]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_fault.c
MFC r208340:
[FreeBSD/stable/8.git] / sys / vm / vm_fault.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69
70 /*
71  *      Page fault handling module.
72  */
73
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76
77 #include "opt_vm.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101
102 #include <sys/mount.h>  /* XXX Temporary for VFS_LOCK_GIANT() */
103
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107
108 static int prefault_pageorder[] = {
109         -1 * PAGE_SIZE, 1 * PAGE_SIZE,
110         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
111         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
112         -4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121
122 struct faultstate {
123         vm_page_t m;
124         vm_object_t object;
125         vm_pindex_t pindex;
126         vm_page_t first_m;
127         vm_object_t     first_object;
128         vm_pindex_t first_pindex;
129         vm_map_t map;
130         vm_map_entry_t entry;
131         int lookup_still_valid;
132         struct vnode *vp;
133         int vfslocked;
134 };
135
136 static inline void
137 release_page(struct faultstate *fs)
138 {
139
140         vm_page_wakeup(fs->m);
141         vm_page_lock_queues();
142         vm_page_deactivate(fs->m);
143         vm_page_unlock_queues();
144         fs->m = NULL;
145 }
146
147 static inline void
148 unlock_map(struct faultstate *fs)
149 {
150
151         if (fs->lookup_still_valid) {
152                 vm_map_lookup_done(fs->map, fs->entry);
153                 fs->lookup_still_valid = FALSE;
154         }
155 }
156
157 static void
158 unlock_and_deallocate(struct faultstate *fs)
159 {
160
161         vm_object_pip_wakeup(fs->object);
162         VM_OBJECT_UNLOCK(fs->object);
163         if (fs->object != fs->first_object) {
164                 VM_OBJECT_LOCK(fs->first_object);
165                 vm_page_lock_queues();
166                 vm_page_free(fs->first_m);
167                 vm_page_unlock_queues();
168                 vm_object_pip_wakeup(fs->first_object);
169                 VM_OBJECT_UNLOCK(fs->first_object);
170                 fs->first_m = NULL;
171         }
172         vm_object_deallocate(fs->first_object);
173         unlock_map(fs); 
174         if (fs->vp != NULL) { 
175                 vput(fs->vp);
176                 fs->vp = NULL;
177         }
178         VFS_UNLOCK_GIANT(fs->vfslocked);
179         fs->vfslocked = 0;
180 }
181
182 /*
183  * TRYPAGER - used by vm_fault to calculate whether the pager for the
184  *            current object *might* contain the page.
185  *
186  *            default objects are zero-fill, there is no real pager.
187  */
188 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
189                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
190
191 /*
192  *      vm_fault:
193  *
194  *      Handle a page fault occurring at the given address,
195  *      requiring the given permissions, in the map specified.
196  *      If successful, the page is inserted into the
197  *      associated physical map.
198  *
199  *      NOTE: the given address should be truncated to the
200  *      proper page address.
201  *
202  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
203  *      a standard error specifying why the fault is fatal is returned.
204  *
205  *
206  *      The map in question must be referenced, and remains so.
207  *      Caller may hold no locks.
208  */
209 int
210 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
211          int fault_flags)
212 {
213         vm_prot_t prot;
214         int is_first_object_locked, result;
215         boolean_t are_queues_locked, growstack, wired;
216         int map_generation;
217         vm_object_t next_object;
218         vm_page_t marray[VM_FAULT_READ];
219         int hardfault;
220         int faultcount, ahead, behind, alloc_req;
221         struct faultstate fs;
222         struct vnode *vp;
223         int locked, error;
224
225         hardfault = 0;
226         growstack = TRUE;
227         PCPU_INC(cnt.v_vm_faults);
228         fs.vp = NULL;
229         fs.vfslocked = 0;
230         faultcount = behind = 0;
231
232 RetryFault:;
233
234         /*
235          * Find the backing store object and offset into it to begin the
236          * search.
237          */
238         fs.map = map;
239         result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
240             &fs.first_object, &fs.first_pindex, &prot, &wired);
241         if (result != KERN_SUCCESS) {
242                 if (result != KERN_PROTECTION_FAILURE ||
243                     (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
244                         if (growstack && result == KERN_INVALID_ADDRESS &&
245                             map != kernel_map && curproc != NULL) {
246                                 result = vm_map_growstack(curproc, vaddr);
247                                 if (result != KERN_SUCCESS)
248                                         return (KERN_FAILURE);
249                                 growstack = FALSE;
250                                 goto RetryFault;
251                         }
252                         return (result);
253                 }
254
255                 /*
256                  * If we are user-wiring a r/w segment, and it is COW, then
257                  * we need to do the COW operation.  Note that we don't COW
258                  * currently RO sections now, because it is NOT desirable
259                  * to COW .text.  We simply keep .text from ever being COW'ed
260                  * and take the heat that one cannot debug wired .text sections.
261                  */
262                 result = vm_map_lookup(&fs.map, vaddr,
263                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
264                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
265                 if (result != KERN_SUCCESS)
266                         return (result);
267
268                 /*
269                  * If we don't COW now, on a user wire, the user will never
270                  * be able to write to the mapping.  If we don't make this
271                  * restriction, the bookkeeping would be nearly impossible.
272                  *
273                  * XXX The following assignment modifies the map without
274                  * holding a write lock on it.
