAK;
1120                 forward = PFFOR;
1121         }
1122         entry = fs->entry;
1123
1124         starta = addra - backward * PAGE_SIZE;
1125         if (starta < entry->start) {
1126                 starta = entry->start;
1127         } else if (starta > addra) {
1128                 starta = 0;
1129         }
1130
1131         /*
1132          * Generate the sequence of virtual addresses that are candidates for
1133          * prefaulting in an outward spiral from the faulting virtual address,
1134          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1135          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1136          * If the candidate address doesn't have a backing physical page, then
1137          * the loop immediately terminates.
1138          */
1139         for (i = 0; i < 2 * imax(backward, forward); i++) {
1140                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1141                     PAGE_SIZE);
1142                 if (addr > addra + forward * PAGE_SIZE)
1143                         addr = 0;
1144
1145                 if (addr < starta || addr >= entry->end)
1146                         continue;
1147
1148                 if (!pmap_is_prefaultable(pmap, addr))
1149                         continue;
1150
1151                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1152                 lobject = entry->object.vm_object;
1153                 VM_OBJECT_RLOCK(lobject);
1154                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1155                     lobject->type == OBJT_DEFAULT &&
1156                     (backing_object = lobject->backing_object) != NULL) {
1157                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1158                             0, ("vm_fault_prefault: unaligned object offset"));
1159                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1160                         VM_OBJECT_RLOCK(backing_object);
1161                         VM_OBJECT_RUNLOCK(lobject);
1162                         lobject = backing_object;
1163                 }
1164                 if (m == NULL) {
1165                         VM_OBJECT_RUNLOCK(lobject);
1166                         break;
1167                 }
1168                 if (m->valid == VM_PAGE_BITS_ALL &&
1169                     (m->flags & PG_FICTITIOUS) == 0)
1170                         pmap_enter_quick(pmap, addr, m, entry->protection);
1171                 VM_OBJECT_RUNLOCK(lobject);
1172         }
1173 }
1174
1175 /*
1176  * Hold each of the physical pages that are mapped by the specified range of
1177  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1178  * and allow the specified types of access, "prot".  If all of the implied
1179  * pages are successfully held, then the number of held pages is returned
1180  * together with pointers to those pages in the array "ma".  However, if any
1181  * of the pages cannot be held, -1 is returned.
1182  */
1183 int
1184 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1185     vm_prot_t prot, vm_page_t *ma, int max_count)
1186 {
1187         vm_offset_t end, va;
1188         vm_page_t *mp;
1189         int count;
1190         boolean_t pmap_failed;
1191
1192         if (len == 0)
1193                 return (0);
1194         end = round_page(addr + len);
1195         addr = trunc_page(addr);
1196
1197         /*
1198          * Check for illegal addresses.
1199          */
1200         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1201                 return (-1);
1202
1203         if (atop(end - addr) > max_count)
1204                 panic("vm_fault_quick_hold_pages: count > max_count");
1205         count = atop(end - addr);
1206
1207         /*
1208          * Most likely, the physical pages are resident in the pmap, so it is
1209          * faster to try pmap_extract_and_hold() first.
1210          */
1211         pmap_failed = FALSE;
1212         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1213                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1214                 if (*mp == NULL)
1215                         pmap_failed = TRUE;
1216                 else if ((prot & VM_PROT_WRITE) != 0 &&
1217                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1218                         /*
1219                          * Explicitly dirty the physical page.  Otherwise, the
1220                          * caller's changes may go unnoticed because they are
1221                          * performed through an unmanaged mapping or by a DMA
1222                          * operation.
1223                          *
1224                          * The object lock is not held here.
1225                          * See vm_page_clear_dirty_mask().
1226                          */
1227                         vm_page_dirty(*mp);
1228                 }
1229         }
1230         if (pmap_failed) {
1231                 /*
1232                  * One or more pages could not be held by the pmap.  Either no
1233                  * page was mapped at the specified virtual address or that
1234                  * mapping had insufficient permissions.  Attempt to fault in
1235                  * and hold these pages.
