]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_map.c
MFC r290326:
[FreeBSD/stable/8.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/uma.h>
95
96 /*
97  *      Virtual memory maps provide for the mapping, protection,
98  *      and sharing of virtual memory objects.  In addition,
99  *      this module provides for an efficient virtual copy of
100  *      memory from one map to another.
101  *
102  *      Synchronization is required prior to most operations.
103  *
104  *      Maps consist of an ordered doubly-linked list of simple
105  *      entries; a self-adjusting binary search tree of these
106  *      entries is used to speed up lookups.
107  *
108  *      Since portions of maps are specified by start/end addresses,
109  *      which may not align with existing map entries, all
110  *      routines merely "clip" entries to these start/end values.
111  *      [That is, an entry is split into two, bordering at a
112  *      start or end value.]  Note that these clippings may not
113  *      always be necessary (as the two resulting entries are then
114  *      not changed); however, the clipping is done for convenience.
115  *
116  *      As mentioned above, virtual copy operations are performed
117  *      by copying VM object references from one map to
118  *      another, and then marking both regions as copy-on-write.
119  */
120
121 static struct mtx map_sleep_mtx;
122 static uma_zone_t mapentzone;
123 static uma_zone_t kmapentzone;
124 static uma_zone_t mapzone;
125 static uma_zone_t vmspace_zone;
126 static struct vm_object kmapentobj;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void vmspace_zfini(void *mem, int size);
129 static int vm_map_zinit(void *mem, int ize, int flags);
130 static void vm_map_zfini(void *mem, int size);
131 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
132 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
133 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
134 #ifdef INVARIANTS
135 static void vm_map_zdtor(void *mem, int size, void *arg);
136 static void vmspace_zdtor(void *mem, int size, void *arg);
137 #endif
138
139 #define ENTRY_CHARGED(e) ((e)->uip != NULL || \
140     ((e)->object.vm_object != NULL && (e)->object.vm_object->uip != NULL && \
141      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
142
143 /* 
144  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
145  * stable.
146  */
147 #define PROC_VMSPACE_LOCK(p) do { } while (0)
148 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
149
150 /*
151  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
152  *
153  *      Asserts that the starting and ending region
154  *      addresses fall within the valid range of the map.
155  */
156 #define VM_MAP_RANGE_CHECK(map, start, end)             \
157                 {                                       \
158                 if (start < vm_map_min(map))            \
159                         start = vm_map_min(map);        \
160                 if (end > vm_map_max(map))              \
161                         end = vm_map_max(map);          \
162                 if (start > end)                        \
163                         start = end;                    \
164                 }
165
166 /*
167  *      vm_map_startup:
168  *
169  *      Initialize the vm_map module.  Must be called before
170  *      any other vm_map routines.
171  *
172  *      Map and entry structures are allocated from the general
173  *      purpose memory pool with some exceptions:
174  *
175  *      - The kernel map and kmem submap are allocated statically.
176  *      - Kernel map entries are allocated out of a static pool.
177  *
178  *      These restrictions are necessary since malloc() uses the
179  *      maps and requires map entries.
180  */
181
182 void
183 vm_map_startup(void)
184 {
185         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
186         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
187 #ifdef INVARIANTS
188             vm_map_zdtor,
189 #else
190             NULL,
191 #endif
192             vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
193         uma_prealloc(mapzone, MAX_KMAP);
194         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
195             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
196             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
197         uma_prealloc(kmapentzone, MAX_KMAPENT);
198         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 }
201
202 static void
203 vmspace_zfini(void *mem, int size)
204 {
205         struct vmspace *vm;
206
207         vm = (struct vmspace *)mem;
208         vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
209 }
210
211 static int
212 vmspace_zinit(void *mem, int size, int flags)
213 {
214         struct vmspace *vm;
215
216         vm = (struct vmspace *)mem;
217
218         vm->vm_map.pmap = NULL;
219         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
220         return (0);
221 }
222
223 static void
224 vm_map_zfini(void *mem, int size)
225 {
226         vm_map_t map;
227
228         map = (vm_map_t)mem;
229         mtx_destroy(&map->system_mtx);
230         sx_destroy(&map->lock);
231 }
232
233 static int
234 vm_map_zinit(void *mem, int size, int flags)
235 {
236         vm_map_t map;
237
238         map = (vm_map_t)mem;
239         map->nentries = 0;
240         map->size = 0;
241         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
242         sx_init(&map->lock, "user map");
243         return (0);
244 }
245
246 #ifdef INVARIANTS
247 static void
248 vmspace_zdtor(void *mem, int size, void *arg)
249 {
250         struct vmspace *vm;
251
252         vm = (struct vmspace *)mem;
253
254         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
255 }
256 static void
257 vm_map_zdtor(void *mem, int size, void *arg)
258 {
259         vm_map_t map;
260
261         map = (vm_map_t)mem;
262         KASSERT(map->nentries == 0,
263             ("map %p nentries == %d on free.",
264             map, map->nentries));
265         KASSERT(map->size == 0,
266             ("map %p size == %lu on free.",
267             map, (unsigned long)map->size));
268 }
269 #endif  /* INVARIANTS */
270
271 /*
272  * Allocate a vmspace structure, including a vm_map and pmap,
273  * and initialize those structures.  The refcnt is set to 1.