275                  */
276                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
277                         fs.entry->max_protection &= ~VM_PROT_WRITE;
278         }
279
280         map_generation = fs.map->timestamp;
281
282         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
283                 panic("vm_fault: fault on nofault entry, addr: %lx",
284                     (u_long)vaddr);
285         }
286
287         /*
288          * Make a reference to this object to prevent its disposal while we
289          * are messing with it.  Once we have the reference, the map is free
290          * to be diddled.  Since objects reference their shadows (and copies),
291          * they will stay around as well.
292          *
293          * Bump the paging-in-progress count to prevent size changes (e.g. 
294          * truncation operations) during I/O.  This must be done after
295          * obtaining the vnode lock in order to avoid possible deadlocks.
296          */
297         VM_OBJECT_LOCK(fs.first_object);
298         vm_object_reference_locked(fs.first_object);
299         vm_object_pip_add(fs.first_object, 1);
300
301         fs.lookup_still_valid = TRUE;
302
303         if (wired)
304                 fault_type = prot;
305
306         fs.first_m = NULL;
307
308         /*
309          * Search for the page at object/offset.
310          */
311         fs.object = fs.first_object;
312         fs.pindex = fs.first_pindex;
313         while (TRUE) {
314                 /*
315                  * If the object is dead, we stop here
316                  */
317                 if (fs.object->flags & OBJ_DEAD) {
318                         unlock_and_deallocate(&fs);
319                         return (KERN_PROTECTION_FAILURE);
320                 }
321
322                 /*
323                  * See if page is resident
324                  */
325                 fs.m = vm_page_lookup(fs.object, fs.pindex);
326                 if (fs.m != NULL) {
327                         /* 
328                          * check for page-based copy on write.
329                          * We check fs.object == fs.first_object so
330                          * as to ensure the legacy COW mechanism is
331                          * used when the page in question is part of
332                          * a shadow object.  Otherwise, vm_page_cowfault()
333                          * removes the page from the backing object, 
334                          * which is not what we want.
335                          */
336                         vm_page_lock_queues();
337                         if ((fs.m->cow) && 
338                             (fault_type & VM_PROT_WRITE) &&
339                             (fs.object == fs.first_object)) {
340                                 vm_page_cowfault(fs.m);
341                                 vm_page_unlock_queues();
342                                 unlock_and_deallocate(&fs);
343                                 goto RetryFault;
344                         }
345
346                         /*
347                          * Wait/Retry if the page is busy.  We have to do this
348                          * if the page is busy via either VPO_BUSY or 
349                          * vm_page_t->busy because the vm_pager may be using
350                          * vm_page_t->busy for pageouts ( and even pageins if
351                          * it is the vnode pager ), and we could end up trying
352                          * to pagein and pageout the same page simultaneously.
353                          *
354                          * We can theoretically allow the busy case on a read
355                          * fault if the page is marked valid, but since such
356                          * pages are typically already pmap'd, putting that
357                          * special case in might be more effort then it is 
358                          * worth.  We cannot under any circumstances mess
359                          * around with a vm_page_t->busy page except, perhaps,
360                          * to pmap it.
361                          */
362                         if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
363                                 vm_page_unlock_queues();
364                                 if (fs.object != fs.first_object) {
365                                         if (!VM_OBJECT_TRYLOCK(
366                                             fs.first_object)) {
367                                                 VM_OBJECT_UNLOCK(fs.object);
368                                                 VM_OBJECT_LOCK(fs.first_object);
369                                                 VM_OBJECT_LOCK(fs.object);
370                                         }
371                                         vm_page_lock_queues();
372                                         vm_page_free(fs.first_m);
373                                         vm_page_unlock_queues();
374                                         vm_object_pip_wakeup(fs.first_object);
375                                         VM_OBJECT_UNLOCK(fs.first_object);
376                                         fs.first_m = NULL;
377                                 }
378                                 unlock_map(&fs);
379                                 if (fs.m == vm_page_lookup(fs.object,
380                                     fs.pindex)) {
381                                         vm_page_sleep_if_busy(fs.m, TRUE,
382                                             "vmpfw");
383                                 }
384                                 vm_object_pip_wakeup(fs.object);
385                                 VM_OBJECT_UNLOCK(fs.object);
386                                 PCPU_INC(cnt.v_intrans);
387                                 vm_object_deallocate(fs.first_object);
388                                 goto RetryFault;
389                         }
390                         vm_pageq_remove(fs.m);
391                         vm_page_unlock_queues();
392
393                         /*
394                          * Mark page busy for other processes, and the 
395                          * pagedaemon.  If it still isn't completely valid
396                          * (readable), jump to readrest, else break-out ( we
397                          * found the page ).
398                          */
399                         vm_page_busy(fs.m);
400                         if (fs.m->valid != VM_PAGE_BITS_ALL &&
401                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
402                                 goto readrest;
403                         }
404
405                         break;
406                 }
407
408                 /*
409                  * Page is not resident, If this is the search termination
410                  * or the pager might contain the page, allocate a new page.
411                  */
412                 if (TRYPAGER || fs.object == fs.first_object) {
413                         if (fs.pindex >= fs.object->size) {
414                                 unlock_and_deallocate(&fs);
415                                 return (KERN_PROTECTION_FAILURE);
416                         }
417
418                         /*
419                          * Allocate a new page for this object/offset pair.
420                          *
421                          * Unlocked read of the p_flag is harmless. At
422                          * worst, the P_KILLED might be not observed
423                          * there, and allocation can fail, causing
424                          * restart and new reading of the p_flag.
