]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_fault.c
MFC r308114:
[FreeBSD/stable/10.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/rwlock.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 #include <vm/vm_reserv.h>
105
106 #define PFBAK 4
107 #define PFFOR 4
108
109 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
110
111 #define VM_FAULT_READ_BEHIND    8
112 #define VM_FAULT_READ_MAX       (1 + VM_FAULT_READ_AHEAD_MAX)
113 #define VM_FAULT_NINCR          (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND)
114 #define VM_FAULT_SUM            (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2)
115 #define VM_FAULT_CACHE_BEHIND   (VM_FAULT_READ_BEHIND * VM_FAULT_SUM)
116
117 struct faultstate {
118         vm_page_t m;
119         vm_object_t object;
120         vm_pindex_t pindex;
121         vm_page_t first_m;
122         vm_object_t     first_object;
123         vm_pindex_t first_pindex;
124         vm_map_t map;
125         vm_map_entry_t entry;
126         int lookup_still_valid;
127         struct vnode *vp;
128 };
129
130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132             int faultcount, int reqpage);
133
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137
138         vm_page_xunbusy(fs->m);
139         vm_page_lock(fs->m);
140         vm_page_deactivate(fs->m);
141         vm_page_unlock(fs->m);
142         fs->m = NULL;
143 }
144
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148
149         if (fs->lookup_still_valid) {
150                 vm_map_lookup_done(fs->map, fs->entry);
151                 fs->lookup_still_valid = FALSE;
152         }
153 }
154
155 static void
156 unlock_vp(struct faultstate *fs)
157 {
158
159         if (fs->vp != NULL) {
160                 vput(fs->vp);
161                 fs->vp = NULL;
162         }
163 }
164
165 static void
166 unlock_and_deallocate(struct faultstate *fs)
167 {
168
169         vm_object_pip_wakeup(fs->object);
170         VM_OBJECT_WUNLOCK(fs->object);
171         if (fs->object != fs->first_object) {
172                 VM_OBJECT_WLOCK(fs->first_object);
173                 vm_page_lock(fs->first_m);
174                 vm_page_free(fs->first_m);
175                 vm_page_unlock(fs->first_m);
176                 vm_object_pip_wakeup(fs->first_object);
177                 VM_OBJECT_WUNLOCK(fs->first_object);
178                 fs->first_m = NULL;
179         }
180         vm_object_deallocate(fs->first_object);
181         unlock_map(fs);
182         unlock_vp(fs);
183 }
184
185 static void
186 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
187     vm_prot_t fault_type, int fault_flags, bool set_wd)
188 {
189         bool need_dirty;
190
191         if (((prot & VM_PROT_WRITE) == 0 &&
192             (fault_flags & VM_FAULT_DIRTY) == 0) ||
193             (m->oflags & VPO_UNMANAGED) != 0)
194                 return;
195
196         VM_OBJECT_ASSERT_LOCKED(m->object);
197
198         need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
199             (fault_flags & VM_FAULT_WIRE) == 0) ||
200             (fault_flags & VM_FAULT_DIRTY) != 0;
201
202         if (set_wd)
203                 vm_object_set_writeable_dirty(m->object);
204         else
205                 /*
206                  * If two callers of vm_fault_dirty() with set_wd ==
207                  * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
208                  * flag set, other with flag clear, race, it is
209                  * possible for the no-NOSYNC thread to see m->dirty
210                  * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
211                  * around manipulation of VPO_NOSYNC and
212                  * vm_page_dirty() call, to avoid the race and keep
213                  * m->oflags consistent.
214                  */
215                 vm_page_lock(m);
216
217         /*
218          * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
219          * if the page is already dirty to prevent data written with
220          * the expectation of being synced from not being synced.
221          * Likewise if this entry does not request NOSYNC then make
222          * sure the page isn't marked NOSYNC.  Applications sharing
223          * data should use the same flags to avoid ping ponging.
224          */
225         if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
226                 if (m->dirty == 0) {
227                         m->oflags |= VPO_NOSYNC;
228                 }
229         } else {
230                 m->oflags &= ~VPO_NOSYNC;
231         }
232
233         /*
234          * If the fault is a write, we know that this page is being
235          * written NOW so dirty it explicitly to save on
236          * pmap_is_modified() calls later.
237          *
238          * Also tell the backing pager, if any, that it should remove
239          * any swap backing since the page is now dirty.
240          */
241         if (need_dirty)
242                 vm_page_dirty(m);
243         if (!set_wd)
244                 vm_page_unlock(m);
245         if (need_dirty)
246                 vm_pager_page_unswapped(m);
247 }
248
249 /*
250  *      vm_fault:
251  *
252  *      Handle a page fault occurring at the given address,
253  *      requiring the given permissions, in the map specified.
254  *      If successful, the page is inserted into the
255  *      associated physical map.
256  *
257  *      NOTE: the given address should be truncated to the
258  *      proper page address.
259  *
260  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
261  *      a standard error specifying why the fault is fatal is returned.
262  *
263  *      The map in question must be referenced, and remains so.
264  *      Caller may hold no locks.
265  */
266 int
267 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
268     int fault_flags)
269 {
270         struct thread *td;
271         int result;
272
273         td = curthread;
274         if ((td->td_pflags & TDP_NOFAULTING) != 0)
275                 return (KERN_PROTECTION_FAILURE);
276 #ifdef KTRACE
277         if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
278                 ktrfault(vaddr, fault_type);
279 #endif
280         result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
281             NULL);
282 #ifdef KTRACE
283         if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
284                 ktrfaultend(result);
285 #endif
286         return (result);
287 }
288
289 int
290 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
291     int fault_flags, vm_page_t *m_hold)
292 {
293         vm_prot_t prot;
294         long ahead, behind;
295         int alloc_req, era, faultcount, nera, reqpage, result;
296         boolean_t dead, growstack, is_first_object_locked, wired;
297         int map_generation;
298         vm_object_t next_object;
299         vm_page_t marray[VM_FAULT_READ_MAX];
300         int hardfault;
301         struct faultstate fs;
302         struct vnode *vp;
303         vm_page_t m;
304         int locked, error;
305
306         hardfault = 0;
307         growstack = TRUE;
308         PCPU_INC(cnt.v_vm_faults);
309         fs.vp = NULL;
310         faultcount = reqpage = 0;
311
312 RetryFault:;
313
314         /*
315          * Find the backing store object and offset into it to begin the
316          * search.