274  */
275 struct vmspace *
276 vmspace_alloc(min, max)
277         vm_offset_t min, max;
278 {
279         struct vmspace *vm;
280
281         vm = uma_zalloc(vmspace_zone, M_WAITOK);
282         if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
283                 uma_zfree(vmspace_zone, vm);
284                 return (NULL);
285         }
286         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
287         _vm_map_init(&vm->vm_map, min, max);
288         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
289         vm->vm_refcnt = 1;
290         vm->vm_shm = NULL;
291         vm->vm_swrss = 0;
292         vm->vm_tsize = 0;
293         vm->vm_dsize = 0;
294         vm->vm_ssize = 0;
295         vm->vm_taddr = 0;
296         vm->vm_daddr = 0;
297         vm->vm_maxsaddr = 0;
298         return (vm);
299 }
300
301 void
302 vm_init2(void)
303 {
304         uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
305             (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
306              maxproc * 2 + maxfiles);
307         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
308 #ifdef INVARIANTS
309             vmspace_zdtor,
310 #else
311             NULL,
312 #endif
313             vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
314 }
315
316 static inline void
317 vmspace_dofree(struct vmspace *vm)
318 {
319
320         CTR1(KTR_VM, "vmspace_free: %p", vm);
321
322         /*
323          * Make sure any SysV shm is freed, it might not have been in
324          * exit1().
325          */
326         shmexit(vm);
327
328         /*
329          * Lock the map, to wait out all other references to it.
330          * Delete all of the mappings and pages they hold, then call
331          * the pmap module to reclaim anything left.
332          */
333         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
334             vm->vm_map.max_offset);
335
336         pmap_release(vmspace_pmap(vm));
337         vm->vm_map.pmap = NULL;
338         uma_zfree(vmspace_zone, vm);
339 }
340
341 void
342 vmspace_free(struct vmspace *vm)
343 {
344
345         if (vm->vm_refcnt == 0)
346                 panic("vmspace_free: attempt to free already freed vmspace");
347
348         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
349                 vmspace_dofree(vm);
350 }
351
352 void
353 vmspace_exitfree(struct proc *p)
354 {
355         struct vmspace *vm;
356
357         PROC_VMSPACE_LOCK(p);
358         vm = p->p_vmspace;
359         p->p_vmspace = NULL;
360         PROC_VMSPACE_UNLOCK(p);
361         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
362         vmspace_free(vm);
363 }
364
365 void
366 vmspace_exit(struct thread *td)
367 {
368         int refcnt;
369         struct vmspace *vm;
370         struct proc *p;
371
372         /*
373          * Release user portion of address space.
374          * This releases references to vnodes,
375          * which could cause I/O if the file has been unlinked.
376          * Need to do this early enough that we can still sleep.
377          *
378          * The last exiting process to reach this point releases as
379          * much of the environment as it can. vmspace_dofree() is the
380          * slower fallback in case another process had a temporary
381          * reference to the vmspace.