425                          */
426                         fs.m = NULL;
427                         if (!vm_page_count_severe() || P_KILLED(curproc)) {
428 #if VM_NRESERVLEVEL > 0
429                                 if ((fs.object->flags & OBJ_COLORED) == 0) {
430                                         fs.object->flags |= OBJ_COLORED;
431                                         fs.object->pg_color = atop(vaddr) -
432                                             fs.pindex;
433                                 }
434 #endif
435                                 alloc_req = P_KILLED(curproc) ?
436                                     VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
437                                 if (fs.object->type != OBJT_VNODE &&
438                                     fs.object->backing_object == NULL)
439                                         alloc_req |= VM_ALLOC_ZERO;
440                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
441                                     alloc_req);
442                         }
443                         if (fs.m == NULL) {
444                                 unlock_and_deallocate(&fs);
445                                 VM_WAITPFAULT;
446                                 goto RetryFault;
447                         } else if (fs.m->valid == VM_PAGE_BITS_ALL)
448                                 break;
449                 }
450
451 readrest:
452                 /*
453                  * We have found a valid page or we have allocated a new page.
454                  * The page thus may not be valid or may not be entirely 
455                  * valid.
456                  *
457                  * Attempt to fault-in the page if there is a chance that the
458                  * pager has it, and potentially fault in additional pages
459                  * at the same time.
460                  */
461                 if (TRYPAGER) {
462                         int rv;
463                         int reqpage = 0;
464                         u_char behavior = vm_map_entry_behavior(fs.entry);
465
466                         if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
467                             P_KILLED(curproc)) {
468                                 ahead = 0;
469                                 behind = 0;
470                         } else {
471                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
472                                 if (behind > VM_FAULT_READ_BEHIND)
473                                         behind = VM_FAULT_READ_BEHIND;
474
475                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
476                                 if (ahead > VM_FAULT_READ_AHEAD)
477                                         ahead = VM_FAULT_READ_AHEAD;
478                         }
479                         is_first_object_locked = FALSE;
480                         if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
481                              (behavior != MAP_ENTRY_BEHAV_RANDOM &&
482                               fs.pindex >= fs.entry->lastr &&
483                               fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
484                             (fs.first_object == fs.object ||
485                              (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
486                             fs.first_object->type != OBJT_DEVICE &&
487                             fs.first_object->type != OBJT_PHYS &&
488                             fs.first_object->type != OBJT_SG) {
489                                 vm_pindex_t firstpindex, tmppindex;
490
491                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
492                                         firstpindex = 0;
493                                 else
494                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
495
496                                 are_queues_locked = FALSE;
497                                 /*
498                                  * note: partially valid pages cannot be 
499                                  * included in the lookahead - NFS piecemeal
500                                  * writes will barf on it badly.
501                                  */
502                                 for (tmppindex = fs.first_pindex - 1;
503                                         tmppindex >= firstpindex;
504                                         --tmppindex) {
505                                         vm_page_t mt;
506
507                                         mt = vm_page_lookup(fs.first_object, tmppindex);
508                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
509                                                 break;
510                                         if (mt->busy ||
511                                             (mt->oflags & VPO_BUSY))
512                                                 continue;
513                                         if (!are_queues_locked) {
514                                                 are_queues_locked = TRUE;
515                                                 vm_page_lock_queues();
516                                         }
517                                         if (mt->hold_count ||
518                                                 mt->wire_count) 
519                                                 continue;
520                                         pmap_remove_all(mt);
521                                         if (mt->dirty) {
522                                                 vm_page_deactivate(mt);
523                                         } else {
524                                                 vm_page_cache(mt);
525                                         }
526                                 }
527                                 if (are_queues_locked)
528                                         vm_page_unlock_queues();
529                                 ahead += behind;
530                                 behind = 0;
531                         }
532                         if (is_first_object_locked)
533                                 VM_OBJECT_UNLOCK(fs.first_object);
534
535                         /*
536                          * Call the pager to retrieve the data, if any, after
537                          * releasing the lock on the map.  We hold a ref on
538                          * fs.object and the pages are VPO_BUSY'd.
539                          */
540                         unlock_map(&fs);
541
542 vnode_lock:
543                         if (fs.object->type == OBJT_VNODE) {
544                                 vp = fs.object->handle;
545                                 if (vp == fs.vp)
546                                         goto vnode_locked;
547                                 else if (fs.vp != NULL) {
548                                         vput(fs.vp);
549                                         fs.vp = NULL;
550                                 }
551                                 locked = VOP_ISLOCKED(vp);
552
553                                 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
554                                         fs.vfslocked = 1;
555                                         if (!mtx_trylock(&Giant)) {
556                                                 VM_OBJECT_UNLOCK(fs.object);
557                                                 mtx_lock(&Giant);
558                                                 VM_OBJECT_LOCK(fs.object);
559                                                 goto vnode_lock;
560                                         }
561                                 }
562                                 if (locked != LK_EXCLUSIVE)
563                                         locked = LK_SHARED;
564                                 /* Do not sleep for vnode lock while fs.m is busy */
565                                 error = vget(vp, locked | LK_CANRECURSE |
566                                     LK_NOWAIT, curthread);
567                                 if (error != 0) {
568                                         int vfslocked;
569
570                                         vfslocked = fs.vfslocked;
571                                         fs.vfslocked = 0; /* Keep Giant */
572                                         vhold(vp);
573                                         release_page(&fs);
574                                         unlock_and_deallocate(&fs);
575                                         error = vget(vp, locked | LK_RETRY |
576                                             LK_CANRECURSE, curthread);
577                                         vdrop(vp);
578                                         fs.vp = vp;
579                                         fs.vfslocked = vfslocked;
580                                         KASSERT(error == 0,
581                                             ("vm_fault: vget failed"));
582                                         goto RetryFault;
583                                 }
584                                 fs.vp = vp;
585                         }
586 vnode_locked:
587                         KASSERT(fs.vp == NULL || !fs.map->system_map,
588                             ("vm_fault: vnode-backed object mapped by system map"));
589
590                         /*
591                          * now we find out if any other pages should be paged
592                          * in at this time this routine checks to see if the
593                          * pages surrounding this fault reside in the same
594                          * object as the page for this fault.  If they do,
595                          * then they are faulted in also into the object.  The
596                          * array "marray" returned contains an array of
597                          * vm_page_t structs where one of them is the
598                          * vm_page_t passed to the routine.  The reqpage
599                          * return value is the index into the marray for the
600                          * vm_page_t passed to the routine.