317          */
318         fs.map = map;
319         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
320             &fs.first_object, &fs.first_pindex, &prot, &wired);
321         if (result != KERN_SUCCESS) {
322                 if (growstack && result == KERN_INVALID_ADDRESS &&
323                     map != kernel_map) {
324                         result = vm_map_growstack(curproc, vaddr);
325                         if (result != KERN_SUCCESS)
326                                 return (KERN_FAILURE);
327                         growstack = FALSE;
328                         goto RetryFault;
329                 }
330                 unlock_vp(&fs);
331                 return (result);
332         }
333
334         map_generation = fs.map->timestamp;
335
336         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
337                 panic("vm_fault: fault on nofault entry, addr: %lx",
338                     (u_long)vaddr);
339         }
340
341         if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
342             fs.entry->wiring_thread != curthread) {
343                 vm_map_unlock_read(fs.map);
344                 vm_map_lock(fs.map);
345                 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
346                     (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
347                         unlock_vp(&fs);
348                         fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
349                         vm_map_unlock_and_wait(fs.map, 0);
350                 } else
351                         vm_map_unlock(fs.map);
352                 goto RetryFault;
353         }
354
355         if (wired)
356                 fault_type = prot | (fault_type & VM_PROT_COPY);
357         else
358                 KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
359                     ("!wired && VM_FAULT_WIRE"));
360
361         /*
362          * Try to avoid lock contention on the top-level object through
363          * special-case handling of some types of page faults, specifically,
364          * those that are both (1) mapping an existing page from the top-
365          * level object and (2) not having to mark that object as containing
366          * dirty pages.  Under these conditions, a read lock on the top-level
367          * object suffices, allowing multiple page faults of a similar type to
368          * run in parallel on the same top-level object.
369          */
370         if (fs.vp == NULL /* avoid locked vnode leak */ &&
371             (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
372             /* avoid calling vm_object_set_writeable_dirty() */
373             ((prot & VM_PROT_WRITE) == 0 ||
374             (fs.first_object->type != OBJT_VNODE &&
375             (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
376             (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
377                 VM_OBJECT_RLOCK(fs.first_object);
378                 if ((prot & VM_PROT_WRITE) != 0 &&
379                     (fs.first_object->type == OBJT_VNODE ||
380                     (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
381                     (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
382                         goto fast_failed;
383                 m = vm_page_lookup(fs.first_object, fs.first_pindex);
384                 /* A busy page can be mapped for read|execute access. */
385                 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
386                     vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
387                         goto fast_failed;
388                 result = pmap_enter(fs.map->pmap, vaddr, m, prot,
389                    fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
390                    0), 0);
391                 if (result != KERN_SUCCESS)
392                         goto fast_failed;
393                 if (m_hold != NULL) {
394                         *m_hold = m;
395                         vm_page_lock(m);
396                         vm_page_hold(m);
397                         vm_page_unlock(m);
398                 }
399                 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
400                     false);
401                 VM_OBJECT_RUNLOCK(fs.first_object);
402                 if (!wired)
403                         vm_fault_prefault(&fs, vaddr, 0, 0);
404                 vm_map_lookup_done(fs.map, fs.entry);
405                 curthread->td_ru.ru_minflt++;
406                 return (KERN_SUCCESS);
407 fast_failed:
408                 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
409                         VM_OBJECT_RUNLOCK(fs.first_object);
410                         VM_OBJECT_WLOCK(fs.first_object);
411                 }
412         } else {
413                 VM_OBJECT_WLOCK(fs.first_object);
414         }
415
416         /*
417          * Make a reference to this object to prevent its disposal while we
418          * are messing with it.  Once we have the reference, the map is free
419          * to be diddled.  Since objects reference their shadows (and copies),
420          * they will stay around as well.
421          *
422          * Bump the paging-in-progress count to prevent size changes (e.g. 
423          * truncation operations) during I/O.  This must be done after
424          * obtaining the vnode lock in order to avoid possible deadlocks.
425          */
426         vm_object_reference_locked(fs.first_object);
427         vm_object_pip_add(fs.first_object, 1);
428
429         fs.lookup_still_valid = TRUE;
430
431         fs.first_m = NULL;
432
433         /*
434          * Search for the page at object/offset.
435          */
436         fs.object = fs.first_object;
437         fs.pindex = fs.first_pindex;
438         while (TRUE) {
439                 /*
440                  * If the object is marked for imminent termination,
441                  * we retry here, since the collapse pass has raced
442                  * with us.  Otherwise, if we see terminally dead
443                  * object, return fail.
444                  */
445                 if ((fs.object->flags & OBJ_DEAD) != 0) {
446                         dead = fs.object->type == OBJT_DEAD;
447                         unlock_and_deallocate(&fs);
448                         if (dead)
449                                 return (KERN_PROTECTION_FAILURE);
450                         pause("vmf_de", 1);
451                         goto RetryFault;
452                 }
453
454                 /*
455                  * See if page is resident
456                  */
457                 fs.m = vm_page_lookup(fs.object, fs.pindex);
458                 if (fs.m != NULL) {
459                         /*
460                          * Wait/Retry if the page is busy.  We have to do this
461                          * if the page is either exclusive or shared busy
462                          * because the vm_pager may be using read busy for
463                          * pageouts (and even pageins if it is the vnode
464                          * pager), and we could end up trying to pagein and
465                          * pageout the same page simultaneously.
466                          *
467                          * We can theoretically allow the busy case on a read
468                          * fault if the page is marked valid, but since such
469                          * pages are typically already pmap'd, putting that
470                          * special case in might be more effort then it is 
471                          * worth.  We cannot under any circumstances mess
472                          * around with a shared busied page except, perhaps,
473                          * to pmap it.
474                          */
475                         if (vm_page_busied(fs.m)) {
476                                 /*
477                                  * Reference the page before unlocking and
478                                  * sleeping so that the page daemon is less
479                                  * likely to reclaim it. 