382          */
383
384         p = td->td_proc;
385         vm = p->p_vmspace;
386         atomic_add_int(&vmspace0.vm_refcnt, 1);
387         do {
388                 refcnt = vm->vm_refcnt;
389                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
390                         /* Switch now since other proc might free vmspace */
391                         PROC_VMSPACE_LOCK(p);
392                         p->p_vmspace = &vmspace0;
393                         PROC_VMSPACE_UNLOCK(p);
394                         pmap_activate(td);
395                 }
396         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
397         if (refcnt == 1) {
398                 if (p->p_vmspace != vm) {
399                         /* vmspace not yet freed, switch back */
400                         PROC_VMSPACE_LOCK(p);
401                         p->p_vmspace = vm;
402                         PROC_VMSPACE_UNLOCK(p);
403                         pmap_activate(td);
404                 }
405                 pmap_remove_pages(vmspace_pmap(vm));
406                 /* Switch now since this proc will free vmspace */
407                 PROC_VMSPACE_LOCK(p);
408                 p->p_vmspace = &vmspace0;
409                 PROC_VMSPACE_UNLOCK(p);
410                 pmap_activate(td);
411                 vmspace_dofree(vm);
412         }
413 }
414
415 /* Acquire reference to vmspace owned by another process. */
416
417 struct vmspace *
418 vmspace_acquire_ref(struct proc *p)
419 {
420         struct vmspace *vm;
421         int refcnt;
422
423         PROC_VMSPACE_LOCK(p);
424         vm = p->p_vmspace;
425         if (vm == NULL) {
426                 PROC_VMSPACE_UNLOCK(p);
427                 return (NULL);
428         }
429         do {
430                 refcnt = vm->vm_refcnt;
431                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
432                         PROC_VMSPACE_UNLOCK(p);
433                         return (NULL);
434                 }
435         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
436         if (vm != p->p_vmspace) {
437                 PROC_VMSPACE_UNLOCK(p);
438                 vmspace_free(vm);
439                 return (NULL);
440         }
441         PROC_VMSPACE_UNLOCK(p);
442         return (vm);
443 }
444
445 void
446 _vm_map_lock(vm_map_t map, const char *file, int line)
447 {
448
449         if (map->system_map)
450                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
451         else
452                 (void)_sx_xlock(&map->lock, 0, file, line);
453         map->timestamp++;
454 }
455
456 static void
457 vm_map_process_deferred(void)
458 {
459         struct thread *td;
460         vm_map_entry_t entry, next;
461
462         td = curthread;
463         entry = td->td_map_def_user;
464         td->td_map_def_user = NULL;
465         while (entry != NULL) {
466                 next = entry->next;
467                 vm_map_entry_deallocate(entry, FALSE);
468                 entry = next;
469         }
470 }
471
472 void
473 _vm_map_unlock(vm_map_t map, const char *file, int line)
474 {
475
476         if (map->system_map)
477                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
478         else {
479                 _sx_xunlock(&map->lock, file, line);
480                 vm_map_process_deferred();
481         }
482 }
483
484 void
485 _vm_map_lock_read(vm_map_t map, const char *file, int line)
486 {
487
488         if (map->system_map)
489                 _mtx_lock_flags(&map->system_mtx, 0, file, line);
490         else
491                 (void)_sx_slock(&map->lock, 0, file, line);
492 }
493
494 void
495 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
496 {
497
498         if (map->system_map)
499                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
500         else {
501                 _sx_sunlock(&map->lock, file, line);
502                 vm_map_process_deferred();
503         }
504 }
505
506 int
507 _vm_map_trylock(vm_map_t map, const char *file, int line)
508 {
509         int error;
510
511         error = map->system_map ?
512             !_mtx_trylock(&map->system_mtx, 0, file, line) :
513             !_sx_try_xlock(&map->lock, file, line);
514         if (error == 0)
515                 map->timestamp++;
516         return (error == 0);
517 }
518
519 int
520 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
521 {
522         int error;
523
524         error = map->system_map ?
525             !_mtx_trylock(&map->system_mtx, 0, file, line) :
526             !_sx_try_slock(&map->lock, file, line);
527         return (error == 0);
528 }
529
530 /*
531  *      _vm_map_lock_upgrade:   [ internal use only ]
532  *
533  *      Tries to upgrade a read (shared) lock on the specified map to a write
534  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
535  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
536  *      returned without a read or write lock held.
537  *
538  *      Requires that the map be read locked.