601                          *
602                          * fs.m plus the additional pages are VPO_BUSY'd.
603                          */
604                         faultcount = vm_fault_additional_pages(
605                             fs.m, behind, ahead, marray, &reqpage);
606
607                         rv = faultcount ?
608                             vm_pager_get_pages(fs.object, marray, faultcount,
609                                 reqpage) : VM_PAGER_FAIL;
610
611                         if (rv == VM_PAGER_OK) {
612                                 /*
613                                  * Found the page. Leave it busy while we play
614                                  * with it.
615                                  */
616
617                                 /*
618                                  * Relookup in case pager changed page. Pager
619                                  * is responsible for disposition of old page
620                                  * if moved.
621                                  */
622                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
623                                 if (!fs.m) {
624                                         unlock_and_deallocate(&fs);
625                                         goto RetryFault;
626                                 }
627
628                                 hardfault++;
629                                 break; /* break to PAGE HAS BEEN FOUND */
630                         }
631                         /*
632                          * Remove the bogus page (which does not exist at this
633                          * object/offset); before doing so, we must get back
634                          * our object lock to preserve our invariant.
635                          *
636                          * Also wake up any other process that may want to bring
637                          * in this page.
638                          *
639                          * If this is the top-level object, we must leave the
640                          * busy page to prevent another process from rushing
641                          * past us, and inserting the page in that object at
642                          * the same time that we are.
643                          */
644                         if (rv == VM_PAGER_ERROR)
645                                 printf("vm_fault: pager read error, pid %d (%s)\n",
646                                     curproc->p_pid, curproc->p_comm);
647                         /*
648                          * Data outside the range of the pager or an I/O error
649                          */
650                         /*
651                          * XXX - the check for kernel_map is a kludge to work
652                          * around having the machine panic on a kernel space
653                          * fault w/ I/O error.
654                          */
655                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
656                                 (rv == VM_PAGER_BAD)) {
657                                 vm_page_lock_queues();
658                                 vm_page_free(fs.m);
659                                 vm_page_unlock_queues();
660                                 fs.m = NULL;
661                                 unlock_and_deallocate(&fs);
662                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
663                         }
664                         if (fs.object != fs.first_object) {
665                                 vm_page_lock_queues();
666                                 vm_page_free(fs.m);
667                                 vm_page_unlock_queues();
668                                 fs.m = NULL;
669                                 /*
670                                  * XXX - we cannot just fall out at this
671                                  * point, m has been freed and is invalid!
672                                  */
673                         }
674                 }
675
676                 /*
677                  * We get here if the object has default pager (or unwiring) 
678                  * or the pager doesn't have the page.
679                  */
680                 if (fs.object == fs.first_object)
681                         fs.first_m = fs.m;
682
683                 /*
684                  * Move on to the next object.  Lock the next object before
685                  * unlocking the current one.
686                  */
687                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
688                 next_object = fs.object->backing_object;
689                 if (next_object == NULL) {
690                         /*
691                          * If there's no object left, fill the page in the top
692                          * object with zeros.
693                          */
694                         if (fs.object != fs.first_object) {
695                                 vm_object_pip_wakeup(fs.object);
696                                 VM_OBJECT_UNLOCK(fs.object);
697
698                                 fs.object = fs.first_object;
699                                 fs.pindex = fs.first_pindex;
700                                 fs.m = fs.first_m;
701                                 VM_OBJECT_LOCK(fs.object);
702                         }
703                         fs.first_m = NULL;
704
705                         /*
706                          * Zero the page if necessary and mark it valid.
707                          */
708                         if ((fs.m->flags & PG_ZERO) == 0) {
709                                 pmap_zero_page(fs.m);
710                         } else {
711                                 PCPU_INC(cnt.v_ozfod);
712                         }
713                         PCPU_INC(cnt.v_zfod);
714                         fs.m->valid = VM_PAGE_BITS_ALL;
715                         break;  /* break to PAGE HAS BEEN FOUND */
716                 } else {
717                         KASSERT(fs.object != next_object,
718                             ("object loop %p", next_object));
719                         VM_OBJECT_LOCK(next_object);
720                         vm_object_pip_add(next_object, 1);
721                         if (fs.object != fs.first_object)
722                                 vm_object_pip_wakeup(fs.object);
723                         VM_OBJECT_UNLOCK(fs.object);
724                         fs.object = next_object;
725                 }
726         }
727
728         KASSERT((fs.m->oflags & VPO_BUSY) != 0,
729             ("vm_fault: not busy after main loop"));
730
731         /*
732          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
733          * is held.]