480                                  */
481                                 vm_page_aflag_set(fs.m, PGA_REFERENCED);
482                                 if (fs.object != fs.first_object) {
483                                         if (!VM_OBJECT_TRYWLOCK(
484                                             fs.first_object)) {
485                                                 VM_OBJECT_WUNLOCK(fs.object);
486                                                 VM_OBJECT_WLOCK(fs.first_object);
487                                                 VM_OBJECT_WLOCK(fs.object);
488                                         }
489                                         vm_page_lock(fs.first_m);
490                                         vm_page_free(fs.first_m);
491                                         vm_page_unlock(fs.first_m);
492                                         vm_object_pip_wakeup(fs.first_object);
493                                         VM_OBJECT_WUNLOCK(fs.first_object);
494                                         fs.first_m = NULL;
495                                 }
496                                 unlock_map(&fs);
497                                 if (fs.m == vm_page_lookup(fs.object,
498                                     fs.pindex)) {
499                                         vm_page_sleep_if_busy(fs.m, "vmpfw");
500                                 }
501                                 vm_object_pip_wakeup(fs.object);
502                                 VM_OBJECT_WUNLOCK(fs.object);
503                                 PCPU_INC(cnt.v_intrans);
504                                 vm_object_deallocate(fs.first_object);
505                                 goto RetryFault;
506                         }
507                         vm_page_lock(fs.m);
508                         vm_page_remque(fs.m);
509                         vm_page_unlock(fs.m);
510
511                         /*
512                          * Mark page busy for other processes, and the 
513                          * pagedaemon.  If it still isn't completely valid
514                          * (readable), jump to readrest, else break-out ( we
515                          * found the page ).
516                          */
517                         vm_page_xbusy(fs.m);
518                         if (fs.m->valid != VM_PAGE_BITS_ALL)
519                                 goto readrest;
520                         break;
521                 }
522
523                 /*
524                  * Page is not resident.  If this is the search termination
525                  * or the pager might contain the page, allocate a new page.
526                  * Default objects are zero-fill, there is no real pager.
527                  */
528                 if (fs.object->type != OBJT_DEFAULT ||
529                     fs.object == fs.first_object) {
530                         if (fs.pindex >= fs.object->size) {
531                                 unlock_and_deallocate(&fs);
532                                 return (KERN_PROTECTION_FAILURE);
533                         }
534
535                         /*
536                          * Allocate a new page for this object/offset pair.
537                          *
538                          * Unlocked read of the p_flag is harmless. At
539                          * worst, the P_KILLED might be not observed
540                          * there, and allocation can fail, causing
541                          * restart and new reading of the p_flag.
542                          */
543                         fs.m = NULL;
544                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
545 #if VM_NRESERVLEVEL > 0
546                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
547                                         fs.object->flags |= OBJ_COLORED;
548                                         fs.object->pg_color = atop(vaddr) -
549                                             fs.pindex;
550                                 }
551 #endif
552                                 alloc_req = P_KILLED(curproc) ?
553                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
554                                 if (fs.object->type != OBJT_VNODE &&
555                                     fs.object->backing_object == NULL)
556                                         alloc_req |= VM_ALLOC_ZERO;
557                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
558                                     alloc_req);
559                         }
560                         if (fs.m == NULL) {
561                                 unlock_and_deallocate(&fs);
562                                 VM_WAITPFAULT;
563                                 goto RetryFault;
564                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
565                                 break;
566                 }
567
568 readrest:
569                 /*
570                  * We have found a valid page or we have allocated a new page.
571                  * The page thus may not be valid or may not be entirely 
572                  * valid.
573                  *
574                  * Attempt to fault-in the page if there is a chance that the
575                  * pager has it, and potentially fault in additional pages
576                  * at the same time.  For default objects simply provide
577                  * zero-filled pages.
578                  */
579                 if (fs.object->type != OBJT_DEFAULT) {
580                         int rv;
581                         u_char behavior = vm_map_entry_behavior(fs.entry);
582
583                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
584                             P_KILLED(curproc)) {
585                                 behind = 0;
586                                 ahead = 0;
587                         } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
588                                 behind = 0;
589                                 ahead = atop(fs.entry->end - vaddr) - 1;
590                                 if (ahead > VM_FAULT_READ_AHEAD_MAX)
591                                         ahead = VM_FAULT_READ_AHEAD_MAX;
592                                 if (fs.pindex == fs.entry->next_read)
593                                         vm_fault_cache_behind(&fs,
594                                             VM_FAULT_READ_MAX);
595                         } else {
596                                 /*
597                                  * If this is a sequential page fault, then
598                                  * arithmetically increase the number of pages
599                                  * in the read-ahead window.  Otherwise, reset
600                                  * the read-ahead window to its smallest size.
601                                  */
602                                 behind = atop(vaddr - fs.entry->start);
603                                 if (behind > VM_FAULT_READ_BEHIND)
604                                         behind = VM_FAULT_READ_BEHIND;
605                                 ahead = atop(fs.entry->end - vaddr) - 1;
606                                 era = fs.entry->read_ahead;
607                                 if (fs.pindex == fs.entry->next_read) {
608                                         nera = era + behind;
609                                         if (nera > VM_FAULT_READ_AHEAD_MAX)
610                                                 nera = VM_FAULT_READ_AHEAD_MAX;
611                                         behind = 0;
612                                         if (ahead > nera)
613                                                 ahead = nera;
614                                         if (era == VM_FAULT_READ_AHEAD_MAX)
615                                                 vm_fault_cache_behind(&fs,
616                                                     VM_FAULT_CACHE_BEHIND);
617                                 } else if (ahead > VM_FAULT_READ_AHEAD_MIN)
618                                         ahead = VM_FAULT_READ_AHEAD_MIN;
619                                 if (era != ahead)
620                                         fs.entry->read_ahead = ahead;
621                         }
622
623                         /*
624                          * Call the pager to retrieve the data, if any, after
625                          * releasing the lock on the map.  We hold a ref on
626                          * fs.object and the pages are exclusive busied.
627                          */
628                         unlock_map(&fs);
629
630                         if (fs.object->type == OBJT_VNODE &&
631                             (vp = fs.object->handle) != fs.vp) {
632                                 unlock_vp(&fs);
633                                 locked = VOP_ISLOCKED(vp);
634
635                                 if (locked != LK_EXCLUSIVE)
636                                         locked = LK_SHARED;
637                                 /* Do not sleep for vnode lock while fs.m is busy */
638                                 error = vget(vp, locked | LK_CANRECURSE |
639                                     LK_NOWAIT, curthread);
640                                 if (error != 0) {
641                                         vhold(vp);
642                                         release_page(&fs);
643                                         unlock_and_deallocate(&fs);
644                                         error = vget(vp, locked | LK_RETRY |
645                                             LK_CANRECURSE, curthread);
646                                         vdrop(vp);
647                                         fs.vp = vp;
648                                         KASSERT(error == 0,
649                                             ("vm_fault: vget failed"));
650                                         goto RetryFault;
651                                 }
652                                 fs.vp = vp;
653                         }
654                         KASSERT(fs.vp == NULL || !fs.map->system_map,
655                             ("vm_fault: vnode-backed object mapped by system map"));
656
657                         /*
658                          * now we find out if any other pages should be paged
659                          * in at this time this routine checks to see if the
660                          * pages surrounding this fault reside in the same
661                          * object as the page for this fault.  If they do,
662                          * then they are faulted in also into the object.  The
663                          * array "marray" returned contains an array of
664                          * vm_page_t structs where one of them is the
665                          * vm_page_t passed to the routine.  The reqpage
666                          * return value is the index into the marray for the
667                          * vm_page_t passed to the routine.