539  */
540 int
541 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
542 {
543         unsigned int last_timestamp;
544
545         if (map->system_map) {
546 #ifdef INVARIANTS
547                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
548 #endif
549         } else {
550                 if (!_sx_try_upgrade(&map->lock, file, line)) {
551                         last_timestamp = map->timestamp;
552                         _sx_sunlock(&map->lock, file, line);
553                         vm_map_process_deferred();
554                         /*
555                          * If the map's timestamp does not change while the
556                          * map is unlocked, then the upgrade succeeds.
557                          */
558                         (void)_sx_xlock(&map->lock, 0, file, line);
559                         if (last_timestamp != map->timestamp) {
560                                 _sx_xunlock(&map->lock, file, line);
561                                 return (1);
562                         }
563                 }
564         }
565         map->timestamp++;
566         return (0);
567 }
568
569 void
570 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
571 {
572
573         if (map->system_map) {
574 #ifdef INVARIANTS
575                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
576 #endif
577         } else
578                 _sx_downgrade(&map->lock, file, line);
579 }
580
581 /*
582  *      vm_map_locked:
583  *
584  *      Returns a non-zero value if the caller holds a write (exclusive) lock
585  *      on the specified map and the value "0" otherwise.
586  */
587 int
588 vm_map_locked(vm_map_t map)
589 {
590
591         if (map->system_map)
592                 return (mtx_owned(&map->system_mtx));
593         else
594                 return (sx_xlocked(&map->lock));
595 }
596
597 #ifdef INVARIANTS
598 static void
599 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
600 {
601
602         if (map->system_map)
603                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
604         else
605                 _sx_assert(&map->lock, SA_XLOCKED, file, line);
606 }
607
608 #if 0
609 static void
610 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line)
611 {
612
613         if (map->system_map)
614                 _mtx_assert(&map->system_mtx, MA_OWNED, file, line);
615         else
616                 _sx_assert(&map->lock, SA_SLOCKED, file, line);
617 }
618 #endif
619
620 #define VM_MAP_ASSERT_LOCKED(map) \
621     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
622 #define VM_MAP_ASSERT_LOCKED_READ(map) \
623     _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE)
624 #else
625 #define VM_MAP_ASSERT_LOCKED(map)
626 #define VM_MAP_ASSERT_LOCKED_READ(map)
627 #endif
628
629 /*
630  *      _vm_map_unlock_and_wait:
631  *
632  *      Atomically releases the lock on the specified map and puts the calling
633  *      thread to sleep.  The calling thread will remain asleep until either
634  *      vm_map_wakeup() is performed on the map or the specified timeout is
635  *      exceeded.
636  *
637  *      WARNING!  This function does not perform deferred deallocations of
638  *      objects and map entries.  Therefore, the calling thread is expected to
639  *      reacquire the map lock after reawakening and later perform an ordinary
640  *      unlock operation, such as vm_map_unlock(), before completing its
641  *      operation on the map.
642  */
643 int
644 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
645 {
646
647         mtx_lock(&map_sleep_mtx);
648         if (map->system_map)
649                 _mtx_unlock_flags(&map->system_mtx, 0, file, line);
650         else
651                 _sx_xunlock(&map->lock, file, line);
652         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
653             timo));
654 }
655
656 /*
657  *      vm_map_wakeup:
658  *
659  *      Awaken any threads that have slept on the map using
660  *      vm_map_unlock_and_wait().
661  */
662 void
663 vm_map_wakeup(vm_map_t map)
664 {
665
666         /*
667          * Acquire and release map_sleep_mtx to prevent a wakeup()
668          * from being performed (and lost) between the map unlock
669          * and the msleep() in _vm_map_unlock_and_wait().
670          */
671         mtx_lock(&map_sleep_mtx);
672         mtx_unlock(&map_sleep_mtx);
673         wakeup(&map->root);
674 }
675
676 void
677 vm_map_busy(vm_map_t map)
678 {
679
680         VM_MAP_ASSERT_LOCKED(map);
681         map->busy++;
682 }
683
684 void
685 vm_map_unbusy(vm_map_t map)
686 {
687
688         VM_MAP_ASSERT_LOCKED(map);
689         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
690         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
691                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
692                 wakeup(&map->busy);
693         }
694 }
695
696 void 
697 vm_map_wait_busy(vm_map_t map)
698 {
699
700         VM_MAP_ASSERT_LOCKED(map);
701         while (map->busy) {
702                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
703                 if (map->system_map)
704                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
705                 else
706                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
707         }
708         map->timestamp++;
709 }
710
711 long
712 vmspace_resident_count(struct vmspace *vmspace)
713 {
714         return pmap_resident_count(vmspace_pmap(vmspace));
715 }
716
717 long
718 vmspace_wired_count(struct vmspace *vmspace)
719 {
720         return pmap_wired_count(vmspace_pmap(vmspace));
721 }
722
723 /*
724  *      vm_map_create:
725  *
726  *      Creates and returns a new empty VM map with
727  *      the given physical map structure, and having
728  *      the given lower and upper address bounds.