734          */
735
736         /*
737          * If the page is being written, but isn't already owned by the
738          * top-level object, we have to copy it into a new page owned by the
739          * top-level object.
740          */
741         if (fs.object != fs.first_object) {
742                 /*
743                  * We only really need to copy if we want to write it.
744                  */
745                 if (fault_type & VM_PROT_WRITE) {
746                         /*
747                          * This allows pages to be virtually copied from a 
748                          * backing_object into the first_object, where the 
749                          * backing object has no other refs to it, and cannot
750                          * gain any more refs.  Instead of a bcopy, we just 
751                          * move the page from the backing object to the 
752                          * first object.  Note that we must mark the page 
753                          * dirty in the first object so that it will go out 
754                          * to swap when needed.
755                          */
756                         is_first_object_locked = FALSE;
757                         if (
758                                 /*
759                                  * Only one shadow object
760                                  */
761                                 (fs.object->shadow_count == 1) &&
762                                 /*
763                                  * No COW refs, except us
764                                  */
765                                 (fs.object->ref_count == 1) &&
766                                 /*
767                                  * No one else can look this object up
768                                  */
769                                 (fs.object->handle == NULL) &&
770                                 /*
771                                  * No other ways to look the object up
772                                  */
773                                 ((fs.object->type == OBJT_DEFAULT) ||
774                                  (fs.object->type == OBJT_SWAP)) &&
775                             (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
776                                 /*
777                                  * We don't chase down the shadow chain
778                                  */
779                             fs.object == fs.first_object->backing_object) {
780                                 vm_page_lock_queues();
781                                 /*
782                                  * get rid of the unnecessary page
783                                  */
784                                 vm_page_free(fs.first_m);
785                                 /*
786                                  * grab the page and put it into the 
787                                  * process'es object.  The page is 
788                                  * automatically made dirty.
789                                  */
790                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
791                                 vm_page_unlock_queues();
792                                 vm_page_busy(fs.m);
793                                 fs.first_m = fs.m;
794                                 fs.m = NULL;
795                                 PCPU_INC(cnt.v_cow_optim);
796                         } else {
797                                 /*
798                                  * Oh, well, lets copy it.
799                                  */
800                                 pmap_copy_page(fs.m, fs.first_m);
801                                 fs.first_m->valid = VM_PAGE_BITS_ALL;
802                         }
803                         if (fs.m) {
804                                 /*
805                                  * We no longer need the old page or object.
806                                  */
807                                 release_page(&fs);
808                         }
809                         /*
810                          * fs.object != fs.first_object due to above 
811                          * conditional
812                          */
813                         vm_object_pip_wakeup(fs.object);
814                         VM_OBJECT_UNLOCK(fs.object);
815                         /*
816                          * Only use the new page below...
817                          */
818                         fs.object = fs.first_object;
819                         fs.pindex = fs.first_pindex;
820                         fs.m = fs.first_m;
821                         if (!is_first_object_locked)
822                                 VM_OBJECT_LOCK(fs.object);
823                         PCPU_INC(cnt.v_cow_faults);
824                 } else {
825                         prot &= ~VM_PROT_WRITE;
826                 }
827         }
828
829         /*
830          * We must verify that the maps have not changed since our last
831          * lookup.
832          */
833         if (!fs.lookup_still_valid) {
834                 vm_object_t retry_object;
835                 vm_pindex_t retry_pindex;
836                 vm_prot_t retry_prot;
837
838                 if (!vm_map_trylock_read(fs.map)) {
839                         release_page(&fs);
840                         unlock_and_deallocate(&fs);
841                         goto RetryFault;
842                 }
843                 fs.lookup_still_valid = TRUE;
844                 if (fs.map->timestamp != map_generation) {
845                         result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
846                             &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
847
848                         /*
849                          * If we don't need the page any longer, put it on the inactive
850                          * list (the easiest thing to do here).  If no one needs it,
851                          * pageout will grab it eventually.
852                          */
853                         if (result != KERN_SUCCESS) {
854                                 release_page(&fs);
855                                 unlock_and_deallocate(&fs);
856
857                                 /*
858                                  * If retry of map lookup would have blocked then
859                                  * retry fault from start.
860                                  */
861                                 if (result == KERN_FAILURE)
862                                         goto RetryFault;
863                                 return (result);
864                         }
865                         if ((retry_object != fs.first_object) ||
866                             (retry_pindex != fs.first_pindex)) {
867                                 release_page(&fs);
868                                 unlock_and_deallocate(&fs);
869                                 goto RetryFault;
870                         }
871
872                         /*
873                          * Check whether the protection has changed or the object has
874                          * been copied while we left the map unlocked. Changing from
875                          * read to write permission is OK - we leave the page
876                          * write-protected, and catch the write fault. Changing from
877                          * write to read permission means that we can't mark the page
878                          * write-enabled after all.
879                          */
880                         prot &= retry_prot;
881                 }
882         }
883         /*
884          * If the page was filled by a pager, update the map entry's
885          * last read offset.  Since the pager does not return the
886          * actual set of pages that it read, this update is based on
887          * the requested set.  Typically, the requested and actual
888          * sets are the same.
889          *
890          * XXX The following assignment modifies the map
891          * without holding a write lock on it.
892          */
893         if (hardfault)
894                 fs.entry->lastr = fs.pindex + faultcount - behind;
895
896         if (prot & VM_PROT_WRITE) {
897                 vm_object_set_writeable_dirty(fs.object);
898
899                 /*
900                  * If the fault is a write, we know that this page is being
901                  * written NOW so dirty it explicitly to save on 
902                  * pmap_is_modified() calls later.