1236                  */
1237                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1238                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1239                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1240                                 goto error;
1241         }
1242         return (count);
1243 error:  
1244         for (mp = ma; mp < ma + count; mp++)
1245                 if (*mp != NULL) {
1246                         vm_page_lock(*mp);
1247                         vm_page_unhold(*mp);
1248                         vm_page_unlock(*mp);
1249                 }
1250         return (-1);
1251 }
1252
1253 /*
1254  *      Routine:
1255  *              vm_fault_copy_entry
1256  *      Function:
1257  *              Create new shadow object backing dst_entry with private copy of
1258  *              all underlying pages. When src_entry is equal to dst_entry,
1259  *              function implements COW for wired-down map entry. Otherwise,
1260  *              it forks wired entry into dst_map.
1261  *
1262  *      In/out conditions:
1263  *              The source and destination maps must be locked for write.
1264  *              The source map entry must be wired down (or be a sharing map
1265  *              entry corresponding to a main map entry that is wired down).
1266  */
1267 void
1268 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1269     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1270     vm_ooffset_t *fork_charge)
1271 {
1272         vm_object_t backing_object, dst_object, object, src_object;
1273         vm_pindex_t dst_pindex, pindex, src_pindex;
1274         vm_prot_t access, prot;
1275         vm_offset_t vaddr;
1276         vm_page_t dst_m;
1277         vm_page_t src_m;
1278         boolean_t upgrade;
1279
1280 #ifdef  lint
1281         src_map++;
1282 #endif  /* lint */
1283
1284         upgrade = src_entry == dst_entry;
1285         access = prot = dst_entry->protection;
1286
1287         src_object = src_entry->object.vm_object;
1288         src_pindex = OFF_TO_IDX(src_entry->offset);
1289
1290         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1291                 dst_object = src_object;
1292                 vm_object_reference(dst_object);
1293         } else {
1294                 /*
1295                  * Create the top-level object for the destination entry. (Doesn't
1296                  * actually shadow anything - we copy the pages directly.)
1297                  */
1298                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1299                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1300 #if VM_NRESERVLEVEL > 0
1301                 dst_object->flags |= OBJ_COLORED;
1302                 dst_object->pg_color = atop(dst_entry->start);
1303 #endif
1304         }
1305
1306         VM_OBJECT_WLOCK(dst_object);
1307         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1308             ("vm_fault_copy_entry: vm_object not NULL"));
1309         if (src_object != dst_object) {
1310                 dst_entry->object.vm_object = dst_object;
1311                 dst_entry->offset = 0;
1312                 dst_object->charge = dst_entry->end - dst_entry->start;
1313         }
1314         if (fork_charge != NULL) {
1315                 KASSERT(dst_entry->cred == NULL,
1316                     ("vm_fault_copy_entry: leaked swp charge"));
1317                 dst_object->cred = curthread->td_ucred;
1318                 crhold(dst_object->cred);
1319                 *fork_charge += dst_object->charge;
1320         } else if (dst_object->cred == NULL) {
1321                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1322                     dst_entry));
1323                 dst_object->cred = dst_entry->cred;
1324                 dst_entry->cred = NULL;
1325         }
1326
1327         /*
1328          * If not an upgrade, then enter the mappings in the pmap as
1329          * read and/or execute accesses.  Otherwise, enter them as
1330          * write accesses.
1331          *
1332          * A writeable large page mapping is only created if all of
1333          * the constituent small page mappings are modified. Marking
1334          * PTEs as modified on inception allows promotion to happen
1335          * without taking potentially large number of soft faults.
1336          */
1337         if (!upgrade)
1338                 access &= ~VM_PROT_WRITE;
1339
1340         /*
1341          * Loop through all of the virtual pages within the entry's
1342          * range, copying each page from the source object to the
1343          * destination object.  Since the source is wired, those pages
1344          * must exist.  In contrast, the destination is pageable.