729  */
730 vm_map_t
731 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
732 {
733         vm_map_t result;
734
735         result = uma_zalloc(mapzone, M_WAITOK);
736         CTR1(KTR_VM, "vm_map_create: %p", result);
737         _vm_map_init(result, min, max);
738         result->pmap = pmap;
739         return (result);
740 }
741
742 /*
743  * Initialize an existing vm_map structure
744  * such as that in the vmspace structure.
745  * The pmap is set elsewhere.
746  */
747 static void
748 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
749 {
750
751         map->header.next = map->header.prev = &map->header;
752         map->needs_wakeup = FALSE;
753         map->system_map = 0;
754         map->min_offset = min;
755         map->max_offset = max;
756         map->flags = 0;
757         map->root = NULL;
758         map->timestamp = 0;
759         map->busy = 0;
760 }
761
762 void
763 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
764 {
765         _vm_map_init(map, min, max);
766         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
767         sx_init(&map->lock, "user map");
768 }
769
770 /*
771  *      vm_map_entry_dispose:   [ internal use only ]
772  *
773  *      Inverse of vm_map_entry_create.
774  */
775 static void
776 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
777 {
778         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
779 }
780
781 /*
782  *      vm_map_entry_create:    [ internal use only ]
783  *
784  *      Allocates a VM map entry for insertion.
785  *      No entry fields are filled in.
786  */
787 static vm_map_entry_t
788 vm_map_entry_create(vm_map_t map)
789 {
790         vm_map_entry_t new_entry;
791
792         if (map->system_map)
793                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
794         else
795                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
796         if (new_entry == NULL)
797                 panic("vm_map_entry_create: kernel resources exhausted");
798         return (new_entry);
799 }
800
801 /*
802  *      vm_map_entry_set_behavior:
803  *
804  *      Set the expected access behavior, either normal, random, or
805  *      sequential.
806  */
807 static inline void
808 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
809 {
810         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
811             (behavior & MAP_ENTRY_BEHAV_MASK);
812 }
813
814 /*
815  *      vm_map_entry_set_max_free:
816  *
817  *      Set the max_free field in a vm_map_entry.
818  */
819 static inline void
820 vm_map_entry_set_max_free(vm_map_entry_t entry)
821 {
822
823         entry->max_free = entry->adj_free;
824         if (entry->left != NULL && entry->left->max_free > entry->max_free)
825                 entry->max_free = entry->left->max_free;
826         if (entry->right != NULL && entry->right->max_free > entry->max_free)
827                 entry->max_free = entry->right->max_free;
828 }
829
830 /*
831  *      vm_map_entry_splay:
832  *
833  *      The Sleator and Tarjan top-down splay algorithm with the
834  *      following variation.  Max_free must be computed bottom-up, so
835  *      on the downward pass, maintain the left and right spines in
836  *      reverse order.  Then, make a second pass up each side to fix
837  *      the pointers and compute max_free.  The time bound is O(log n)
838  *      amortized.
839  *
840  *      The new root is the vm_map_entry containing "addr", or else an
841  *      adjacent entry (lower or higher) if addr is not in the tree.
842  *
843  *      The map must be locked, and leaves it so.
844  *
845  *      Returns: the new root.
846  */
847 static vm_map_entry_t
848 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
849 {
850         vm_map_entry_t llist, rlist;
851         vm_map_entry_t ltree, rtree;
852         vm_map_entry_t y;
853
854         /* Special case of empty tree. */
855         if (root == NULL)
856                 return (root);
857
858         /*
859          * Pass One: Splay down the tree until we find addr or a NULL
860          * pointer where addr would go.  llist and rlist are the two
861          * sides in reverse order (bottom-up), with llist linked by
862          * the right pointer and rlist linked by the left pointer in
863          * the vm_map_entry.  Wait until Pass Two to set max_free on
864          * the two spines.