903                  *
904                  * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
905                  * if the page is already dirty to prevent data written with
906                  * the expectation of being synced from not being synced.
907                  * Likewise if this entry does not request NOSYNC then make
908                  * sure the page isn't marked NOSYNC.  Applications sharing
909                  * data should use the same flags to avoid ping ponging.
910                  *
911                  * Also tell the backing pager, if any, that it should remove
912                  * any swap backing since the page is now dirty.
913                  */
914                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
915                         if (fs.m->dirty == 0)
916                                 fs.m->oflags |= VPO_NOSYNC;
917                 } else {
918                         fs.m->oflags &= ~VPO_NOSYNC;
919                 }
920                 if (fault_flags & VM_FAULT_DIRTY) {
921                         vm_page_dirty(fs.m);
922                         vm_pager_page_unswapped(fs.m);
923                 }
924         }
925
926         /*
927          * Page had better still be busy
928          */
929         KASSERT(fs.m->oflags & VPO_BUSY,
930                 ("vm_fault: page %p not busy!", fs.m));
931         /*
932          * Page must be completely valid or it is not fit to
933          * map into user space.  vm_pager_get_pages() ensures this.
934          */
935         KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
936             ("vm_fault: page %p partially invalid", fs.m));
937         VM_OBJECT_UNLOCK(fs.object);
938
939         /*
940          * Put this page into the physical map.  We had to do the unlock above
941          * because pmap_enter() may sleep.  We don't put the page
942          * back on the active queue until later so that the pageout daemon
943          * won't find it (yet).
944          */
945         pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
946         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
947                 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
948         }
949         VM_OBJECT_LOCK(fs.object);
950         vm_page_lock_queues();
951         vm_page_flag_set(fs.m, PG_REFERENCED);
952
953         /*
954          * If the page is not wired down, then put it where the pageout daemon
955          * can find it.
956          */
957         if (fault_flags & VM_FAULT_WIRE_MASK) {
958                 if (wired)
959                         vm_page_wire(fs.m);
960                 else
961                         vm_page_unwire(fs.m, 1);
962         } else {
963                 vm_page_activate(fs.m);
964         }
965         vm_page_unlock_queues();
966         vm_page_wakeup(fs.m);
967
968         /*
969          * Unlock everything, and return
970          */
971         unlock_and_deallocate(&fs);
972         if (hardfault)
973                 curthread->td_ru.ru_majflt++;
974         else
975                 curthread->td_ru.ru_minflt++;
976
977         return (KERN_SUCCESS);
978 }
979
980 /*
981  * vm_fault_prefault provides a quick way of clustering
982  * pagefaults into a processes address space.  It is a "cousin"
983  * of vm_map_pmap_enter, except it runs at page fault time instead
984  * of mmap time.
985  */
986 static void
987 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
988 {
989         int i;
990         vm_offset_t addr, starta;
991         vm_pindex_t pindex;
992         vm_page_t m;
993         vm_object_t object;
994
995         if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
996                 return;
997
998         object = entry->object.vm_object;
999
1000         starta = addra - PFBAK * PAGE_SIZE;
1001         if (starta < entry->start) {
1002                 starta = entry->start;
1003         } else if (starta > addra) {
1004                 starta = 0;
1005         }
1006
1007         for (i = 0; i < PAGEORDER_SIZE; i++) {
1008                 vm_object_t backing_object, lobject;
1009
1010                 addr = addra + prefault_pageorder[i];
1011                 if (addr > addra + (PFFOR * PAGE_SIZE))
1012                         addr = 0;
1013
1014                 if (addr < starta || addr >= entry->end)
1015                         continue;
1016
1017                 if (!pmap_is_prefaultable(pmap, addr))
1018                         continue;
1019
1020                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1021                 lobject = object;
1022                 VM_OBJECT_LOCK(lobject);
1023                 while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1024                     lobject->type == OBJT_DEFAULT &&
1025                     (backing_object = lobject->backing_object) != NULL) {
1026                         KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1027                             0, ("vm_fault_prefault: unaligned object offset"));
1028                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1029                         VM_OBJECT_LOCK(backing_object);
1030                         VM_OBJECT_UNLOCK(lobject);
1031                         lobject = backing_object;
1032                 }
1033                 /*
1034                  * give-up when a page is not in memory
1035                  */
1036                 if (m == NULL) {
1037                         VM_OBJECT_UNLOCK(lobject);
1038                         break;
1039                 }
1040                 if (m->valid == VM_PAGE_BITS_ALL &&
1041                     (m->flags & PG_FICTITIOUS) == 0) {
1042                         vm_page_lock_queues();
1043                         pmap_enter_quick(pmap, addr, m, entry->protection);
1044                         vm_page_unlock_queues();
1045                 }
1046                 VM_OBJECT_UNLOCK(lobject);
1047         }
1048 }
1049
1050 /*
1051  *      vm_fault_quick:
1052  *
1053  *      Ensure that the requested virtual address, which may be in userland,
1054  *      is valid.  Fault-in the page if necessary.  Return -1 on failure.
1055  */
1056 int
1057 vm_fault_quick(caddr_t v, int prot)
1058 {
1059         int r;
1060
1061         if (prot & VM_PROT_WRITE)
1062                 r = subyte(v, fubyte(v));
1063         else
1064                 r = fubyte(v);
1065         return(r);
1066 }
1067
1068 /*
1069  *      vm_fault_wire:
1070  *
1071  *      Wire down a range of virtual addresses in a map.