1345          * Since the destination object does share any backing storage
1346          * with the source object, all of its pages must be dirtied,
1347          * regardless of whether they can be written.
1348          */
1349         for (vaddr = dst_entry->start, dst_pindex = 0;
1350             vaddr < dst_entry->end;
1351             vaddr += PAGE_SIZE, dst_pindex++) {
1352 again:
1353                 /*
1354                  * Find the page in the source object, and copy it in.
1355                  * Because the source is wired down, the page will be
1356                  * in memory.
1357                  */
1358                 if (src_object != dst_object)
1359                         VM_OBJECT_RLOCK(src_object);
1360                 object = src_object;
1361                 pindex = src_pindex + dst_pindex;
1362                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1363                     (backing_object = object->backing_object) != NULL) {
1364                         /*
1365                          * Unless the source mapping is read-only or
1366                          * it is presently being upgraded from
1367                          * read-only, the first object in the shadow
1368                          * chain should provide all of the pages.  In
1369                          * other words, this loop body should never be
1370                          * executed when the source mapping is already
1371                          * read/write.
1372                          */
1373                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1374                             upgrade,
1375                             ("vm_fault_copy_entry: main object missing page"));
1376
1377                         VM_OBJECT_RLOCK(backing_object);
1378                         pindex += OFF_TO_IDX(object->backing_object_offset);
1379                         if (object != dst_object)
1380                                 VM_OBJECT_RUNLOCK(object);
1381                         object = backing_object;
1382                 }
1383                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1384
1385                 if (object != dst_object) {
1386                         /*
1387                          * Allocate a page in the destination object.
1388                          */
1389                         dst_m = vm_page_alloc(dst_object, (src_object ==
1390                             dst_object ? src_pindex : 0) + dst_pindex,
1391                             VM_ALLOC_NORMAL);
1392                         if (dst_m == NULL) {
1393                                 VM_OBJECT_WUNLOCK(dst_object);
1394                                 VM_OBJECT_RUNLOCK(object);
1395                                 VM_WAIT;
1396                                 VM_OBJECT_WLOCK(dst_object);
1397                                 goto again;
1398                         }
1399                         pmap_copy_page(src_m, dst_m);
1400                         VM_OBJECT_RUNLOCK(object);
1401                         dst_m->valid = VM_PAGE_BITS_ALL;
1402                         dst_m->dirty = VM_PAGE_BITS_ALL;
1403                 } else {
1404                         dst_m = src_m;
1405                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1406                                 goto again;
1407                         vm_page_xbusy(dst_m);
1408                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1409                             ("invalid dst page %p", dst_m));
1410                 }
1411                 VM_OBJECT_WUNLOCK(dst_object);
1412
1413                 /*
1414                  * Enter it in the pmap. If a wired, copy-on-write
1415                  * mapping is being replaced by a write-enabled
1416                  * mapping, then wire that new mapping.
1417                  */
1418                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1419                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1420
1421                 /*
1422                  * Mark it no longer busy, and put it on the active list.
1423                  */
1424                 VM_OBJECT_WLOCK(dst_object);
1425                 
1426                 if (upgrade) {
1427                         if (src_m != dst_m) {
1428                                 vm_page_lock(src_m);
1429                                 vm_page_unwire(src_m, 0);
1430                                 vm_page_unlock(src_m);
1431                                 vm_page_lock(dst_m);
1432                                 vm_page_wire(dst_m);
1433                                 vm_page_unlock(dst_m);
1434                         } else {
1435                                 KASSERT(dst_m->wire_count > 0,
1436                                     ("dst_m %p is not wired", dst_m));
1437                         }
1438                 } else {
1439                         vm_page_lock(dst_m);
1440                         vm_page_activate(dst_m);
1441                         vm_page_unlock(dst_m);
1442                 }
1443                 vm_page_xunbusy(dst_m);
1444         }
1445         VM_OBJECT_WUNLOCK(dst_object);
1446         if (upgrade) {
1447                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1448                 vm_object_deallocate(src_object);
1449         }
1450 }
1451
1452
1453 /*
1454  * This routine checks around the requested page for other pages that
1455  * might be able to be faulted in.  This routine brackets the viable
1456  * pages for the pages to be paged in.