865          */
866         llist = NULL;
867         rlist = NULL;
868         for (;;) {
869                 /* root is never NULL in here. */
870                 if (addr < root->start) {
871                         y = root->left;
872                         if (y == NULL)
873                                 break;
874                         if (addr < y->start && y->left != NULL) {
875                                 /* Rotate right and put y on rlist. */
876                                 root->left = y->right;
877                                 y->right = root;
878                                 vm_map_entry_set_max_free(root);
879                                 root = y->left;
880                                 y->left = rlist;
881                                 rlist = y;
882                         } else {
883                                 /* Put root on rlist. */
884                                 root->left = rlist;
885                                 rlist = root;
886                                 root = y;
887                         }
888                 } else if (addr >= root->end) {
889                         y = root->right;
890                         if (y == NULL)
891                                 break;
892                         if (addr >= y->end && y->right != NULL) {
893                                 /* Rotate left and put y on llist. */
894                                 root->right = y->left;
895                                 y->left = root;
896                                 vm_map_entry_set_max_free(root);
897                                 root = y->right;
898                                 y->right = llist;
899                                 llist = y;
900                         } else {
901                                 /* Put root on llist. */
902                                 root->right = llist;
903                                 llist = root;
904                                 root = y;
905                         }
906                 } else
907                         break;
908         }
909
910         /*
911          * Pass Two: Walk back up the two spines, flip the pointers
912          * and set max_free.  The subtrees of the root go at the
913          * bottom of llist and rlist.
914          */
915         ltree = root->left;
916         while (llist != NULL) {
917                 y = llist->right;
918                 llist->right = ltree;
919                 vm_map_entry_set_max_free(llist);
920                 ltree = llist;
921                 llist = y;
922         }
923         rtree = root->right;
924         while (rlist != NULL) {
925                 y = rlist->left;
926                 rlist->left = rtree;
927                 vm_map_entry_set_max_free(rlist);
928                 rtree = rlist;
929                 rlist = y;
930         }
931
932         /*
933          * Final assembly: add ltree and rtree as subtrees of root.
934          */
935         root->left = ltree;
936         root->right = rtree;
937         vm_map_entry_set_max_free(root);
938
939         return (root);
940 }
941
942 /*
943  *      vm_map_entry_{un,}link:
944  *
945  *      Insert/remove entries from maps.
946  */
947 static void
948 vm_map_entry_link(vm_map_t map,
949                   vm_map_entry_t after_where,
950                   vm_map_entry_t entry)
951 {
952
953         CTR4(KTR_VM,
954             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
955             map->nentries, entry, after_where);
956         VM_MAP_ASSERT_LOCKED(map);
957         map->nentries++;
958         entry->prev = after_where;
959         entry->next = after_where->next;
960         entry->next->prev = entry;
961         after_where->next = entry;
962
963         if (after_where != &map->header) {
964                 if (after_where != map->root)
965                         vm_map_entry_splay(after_where->start, map->root);
966                 entry->right = after_where->right;
967                 entry->left = after_where;
968                 after_where->right = NULL;
969                 after_where->adj_free = entry->start - after_where->end;
970                 vm_map_entry_set_max_free(after_where);
971         } else {
972                 entry->right = map->root;
973                 entry->left = NULL;
974         }
975         entry->adj_free = (entry->next == &map->header ? map->max_offset :
976             entry->next->start) - entry->end;
977         vm_map_entry_set_max_free(entry);
978         map->root = entry;
979 }
980
981 static void
982 vm_map_entry_unlink(vm_map_t map,
983                     vm_map_entry_t entry)
984 {
985         vm_map_entry_t next, prev, root;
986
987         VM_MAP_ASSERT_LOCKED(map);
988         if (entry != map->root)
989                 vm_map_entry_splay(entry->start, map->root);
990         if (entry->left == NULL)
991                 root = entry->right;
992         else {
993                 root = vm_map_entry_splay(entry->start, entry->left);
994                 root->right = entry->right;
995                 root->adj_free = (entry->next == &map->header ? map->max_offset :
996                     entry->next->start) - root->end;
997                 vm_map_entry_set_max_free(root);
998         }
999         map->root = root;
1000
1001         prev = entry->prev;
1002         next = entry->next;
1003         next->prev = prev;
1004         prev->next = next;
1005         map->nentries--;
1006         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1007             map->nentries, entry);
1008 }
1009
1010 /*
1011  *      vm_map_entry_resize_free:
1012  *
1013  *      Recompute the amount of free space following a vm_map_entry
1014  *      and propagate that value up the tree.  Call this function after
1015  *      resizing a map entry in-place, that is, without a call to
1016  *      vm_map_entry_link() or _unlink().