1072  */
1073 int
1074 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1075     boolean_t user_wire, boolean_t fictitious)
1076 {
1077         vm_offset_t va;
1078         int rv;
1079
1080         /*
1081          * We simulate a fault to get the page and enter it in the physical
1082          * map.  For user wiring, we only ask for read access on currently
1083          * read-only sections.
1084          */
1085         for (va = start; va < end; va += PAGE_SIZE) {
1086                 rv = vm_fault(map, va,
1087                     user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1088                     user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1089                 if (rv) {
1090                         if (va != start)
1091                                 vm_fault_unwire(map, start, va, fictitious);
1092                         return (rv);
1093                 }
1094         }
1095         return (KERN_SUCCESS);
1096 }
1097
1098 /*
1099  *      vm_fault_unwire:
1100  *
1101  *      Unwire a range of virtual addresses in a map.
1102  */
1103 void
1104 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1105     boolean_t fictitious)
1106 {
1107         vm_paddr_t pa;
1108         vm_offset_t va;
1109         pmap_t pmap;
1110
1111         pmap = vm_map_pmap(map);
1112
1113         /*
1114          * Since the pages are wired down, we must be able to get their
1115          * mappings from the physical map system.
1116          */
1117         for (va = start; va < end; va += PAGE_SIZE) {
1118                 pa = pmap_extract(pmap, va);
1119                 if (pa != 0) {
1120                         pmap_change_wiring(pmap, va, FALSE);
1121                         if (!fictitious) {
1122                                 vm_page_lock_queues();
1123                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1124                                 vm_page_unlock_queues();
1125                         }
1126                 }
1127         }
1128 }
1129
1130 /*
1131  *      Routine:
1132  *              vm_fault_copy_entry
1133  *      Function:
1134  *              Create new shadow object backing dst_entry with private copy of
1135  *              all underlying pages. When src_entry is equal to dst_entry,
1136  *              function implements COW for wired-down map entry. Otherwise,
1137  *              it forks wired entry into dst_map.
1138  *
1139  *      In/out conditions:
1140  *              The source and destination maps must be locked for write.
1141  *              The source map entry must be wired down (or be a sharing map
1142  *              entry corresponding to a main map entry that is wired down).
1143  */
1144 void
1145 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1146     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1147     vm_ooffset_t *fork_charge)
1148 {
1149         vm_object_t backing_object, dst_object, object, src_object;
1150         vm_pindex_t dst_pindex, pindex, src_pindex;
1151         vm_prot_t access, prot;
1152         vm_offset_t vaddr;
1153         vm_page_t dst_m;
1154         vm_page_t src_m;
1155         boolean_t src_readonly, upgrade;
1156
1157 #ifdef  lint
1158         src_map++;
1159 #endif  /* lint */
1160
1161         upgrade = src_entry == dst_entry;
1162
1163         src_object = src_entry->object.vm_object;
1164         src_pindex = OFF_TO_IDX(src_entry->offset);
1165         src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1166
1167         /*
1168          * Create the top-level object for the destination entry. (Doesn't
1169          * actually shadow anything - we copy the pages directly.)
1170          */
1171         dst_object = vm_object_allocate(OBJT_DEFAULT,
1172             OFF_TO_IDX(dst_entry->end - dst_entry->start));
1173 #if VM_NRESERVLEVEL > 0
1174         dst_object->flags |= OBJ_COLORED;
1175         dst_object->pg_color = atop(dst_entry->start);
1176 #endif
1177
1178         VM_OBJECT_LOCK(dst_object);
1179         KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1180             ("vm_fault_copy_entry: vm_object not NULL"));
1181         dst_entry->object.vm_object = dst_object;
1182         dst_entry->offset = 0;
1183         dst_object->charge = dst_entry->end - dst_entry->start;
1184         if (fork_charge != NULL) {
1185                 KASSERT(dst_entry->uip == NULL,
1186                     ("vm_fault_copy_entry: leaked swp charge"));
1187                 dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1188                 uihold(dst_object->uip);
1189                 *fork_charge += dst_object->charge;
1190         } else {
1191                 dst_object->uip = dst_entry->uip;
1192                 dst_entry->uip = NULL;
1193         }
1194         access = prot = dst_entry->max_protection;
1195         /*
1196          * If not an upgrade, then enter the mappings in the pmap as
1197          * read and/or execute accesses.  Otherwise, enter them as
1198          * write accesses.
1199          *
1200          * A writeable large page mapping is only created if all of
1201          * the constituent small page mappings are modified. Marking
1202          * PTEs as modified on inception allows promotion to happen
1203          * without taking potentially large number of soft faults.
1204          */
1205         if (!upgrade)
1206                 access &= ~VM_PROT_WRITE;
1207
1208         /*
1209          * Loop through all of the pages in the entry's range, copying each
1210          * one from the source object (it should be there) to the destination
1211          * object.
1212          */
1213         for (vaddr = dst_entry->start, dst_pindex = 0;
1214             vaddr < dst_entry->end;
1215             vaddr += PAGE_SIZE, dst_pindex++) {
1216
1217                 /*
1218                  * Allocate a page in the destination object.
1219                  */
1220                 do {
1221                         dst_m = vm_page_alloc(dst_object, dst_pindex,
1222                             VM_ALLOC_NORMAL);
1223                         if (dst_m == NULL) {
1224                                 VM_OBJECT_UNLOCK(dst_object);
1225                                 VM_WAIT;
1226                                 VM_OBJECT_LOCK(dst_object);
1227                         }
1228                 } while (dst_m == NULL);
1229
1230                 /*
1231                  * Find the page in the source object, and copy it in.