1457  *
1458  * Inputs:
1459  *      m, rbehind, rahead
1460  *
1461  * Outputs:
1462  *  marray (array of vm_page_t), reqpage (index of requested page)
1463  *
1464  * Return value:
1465  *  number of pages in marray
1466  */
1467 static int
1468 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1469         vm_page_t m;
1470         int rbehind;
1471         int rahead;
1472         vm_page_t *marray;
1473         int *reqpage;
1474 {
1475         int i,j;
1476         vm_object_t object;
1477         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1478         vm_page_t rtm;
1479         int cbehind, cahead;
1480
1481         VM_OBJECT_ASSERT_WLOCKED(m->object);
1482
1483         object = m->object;
1484         pindex = m->pindex;
1485         cbehind = cahead = 0;
1486
1487         /*
1488          * if the requested page is not available, then give up now
1489          */
1490         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1491                 return 0;
1492         }
1493
1494         if ((cbehind == 0) && (cahead == 0)) {
1495                 *reqpage = 0;
1496                 marray[0] = m;
1497                 return 1;
1498         }
1499
1500         if (rahead > cahead) {
1501                 rahead = cahead;
1502         }
1503
1504         if (rbehind > cbehind) {
1505                 rbehind = cbehind;
1506         }
1507
1508         /*
1509          * scan backward for the read behind pages -- in memory 
1510          */
1511         if (pindex > 0) {
1512                 if (rbehind > pindex) {
1513                         rbehind = pindex;
1514                         startpindex = 0;
1515                 } else {
1516                         startpindex = pindex - rbehind;
1517                 }
1518
1519                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1520                     rtm->pindex >= startpindex)
1521                         startpindex = rtm->pindex + 1;
1522
1523                 /* tpindex is unsigned; beware of numeric underflow. */
1524                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1525                     tpindex < pindex; i++, tpindex--) {
1526
1527                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1528                             VM_ALLOC_IFNOTCACHED);
1529                         if (rtm == NULL) {
1530                                 /*
1531                                  * Shift the allocated pages to the
1532                                  * beginning of the array.
1533                                  */
1534                                 for (j = 0; j < i; j++) {
1535                                         marray[j] = marray[j + tpindex + 1 -
1536                                             startpindex];
1537                                 }
1538                                 break;
1539                         }
1540
1541                         marray[tpindex - startpindex] = rtm;
1542                 }
1543         } else {
1544                 startpindex = 0;
1545                 i = 0;
1546         }
1547
1548         marray[i] = m;
1549         /* page offset of the required page */
1550         *reqpage = i;
1551
1552         tpindex = pindex + 1;
1553         i++;
1554
1555         /*
1556          * scan forward for the read ahead pages
1557          */
1558         endpindex = tpindex + rahead;
1559         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1560                 endpindex = rtm->pindex;
1561         if (endpindex > object->size)
1562                 endpindex = object->size;
1563
1564         for (; tpindex < endpindex; i++, tpindex++) {
1565
1566                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1567                     VM_ALLOC_IFNOTCACHED);
1568                 if (rtm == NULL) {
1569                         break;
1570                 }
1571
1572                 marray[i] = rtm;
1573         }
1574
1575         /* return number of pages */
1576         return i;
1577 }
1578
1579 /*
1580  * Block entry into the machine-independent layer's page fault handler by
1581  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1582  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1583  * spurious page faults. 
1584  */
1585 int
1586 vm_fault_disable_pagefaults(void)
1587 {
1588
1589         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1590 }
1591
1592 void
1593 vm_fault_enable_pagefaults(int save)
1594 {
1595
1596         curthread_pflags_restore(save);
1597 }