668                          *
669                          * fs.m plus the additional pages are exclusive busied.
670                          */
671                         faultcount = vm_fault_additional_pages(
672                             fs.m, behind, ahead, marray, &reqpage);
673
674                         rv = faultcount ?
675                             vm_pager_get_pages(fs.object, marray, faultcount,
676                                 reqpage) : VM_PAGER_FAIL;
677
678                         if (rv == VM_PAGER_OK) {
679                                 /*
680                                  * Found the page. Leave it busy while we play
681                                  * with it.
682                                  */
683
684                                 /*
685                                  * Relookup in case pager changed page. Pager
686                                  * is responsible for disposition of old page
687                                  * if moved.
688                                  */
689                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
690                                 if (!fs.m) {
691                                         unlock_and_deallocate(&fs);
692                                         goto RetryFault;
693                                 }
694
695                                 hardfault++;
696                                 break; /* break to PAGE HAS BEEN FOUND */
697                         }
698                         /*
699                          * Remove the bogus page (which does not exist at this
700                          * object/offset); before doing so, we must get back
701                          * our object lock to preserve our invariant.
702                          *
703                          * Also wake up any other process that may want to bring
704                          * in this page.
705                          *
706                          * If this is the top-level object, we must leave the
707                          * busy page to prevent another process from rushing
708                          * past us, and inserting the page in that object at
709                          * the same time that we are.
710                          */
711                         if (rv == VM_PAGER_ERROR)
712                                 printf("vm_fault: pager read error, pid %d (%s)\n",
713                                     curproc->p_pid, curproc->p_comm);
714                         /*
715                          * Data outside the range of the pager or an I/O error
716                          */
717                         /*
718                          * XXX - the check for kernel_map is a kludge to work
719                          * around having the machine panic on a kernel space
720                          * fault w/ I/O error.
721                          */
722                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
723                                 (rv == VM_PAGER_BAD)) {
724                                 vm_page_lock(fs.m);
725                                 vm_page_free(fs.m);
726                                 vm_page_unlock(fs.m);
727                                 fs.m = NULL;
728                                 unlock_and_deallocate(&fs);
729                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
730                         }
731                         if (fs.object != fs.first_object) {
732                                 vm_page_lock(fs.m);
733                                 vm_page_free(fs.m);
734                                 vm_page_unlock(fs.m);
735                                 fs.m = NULL;
736                                 /*
737                                  * XXX - we cannot just fall out at this
738                                  * point, m has been freed and is invalid!
739                                  */
740                         }
741                 }
742
743                 /*
744                  * We get here if the object has default pager (or unwiring) 
745                  * or the pager doesn't have the page.
746                  */
747                 if (fs.object == fs.first_object)
748                         fs.first_m = fs.m;
749
750                 /*
751                  * Move on to the next object.  Lock the next object before
752                  * unlocking the current one.
753                  */
754                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
755                 next_object = fs.object->backing_object;
756                 if (next_object == NULL) {
757                         /*
758                          * If there's no object left, fill the page in the top
759                          * object with zeros.
760                          */
761                         if (fs.object != fs.first_object) {
762                                 vm_object_pip_wakeup(fs.object);
763                                 VM_OBJECT_WUNLOCK(fs.object);
764
765                                 fs.object = fs.first_object;
766                                 fs.pindex = fs.first_pindex;
767                                 fs.m = fs.first_m;
768                                 VM_OBJECT_WLOCK(fs.object);
769                         }
770                         fs.first_m = NULL;
771
772                         /*
773                          * Zero the page if necessary and mark it valid.
774                          */
775                         if ((fs.m->flags & PG_ZERO) == 0) {
776                                 pmap_zero_page(fs.m);
777                         } else {
778                                 PCPU_INC(cnt.v_ozfod);
779                         }
780                         PCPU_INC(cnt.v_zfod);
781                         fs.m->valid = VM_PAGE_BITS_ALL;
782                         /* Don't try to prefault neighboring pages. */
783                         faultcount = 1;
784                         break;  /* break to PAGE HAS BEEN FOUND */
785                 } else {
786                         KASSERT(fs.object != next_object,
787                             ("object loop %p", next_object));
788                         VM_OBJECT_WLOCK(next_object);
789                         vm_object_pip_add(next_object, 1);
790                         if (fs.object != fs.first_object)
791                                 vm_object_pip_wakeup(fs.object);
792                         VM_OBJECT_WUNLOCK(fs.object);
793                         fs.object = next_object;
794                 }
795         }
796
797         vm_page_assert_xbusied(fs.m);
798
799         /*
800          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
801          * is held.]
802          */
803
804         /*
805          * If the page is being written, but isn't already owned by the
806          * top-level object, we have to copy it into a new page owned by the
807          * top-level object.
808          */
809         if (fs.object != fs.first_object) {
810                 /*
811                  * We only really need to copy if we want to write it.
812                  */
813                 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
814                         /*
815                          * This allows pages to be virtually copied from a 
816                          * backing_object into the first_object, where the 
817                          * backing object has no other refs to it, and cannot
818                          * gain any more refs.  Instead of a bcopy, we just 
819                          * move the page from the backing object to the 
820                          * first object.  Note that we must mark the page 
821                          * dirty in the first object so that it will go out 
822                          * to swap when needed.