1232                  * (Because the source is wired down, the page will be in
1233                  * memory.)
1234                  */
1235                 VM_OBJECT_LOCK(src_object);
1236                 object = src_object;
1237                 pindex = src_pindex + dst_pindex;
1238                 while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1239                     src_readonly &&
1240                     (backing_object = object->backing_object) != NULL) {
1241                         /*
1242                          * Allow fallback to backing objects if we are reading.
1243                          */
1244                         VM_OBJECT_LOCK(backing_object);
1245                         pindex += OFF_TO_IDX(object->backing_object_offset);
1246                         VM_OBJECT_UNLOCK(object);
1247                         object = backing_object;
1248                 }
1249                 if (src_m == NULL)
1250                         panic("vm_fault_copy_wired: page missing");
1251                 pmap_copy_page(src_m, dst_m);
1252                 VM_OBJECT_UNLOCK(object);
1253                 dst_m->valid = VM_PAGE_BITS_ALL;
1254                 VM_OBJECT_UNLOCK(dst_object);
1255
1256                 /*
1257                  * Enter it in the pmap. If a wired, copy-on-write
1258                  * mapping is being replaced by a write-enabled
1259                  * mapping, then wire that new mapping.
1260                  */
1261                 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1262
1263                 /*
1264                  * Mark it no longer busy, and put it on the active list.
1265                  */
1266                 VM_OBJECT_LOCK(dst_object);
1267                 vm_page_lock_queues();
1268                 if (upgrade) {
1269                         vm_page_unwire(src_m, 0);
1270                         vm_page_wire(dst_m);
1271                 } else
1272                         vm_page_activate(dst_m);
1273                 vm_page_unlock_queues();
1274                 vm_page_wakeup(dst_m);
1275         }
1276         VM_OBJECT_UNLOCK(dst_object);
1277         if (upgrade) {
1278                 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1279                 vm_object_deallocate(src_object);
1280         }
1281 }
1282
1283
1284 /*
1285  * This routine checks around the requested page for other pages that
1286  * might be able to be faulted in.  This routine brackets the viable
1287  * pages for the pages to be paged in.
1288  *
1289  * Inputs:
1290  *      m, rbehind, rahead
1291  *
1292  * Outputs:
1293  *  marray (array of vm_page_t), reqpage (index of requested page)
1294  *
1295  * Return value:
1296  *  number of pages in marray
1297  */
1298 static int
1299 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1300         vm_page_t m;
1301         int rbehind;
1302         int rahead;
1303         vm_page_t *marray;
1304         int *reqpage;
1305 {
1306         int i,j;
1307         vm_object_t object;
1308         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1309         vm_page_t rtm;
1310         int cbehind, cahead;
1311
1312         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1313
1314         object = m->object;
1315         pindex = m->pindex;
1316         cbehind = cahead = 0;
1317
1318         /*
1319          * if the requested page is not available, then give up now
1320          */
1321         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1322                 return 0;
1323         }
1324
1325         if ((cbehind == 0) && (cahead == 0)) {
1326                 *reqpage = 0;
1327                 marray[0] = m;
1328                 return 1;
1329         }
1330
1331         if (rahead > cahead) {
1332                 rahead = cahead;
1333         }
1334
1335         if (rbehind > cbehind) {
1336                 rbehind = cbehind;
1337         }
1338
1339         /*
1340          * scan backward for the read behind pages -- in memory 
1341          */
1342         if (pindex > 0) {
1343                 if (rbehind > pindex) {
1344                         rbehind = pindex;
1345                         startpindex = 0;
1346                 } else {
1347                         startpindex = pindex - rbehind;
1348                 }
1349
1350                 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1351                     rtm->pindex >= startpindex)
1352                         startpindex = rtm->pindex + 1;
1353
1354                 /* tpindex is unsigned; beware of numeric underflow. */
1355                 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1356                     tpindex < pindex; i++, tpindex--) {
1357
1358                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1359                             VM_ALLOC_IFNOTCACHED);
1360                         if (rtm == NULL) {
1361                                 /*
1362                                  * Shift the allocated pages to the
1363                                  * beginning of the array.
1364                                  */
1365                                 for (j = 0; j < i; j++) {
1366                                         marray[j] = marray[j + tpindex + 1 -
1367                                             startpindex];
1368                                 }
1369                                 break;
1370                         }
1371
1372                         marray[tpindex - startpindex] = rtm;
1373                 }
1374         } else {
1375                 startpindex = 0;
1376                 i = 0;
1377         }
1378
1379         marray[i] = m;
1380         /* page offset of the required page */
1381         *reqpage = i;
1382
1383         tpindex = pindex + 1;
1384         i++;
1385
1386         /*
1387          * scan forward for the read ahead pages
1388          */
1389         endpindex = tpindex + rahead;
1390         if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1391                 endpindex = rtm->pindex;
1392         if (endpindex > object->size)
1393                 endpindex = object->size;
1394
1395         for (; tpindex < endpindex; i++, tpindex++) {
1396
1397                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1398                     VM_ALLOC_IFNOTCACHED);
1399                 if (rtm == NULL) {
1400                         break;
1401                 }
1402
1403                 marray[i] = rtm;
1404         }
1405
1406         /* return number of pages */
1407         return i;
1408 }