1017  *
1018  *      The map must be locked, and leaves it so.
1019  */
1020 static void
1021 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1022 {
1023
1024         /*
1025          * Using splay trees without parent pointers, propagating
1026          * max_free up the tree is done by moving the entry to the
1027          * root and making the change there.
1028          */
1029         if (entry != map->root)
1030                 map->root = vm_map_entry_splay(entry->start, map->root);
1031
1032         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1033             entry->next->start) - entry->end;
1034         vm_map_entry_set_max_free(entry);
1035 }
1036
1037 /*
1038  *      vm_map_lookup_entry:    [ internal use only ]
1039  *
1040  *      Finds the map entry containing (or
1041  *      immediately preceding) the specified address
1042  *      in the given map; the entry is returned
1043  *      in the "entry" parameter.  The boolean
1044  *      result indicates whether the address is
1045  *      actually contained in the map.
1046  */
1047 boolean_t
1048 vm_map_lookup_entry(
1049         vm_map_t map,
1050         vm_offset_t address,
1051         vm_map_entry_t *entry)  /* OUT */
1052 {
1053         vm_map_entry_t cur;
1054         boolean_t locked;
1055
1056         /*
1057          * If the map is empty, then the map entry immediately preceding
1058          * "address" is the map's header.
1059          */
1060         cur = map->root;
1061         if (cur == NULL)
1062                 *entry = &map->header;
1063         else if (address >= cur->start && cur->end > address) {
1064                 *entry = cur;
1065                 return (TRUE);
1066         } else if ((locked = vm_map_locked(map)) ||
1067             sx_try_upgrade(&map->lock)) {
1068                 /*
1069                  * Splay requires a write lock on the map.  However, it only
1070                  * restructures the binary search tree; it does not otherwise
1071                  * change the map.  Thus, the map's timestamp need not change
1072                  * on a temporary upgrade.
1073                  */
1074                 map->root = cur = vm_map_entry_splay(address, cur);
1075                 if (!locked)
1076                         sx_downgrade(&map->lock);
1077
1078                 /*
1079                  * If "address" is contained within a map entry, the new root
1080                  * is that map entry.  Otherwise, the new root is a map entry
1081                  * immediately before or after "address".
1082                  */
1083                 if (address >= cur->start) {
1084                         *entry = cur;
1085                         if (cur->end > address)
1086                                 return (TRUE);
1087                 } else
1088                         *entry = cur->prev;
1089         } else
1090                 /*
1091                  * Since the map is only locked for read access, perform a
1092                  * standard binary search tree lookup for "address".
1093                  */
1094                 for (;;) {
1095                         if (address < cur->start) {
1096                                 if (cur->left == NULL) {
1097                                         *entry = cur->prev;
1098                                         break;
1099                                 }
1100                                 cur = cur->left;
1101                         } else if (cur->end > address) {
1102                                 *entry = cur;
1103                                 return (TRUE);
1104                         } else {
1105                                 if (cur->right == NULL) {
1106                                         *entry = cur;
1107                                         break;
1108                                 }
1109                                 cur = cur->right;
1110                         }
1111                 }
1112         return (FALSE);
1113 }
1114
1115 /*
1116  *      vm_map_insert:
1117  *
1118  *      Inserts the given whole VM object into the target
1119  *      map at the specified address range.  The object's
1120  *      size should match that of the address range.
1121  *
1122  *      Requires that the map be locked, and leaves it so.
1123  *
1124  *      If object is non-NULL, ref count must be bumped by caller
1125  *      prior to making call to account for the new entry.