823                          */
824                         is_first_object_locked = FALSE;
825                         if (
826                                 /*
827                                  * Only one shadow object
828                                  */
829                                 (fs.object->shadow_count == 1) &&
830                                 /*
831                                  * No COW refs, except us
832                                  */
833                                 (fs.object->ref_count == 1) &&
834                                 /*
835                                  * No one else can look this object up
836                                  */
837                                 (fs.object->handle == NULL) &&
838                                 /*
839                                  * No other ways to look the object up
840                                  */
841                                 ((fs.object->type == OBJT_DEFAULT) ||
842                                  (fs.object->type == OBJT_SWAP)) &&
843                             (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
844                                 /*
845                                  * We don't chase down the shadow chain
846                                  */
847                             fs.object == fs.first_object->backing_object) {
848                                 /*
849                                  * get rid of the unnecessary page
850                                  */
851                                 vm_page_lock(fs.first_m);
852                                 vm_page_free(fs.first_m);
853                                 vm_page_unlock(fs.first_m);
854                                 /*
855                                  * grab the page and put it into the 
856                                  * process'es object.  The page is 
857                                  * automatically made dirty.
858                                  */
859                                 if (vm_page_rename(fs.m, fs.first_object,
860                                     fs.first_pindex)) {
861                                         unlock_and_deallocate(&fs);
862                                         goto RetryFault;
863                                 }
864 #if VM_NRESERVLEVEL > 0
865                                 /*
866                                  * Rename the reservation.
867                                  */
868                                 vm_reserv_rename(fs.m, fs.first_object,
869                                     fs.object, OFF_TO_IDX(
870                                     fs.first_object->backing_object_offset));
871 #endif
872                                 vm_page_xbusy(fs.m);
873                                 fs.first_m = fs.m;
874                                 fs.m = NULL;
875                                 PCPU_INC(cnt.v_cow_optim);
876                         } else {
877                                 /*
878                                  * Oh, well, lets copy it.
879                                  */
880                                 pmap_copy_page(fs.m, fs.first_m);
881                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
882                                 if (wired && (fault_flags &
883                                     VM_FAULT_WIRE) == 0) {
884                                         vm_page_lock(fs.first_m);
885                                         vm_page_wire(fs.first_m);
886                                         vm_page_unlock(fs.first_m);
887                                         
888                                         vm_page_lock(fs.m);
889                                         vm_page_unwire(fs.m, FALSE);
890                                         vm_page_unlock(fs.m);
891                                 }
892                                 /*
893                                  * We no longer need the old page or object.
894                                  */
895                                 release_page(&fs);
896                         }
897                         /*
898                          * fs.object != fs.first_object due to above 
899                          * conditional
900                          */
901                         vm_object_pip_wakeup(fs.object);
902                         VM_OBJECT_WUNLOCK(fs.object);
903                         /*
904                          * Only use the new page below...
905                          */
906                         fs.object = fs.first_object;
907                         fs.pindex = fs.first_pindex;
908                         fs.m = fs.first_m;
909                         if (!is_first_object_locked)
910                                 VM_OBJECT_WLOCK(fs.object);
911                         PCPU_INC(cnt.v_cow_faults);
912                         curthread->td_cow++;
913                 } else {
914                         prot &= ~VM_PROT_WRITE;
915                 }
916         }
917
918         /*
919          * We must verify that the maps have not changed since our last
920          * lookup.
921          */
922         if (!fs.lookup_still_valid) {
923                 vm_object_t retry_object;
924                 vm_pindex_t retry_pindex;
925                 vm_prot_t retry_prot;
926
927                 if (!vm_map_trylock_read(fs.map)) {
928                         release_page(&fs);
929                         unlock_and_deallocate(&fs);
930                         goto RetryFault;
931                 }
932                 fs.lookup_still_valid = TRUE;
933                 if (fs.map->timestamp != map_generation) {
934                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
935                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
936
937                         /*
938                          * If we don't need the page any longer, put it on the inactive
939                          * list (the easiest thing to do here).  If no one needs it,
940                          * pageout will grab it eventually.
941                          */
942                         if (result != KERN_SUCCESS) {
943                                 release_page(&fs);
944                                 unlock_and_deallocate(&fs);
945
946                                 /*
947                                  * If retry of map lookup would have blocked then
948                                  * retry fault from start.
949                                  */
950                                 if (result == KERN_FAILURE)
951                                         goto RetryFault;
952                                 return (result);
953                         }
954                         if ((retry_object != fs.first_object) ||
955                             (retry_pindex != fs.first_pindex)) {
956                                 release_page(&fs);
957                                 unlock_and_deallocate(&fs);
958                                 goto RetryFault;
959                         }
960
961                         /*
962                          * Check whether the protection has changed or the object has
963                          * been copied while we left the map unlocked. Changing from
964                          * read to write permission is OK - we leave the page
965                          * write-protected, and catch the write fault. Changing from
966                          * write to read permission means that we can't mark the page
967                          * write-enabled after all.
968                          */
969                         prot &= retry_prot;
970                 }
971         }
972         /*
973          * If the page was filled by a pager, update the map entry's
974          * last read offset.  Since the pager does not return the
975          * actual set of pages that it read, this update is based on
976          * the requested set.  Typically, the requested and actual
977          * sets are the same.
978          *
979          * XXX The following assignment modifies the map
980          * without holding a write lock on it.
981          */
982         if (hardfault)
983                 fs.entry->next_read = fs.pindex + faultcount - reqpage;
984
985         vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
986         vm_page_assert_xbusied(fs.m);
987
988         /*
989          * Page must be completely valid or it is not fit to
990          * map into user space.  vm_pager_get_pages() ensures this.
991          */
992         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
993             ("vm_fault: page %p partially invalid", fs.m));
994         VM_OBJECT_WUNLOCK(fs.object);
995
996         /*
997          * Put this page into the physical map.  We had to do the unlock above
998          * because pmap_enter() may sleep.  We don't put the page
999          * back on the active queue until later so that the pageout daemon
1000          * won't find it (yet).
1001          */
1002         pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1003             fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1004         if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1005             wired == 0)
1006                 vm_fault_prefault(&fs, vaddr, faultcount, reqpage);
1007         VM_OBJECT_WLOCK(fs.object);
1008         vm_page_lock(fs.m);
1009
1010         /*
1011          * If the page is not wired down, then put it where the pageout daemon
1012          * can find it.
1013          */
1014         if ((fault_flags & VM_FAULT_WIRE) != 0) {
1015                 KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1016                 vm_page_wire(fs.m);
1017         } else
1018                 vm_page_activate(fs.m);
1019         if (m_hold != NULL) {
1020                 *m_hold = fs.m;
1021                 vm_page_hold(fs.m);
1022         }
1023         vm_page_unlock(fs.m);
1024         vm_page_xunbusy(fs.m);
1025
1026         /*
1027          * Unlock everything, and return
1028          */
1029         unlock_and_deallocate(&fs);
1030         if (hardfault) {
1031                 PCPU_INC(cnt.v_io_faults);
1032                 curthread->td_ru.ru_majflt++;
1033         } else 
1034                 curthread->td_ru.ru_minflt++;
1035
1036         return (KERN_SUCCESS);
1037 }
1038
1039 /*
1040  * Speed up the reclamation of up to "distance" pages that precede the
1041  * faulting pindex within the first object of the shadow chain.
1042  */
1043 static void
1044 vm_fault_cache_behind(const struct faultstate *fs, int distance)
1045 {
1046         vm_object_t first_object, object;
1047         vm_page_t m, m_prev;
1048         vm_pindex_t pindex;
1049
1050         object = fs->object;
1051         VM_OBJECT_ASSERT_WLOCKED(object);
1052         first_object = fs->first_object;
1053         if (first_object != object) {
1054                 if (!VM_OBJECT_TRYWLOCK(first_object)) {
1055                         VM_OBJECT_WUNLOCK(object);
1056                         VM_OBJECT_WLOCK(first_object);
1057                         VM_OBJECT_WLOCK(object);
1058                 }
1059         }
1060         /* Neither fictitious nor unmanaged pages can be cached. */
1061         if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1062                 if (fs->first_pindex < distance)
1063                         pindex = 0;
1064                 else
1065                         pindex = fs->first_pindex - distance;
1066                 if (pindex < OFF_TO_IDX(fs->entry->offset))
1067                         pindex = OFF_TO_IDX(fs->entry->offset);
1068                 m = first_object != object ? fs->first_m : fs->m;
1069                 vm_page_assert_xbusied(m);
1070                 m_prev = vm_page_prev(m);
1071                 while ((m = m_prev) != NULL && m->pindex >= pindex &&
1072                     m->valid == VM_PAGE_BITS_ALL) {
1073                         m_prev = vm_page_prev(m);
1074                         if (vm_page_busied(m))
1075                                 continue;
1076                         vm_page_lock(m);
1077                         if (m->hold_count == 0 && m->wire_count == 0) {
1078                                 pmap_remove_all(m);
1079                                 vm_page_aflag_clear(m, PGA_REFERENCED);
1080                                 if (m->dirty != 0)
1081                                         vm_page_deactivate(m);
1082                                 else
1083                                         vm_page_cache(m);
1084                         }
1085                         vm_page_unlock(m);
1086                 }
1087         }
1088         if (first_object != object)
1089                 VM_OBJECT_WUNLOCK(first_object);
1090 }
1091
1092 /*
1093  * vm_fault_prefault provides a quick way of clustering
1094  * pagefaults into a processes address space.  It is a "cousin"
1095  * of vm_map_pmap_enter, except it runs at page fault time instead
1096  * of mmap time.
1097  */
1098 static void
1099 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1100     int faultcount, int reqpage)
1101 {
1102         pmap_t pmap;
1103         vm_map_entry_t entry;
1104         vm_object_t backing_object, lobject;
1105         vm_offset_t addr, starta;
1106         vm_pindex_t pindex;
1107         vm_page_t m;
1108         int backward, forward, i;
1109
1110         pmap = fs->map->pmap;
1111         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1112                 return;
1113
1114         if (faultcount > 0) {
1115                 backward = reqpage;
1116                 forward = faultcount - reqpage - 1;
1117         } else {
1118                 backward = PFBAK;
1119                 forward = PFFOR;
1120         }
1121         entry = fs->entry;
1122
1123         starta = addra - backward * PAGE_SIZE;
1124         if (starta < entry->start) {
1125                 starta = entry->start;
1126         } else if (starta > addra) {
1127                 starta = 0;
1128         }
1129
1130         /*
1131          * Generate the sequence of virtual addresses that are candidates for
1132          * prefaulting in an outward spiral from the faulting virtual address,
1133          * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1134          * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1135          * If the candidate address doesn't have a backing physical page, then
1136          * the loop immediately terminates.
1137          */
1138         for (i = 0; i < 2 * imax(backward, forward); i++) {
1139                 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1140                     PAGE_SIZE);
1141                 if (addr > addra + forward * PAGE_SIZE)
1142                         addr = 0;
1143
1144                 if (addr < starta || addr >= entry->end)
1145                         continue;
1146
1147                 if (!pmap_is_prefaultable(pmap, addr))
1148                         continue;
1149
1150                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1151                 lobject = entry->object.vm_object;
1152                 VM_OBJECT_RLOCK(lobject);
1153                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1154                     lobject->type == OBJT_DEFAULT &&
1155                     (backing_object = lobject->backing_object) != NULL) {
1156                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1157                             0, ("vm_fault_prefault: unaligned object offset"));
1158                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1159                         VM_OBJECT_RLOCK(backing_object);
1160                         VM_OBJECT_RUNLOCK(lobject);
1161                         lobject = backing_object;
1162                 }
1163                 if (m == NULL) {
1164                         VM_OBJECT_RUNLOCK(lobject);
1165                         break;
1166                 }
1167                 if (m->valid == VM_PAGE_BITS_ALL &&
1168                     (m->flags & PG_FICTITIOUS) == 0)
1169                         pmap_enter_quick(pmap, addr, m, entry->protection);
1170                 VM_OBJECT_RUNLOCK(lobject);
1171         }
1172 }
1173
1174 /*
1175  * Hold each of the physical pages that are mapped by the specified range of
1176  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1177  * and allow the specified types of access, "prot".  If all of the implied
1178  * pages are successfully held, then the number of held pages is returned
1179  * together with pointers to those pages in the array "ma".  However, if any
1180  * of the pages cannot be held, -1 is returned.
1181  */
1182 int
1183 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1184     vm_prot_t prot, vm_page_t *ma, int max_count)
1185 {
1186         vm_offset_t end, va;
1187         vm_page_t *mp;
1188         int count;
1189         boolean_t pmap_failed;
1190
1191         if (len == 0)
1192                 return (0);
1193         end = round_page(addr + len);
1194         addr = trunc_page(addr);
1195
1196         /*
1197          * Check for illegal addresses.
1198          */
1199         if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1200                 return (-1);
1201
1202         if (atop(end - addr) > max_count)
1203                 panic("vm_fault_quick_hold_pages: count > max_count");
1204         count = atop(end - addr);
1205
1206         /*
1207          * Most likely, the physical pages are resident in the pmap, so it is
1208          * faster to try pmap_extract_and_hold() first.
1209          */
1210         pmap_failed = FALSE;
1211         for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1212                 *mp = pmap_extract_and_hold(map->pmap, va, prot);
1213                 if (*mp == NULL)
1214                         pmap_failed = TRUE;
1215                 else if ((prot & VM_PROT_WRITE) != 0 &&
1216                     (*mp)->dirty != VM_PAGE_BITS_ALL) {
1217                         /*
1218                          * Explicitly dirty the physical page.  Otherwise, the
1219                          * caller's changes may go unnoticed because they are
1220                          * performed through an unmanaged mapping or by a DMA
1221                          * operation.
1222                          *
1223                          * The object lock is not held here.
1224                          * See vm_page_clear_dirty_mask().
1225                          */
1226                         vm_page_dirty(*mp);
1227                 }
1228         }
1229         if (pmap_failed) {
1230                 /*
1231                  * One or more pages could not be held by the pmap.  Either no
1232                  * page was mapped at the specified virtual address or that
1233                  * mapping had insufficient permissions.  Attempt to fault in
1234                  * and hold these pages.
1235                  */
1236                 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1237                         if (*mp == NULL && vm_fault_hold(map, va, prot,
1238                             VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1239                                 goto error;
1240         }
1241         return (count);
1242 error:  
1243         for (mp = ma; mp < ma + count; mp++)
1244                 if (*mp != NULL) {
1245                         vm_page_lock(*mp);
1246                         vm_page_unhold(*mp);
1247                         vm_page_unlock(*mp);
1248                 }
1249         return (-1);
1250 }
1251
1252 /*
1253  *      Routine:
1254  *              vm_fault_copy_entry
1255  *      Function:
1256  *              Create new shadow object backing dst_entry with private copy of
1257  *              all underlying pages. When src_entry is equal to dst_entry,
1258  *              function implements COW for wired-down map entry. Otherwise,
1259  *              it forks wired entry into dst_map.
1260  *
1261  *      In/out conditions:
1262  *              The source and destination maps must be locked for write.
1263  *              The source map entry must be wired down (or be a sharing map
1264  *              entry corresponding to a main map entry that is wired down).
1265  */
1266 void
1267 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1268     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1269     vm_ooffset_t *fork_charge)
1270 {
1271         vm_object_t backing_object, dst_object, object, src_object;
1272         vm_pindex_t dst_pindex, pindex, src_pindex;
1273         vm_prot_t access, prot;
1274         vm_offset_t vaddr;
1275         vm_page_t dst_m;
1276         vm_page_t src_m;
1277         boolean_t upgrade;
1278
1279 #ifdef  lint
1280         src_map++;
1281 #endif  /* lint */
1282
1283         upgrade = src_entry == dst_entry;
1284         access = prot = dst_entry->protection;
1285
1286         src_object = src_entry->object.vm_object;
1287         src_pindex = OFF_TO_IDX(src_entry->offset);
1288
1289         if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1290                 dst_object = src_object;
1291                 vm_object_reference(dst_object);
1292         } else {
1293                 /*
1294                  * Create the top-level object for the destination entry. (Doesn't
1295                  * actually shadow anything - we copy the pages directly.)
1296                  */
1297                 dst_object = vm_object_allocate(OBJT_DEFAULT,
1298                     OFF_TO_IDX(dst_entry->end - dst_entry->start));
1299 #if VM_NRESERVLEVEL > 0
1300                 dst_object->flags |= OBJ_COLORED;
1301                 dst_object->pg_color = atop(dst_entry->start);
1302 #endif
1303         }
1304
1305         VM_OBJECT_WLOCK(dst_object);
1306         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1307             ("vm_fault_copy_entry: vm_object not NULL"));
1308         if (src_object != dst_object) {
1309                 dst_entry->object.vm_object = dst_object;
1310                 dst_entry->offset = 0;
1311                 dst_object->charge = dst_entry->end - dst_entry->start;
1312         }
1313         if (fork_charge != NULL) {
1314                 KASSERT(dst_entry->cred == NULL,
1315                     ("vm_fault_copy_entry: leaked swp charge"));
1316                 dst_object->cred = curthread->td_ucred;
1317                 crhold(dst_object->cred);
1318                 *fork_charge += dst_object->charge;
1319         } else if (dst_object->cred == NULL) {
1320                 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1321                     dst_entry));
1322                 dst_object->cred = dst_entry->cred;
1323                 dst_entry->cred = NULL;
1324         }
1325
1326         /*
1327          * If not an upgrade, then enter the mappings in the pmap as
1328          * read and/or execute accesses.  Otherwise, enter them as
1329          * write accesses.
1330          *
1331          * A writeable large page mapping is only created if all of
1332          * the constituent small page mappings are modified. Marking
1333          * PTEs as modified on inception allows promotion to happen
1334          * without taking potentially large number of soft faults.
1335          */
1336         if (!upgrade)
1337                 access &= ~VM_PROT_WRITE;
1338
1339         /*
1340          * Loop through all of the virtual pages within the entry's
1341          * range, copying each page from the source object to the
1342          * destination object.  Since the source is wired, those pages
1343          * must exist.  In contrast, the destination is pageable.
1344          * Since the destination object does share any backing storage
1345          * with the source object, all of its pages must be dirtied,
1346          * regardless of whether they can be written.
1347          */
1348         for (vaddr = dst_entry->start, dst_pindex = 0;
1349             vaddr < dst_entry->end;
1350             vaddr += PAGE_SIZE, dst_pindex++) {
1351 again:
1352                 /*
1353                  * Find the page in the source object, and copy it in.
1354                  * Because the source is wired down, the page will be
1355                  * in memory.
1356                  */
1357                 if (src_object != dst_object)
1358                         VM_OBJECT_RLOCK(src_object);
1359                 object = src_object;
1360                 pindex = src_pindex + dst_pindex;
1361                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1362                     (backing_object = object->backing_object) != NULL) {
1363                         /*
1364                          * Unless the source mapping is read-only or
1365                          * it is presently being upgraded from
1366                          * read-only, the first object in the shadow
1367                          * chain should provide all of the pages.  In
1368                          * other words, this loop body should never be
1369                          * executed when the source mapping is already
1370                          * read/write.
1371                          */
1372                         KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1373                             upgrade,
1374                             ("vm_fault_copy_entry: main object missing page"));
1375
1376                         VM_OBJECT_RLOCK(backing_object);
1377                         pindex += OFF_TO_IDX(object->backing_object_offset);
1378                         if (object != dst_object)
1379                                 VM_OBJECT_RUNLOCK(object);
1380                         object = backing_object;
1381                 }
1382                 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1383
1384                 if (object != dst_object) {
1385                         /*
1386                          * Allocate a page in the destination object.
1387                          */
1388                         dst_m = vm_page_alloc(dst_object, (src_object ==
1389                             dst_object ? src_pindex : 0) + dst_pindex,
1390                             VM_ALLOC_NORMAL);
1391                         if (dst_m == NULL) {
1392                                 VM_OBJECT_WUNLOCK(dst_object);
1393                                 VM_OBJECT_RUNLOCK(object);
1394                                 VM_WAIT;
1395                                 VM_OBJECT_WLOCK(dst_object);
1396                                 goto again;
1397                         }
1398                         pmap_copy_page(src_m, dst_m);
1399                         VM_OBJECT_RUNLOCK(object);
1400                         dst_m->valid = VM_PAGE_BITS_ALL;
1401                         dst_m->dirty = VM_PAGE_BITS_ALL;
1402                 } else {
1403                         dst_m = src_m;
1404                         if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1405                                 goto again;
1406                         vm_page_xbusy(dst_m);
1407                         KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1408                             ("invalid dst page %p", dst_m));
1409                 }
1410                 VM_OBJECT_WUNLOCK(dst_object);
1411
1412                 /*
1413                  * Enter it in the pmap. If a wired, copy-on-write
1414                  * mapping is being replaced by a write-enabled
1415                  * mapping, then wire that new mapping.
1416                  */
1417                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1418                     access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1419
1420                 /*
1421                  * Mark it no longer busy, and put it on the active list.
1422                  */
1423                 VM_OBJECT_WLOCK(dst_object);
1424                 
1425                 if (upgrade) {
1426                         if (src_m != dst_m) {
1427                                 vm_page_lock(src_m);
1428                                 vm_page_unwire(src_m, 0);
1429                                 vm_page_unlock(src_m);
1430                                 vm_page_lock(dst_m);
1431                                 vm_page_wire(dst_m);
1432                                 vm_page_unlock(dst_m);
1433                         } else {
1434                                 KASSERT(dst_m->wire_count > 0,
1435                                     ("dst_m %p is not wired", dst_m));
1436                         }
1437                 } else {
1438                         vm_page_lock(dst_m);
1439                         vm_page_activate(dst_m);
1440                         vm_page_unlock(dst_m);
1441                 }
1442                 vm_page_xunbusy(dst_m);
1443         }
1444         VM_OBJECT_WUNLOCK(dst_object);
1445         if (upgrade) {
1446                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1447                 vm_object_deallocate(src_object);
1448         }
1449 }
1450
1451
1452 /*
1453  * This routine checks around the requested page for other pages that
1454  * might be able to be faulted in.  This routine brackets the viable
1455  * pages for the pages to be paged in.
1456  *
1457  * Inputs:
1458  *      m, rbehind, rahead
1459  *
1460  * Outputs:
1461  *  marray (array of vm_page_t), reqpage (index of requested page)
1462  *
1463  * Return value:
1464  *  number of pages in marray
1465  */
1466 static int
1467 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1468         vm_page_t m;
1469         int rbehind;
1470         int rahead;
1471         vm_page_t *marray;
1472         int *reqpage;
1473 {
1474         int i,j;
1475         vm_object_t object;
1476         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1477         vm_page_t rtm;
1478         int cbehind, cahead;
1479
1480         VM_OBJECT_ASSERT_WLOCKED(m->object);
1481
1482         object = m->object;
1483         pindex = m->pindex;
1484         cbehind = cahead = 0;
1485
1486         /*
1487          * if the requested page is not available, then give up now
1488          */
1489         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1490                 return 0;
1491         }
1492
1493         if ((cbehind == 0) && (cahead == 0)) {
1494                 *reqpage = 0;
1495                 marray[0] = m;
1496                 return 1;
1497         }
1498
1499         if (rahead > cahead) {
1500                 rahead = cahead;
1501         }
1502
1503         if (rbehind > cbehind) {
1504                 rbehind = cbehind;
1505         }
1506
1507         /*
1508          * scan backward for the read behind pages -- in memory 
1509          */
1510         if (pindex > 0) {
1511                 if (rbehind > pindex) {
1512                         rbehind = pindex;
1513                         startpindex = 0;
1514                 } else {
1515                         startpindex = pindex - rbehind;
1516                 }
1517
1518                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1519                     rtm->pindex >= startpindex)
1520                         startpindex = rtm->pindex + 1;
1521
1522                 /* tpindex is unsigned; beware of numeric underflow. */
1523                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1524                     tpindex < pindex; i++, tpindex--) {
1525
1526                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1527                             VM_ALLOC_IFNOTCACHED);
1528                         if (rtm == NULL) {
1529                                 /*
1530                                  * Shift the allocated pages to the
1531                                  * beginning of the array.
1532                                  */
1533                                 for (j = 0; j < i; j++) {
1534                                         marray[j] = marray[j + tpindex + 1 -
1535                                             startpindex];
1536                                 }
1537                                 break;
1538                         }
1539
1540                         marray[tpindex - startpindex] = rtm;
1541                 }
1542         } else {
1543                 startpindex = 0;
1544                 i = 0;
1545         }
1546
1547         marray[i] = m;
1548         /* page offset of the required page */
1549         *reqpage = i;
1550
1551         tpindex = pindex + 1;
1552         i++;
1553
1554         /*
1555          * scan forward for the read ahead pages
1556          */
1557         endpindex = tpindex + rahead;
1558         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1559                 endpindex = rtm->pindex;
1560         if (endpindex > object->size)
1561                 endpindex = object->size;
1562
1563         for (; tpindex < endpindex; i++, tpindex++) {
1564
1565                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1566                     VM_ALLOC_IFNOTCACHED);
1567                 if (rtm == NULL) {
1568                         break;
1569                 }
1570
1571                 marray[i] = rtm;
1572         }
1573
1574         /* return number of pages */
1575         return i;
1576 }
1577
1578 /*
1579  * Block entry into the machine-independent layer's page fault handler by
1580  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1581  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1582  * spurious page faults. 
1583  */
1584 int
1585 vm_fault_disable_pagefaults(void)
1586 {
1587
1588         return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1589 }
1590
1591 void
1592 vm_fault_enable_pagefaults(int save)
1593 {
1594
1595         curthread_pflags_restore(save);
1596 }