1126  */
1127 int
1128 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1129               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1130               int cow)
1131 {
1132         vm_map_entry_t new_entry;
1133         vm_map_entry_t prev_entry;
1134         vm_map_entry_t temp_entry;
1135         vm_eflags_t protoeflags;
1136         struct uidinfo *uip;
1137         boolean_t charge_prev_obj;
1138
1139         VM_MAP_ASSERT_LOCKED(map);
1140
1141         /*
1142          * Check that the start and end points are not bogus.
1143          */
1144         if ((start < map->min_offset) || (end > map->max_offset) ||
1145             (start >= end))
1146                 return (KERN_INVALID_ADDRESS);
1147
1148         /*
1149          * Find the entry prior to the proposed starting address; if it's part
1150          * of an existing entry, this range is bogus.
1151          */
1152         if (vm_map_lookup_entry(map, start, &temp_entry))
1153                 return (KERN_NO_SPACE);
1154
1155         prev_entry = temp_entry;
1156
1157         /*
1158          * Assert that the next entry doesn't overlap the end point.
1159          */
1160         if ((prev_entry->next != &map->header) &&
1161             (prev_entry->next->start < end))
1162                 return (KERN_NO_SPACE);
1163
1164         protoeflags = 0;
1165         charge_prev_obj = FALSE;
1166
1167         if (cow & MAP_COPY_ON_WRITE)
1168                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1169
1170         if (cow & MAP_NOFAULT) {
1171                 protoeflags |= MAP_ENTRY_NOFAULT;
1172
1173                 KASSERT(object == NULL,
1174                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1175         }
1176         if (cow & MAP_DISABLE_SYNCER)
1177                 protoeflags |= MAP_ENTRY_NOSYNC;
1178         if (cow & MAP_DISABLE_COREDUMP)
1179                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1180
1181         uip = NULL;
1182         KASSERT((object != kmem_object && object != kernel_object) ||
1183             ((object == kmem_object || object == kernel_object) &&
1184                 !(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1185             ("kmem or kernel object and cow"));
1186         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1187                 goto charged;
1188         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1189             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1190                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1191                         return (KERN_RESOURCE_SHORTAGE);
1192                 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1193                     object->uip == NULL,
1194                     ("OVERCOMMIT: vm_map_insert o %p", object));
1195                 uip = curthread->td_ucred->cr_ruidinfo;
1196                 uihold(uip);
1197                 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1198                         charge_prev_obj = TRUE;
1199         }
1200
1201 charged:
1202         /* Expand the kernel pmap, if necessary. */
1203         if (map == kernel_map && end > kernel_vm_end)
1204                 pmap_growkernel(end);
1205         if (object != NULL) {
1206                 /*
1207                  * OBJ_ONEMAPPING must be cleared unless this mapping
1208                  * is trivially proven to be the only mapping for any
1209                  * of the object's pages.  (Object granularity
1210                  * reference counting is insufficient to recognize
1211                  * aliases with precision.)
1212                  */
1213                 VM_OBJECT_LOCK(object);
1214                 if (object->ref_count > 1 || object->shadow_count != 0)
1215                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1216                 VM_OBJECT_UNLOCK(object);
1217         }
1218         else if ((prev_entry != &map->header) &&
1219                  (prev_entry->eflags == protoeflags) &&
1220                  (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1221                  (prev_entry->end == start) &&
1222                  (prev_entry->wired_count == 0) &&
1223                  (prev_entry->uip == uip ||
1224                   (prev_entry->object.vm_object != NULL &&
1225                    (prev_entry->object.vm_object->uip == uip))) &&
1226                    vm_object_coalesce(prev_entry->object.vm_object,
1227                        prev_entry->offset,
1228                        (vm_size_t)(prev_entry->end - prev_entry->start),
1229                        (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1230                 /*
1231                  * We were able to extend the object.  Determine if we
1232                  * can extend the previous map entry to include the
1233                  * new range as well.
1234                  */
1235                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1236                     (prev_entry->protection == prot) &&
1237                     (prev_entry->max_protection == max)) {
1238                         map->size += (end - prev_entry->end);
1239                         prev_entry->end = end;
1240                         vm_map_entry_resize_free(map, prev_entry);
1241                         vm_map_simplify_entry(map, prev_entry);
1242                         if (uip != NULL)
1243                                 uifree(uip);
1244                         return (KERN_SUCCESS);
1245                 }
1246
1247                 /*
1248                  * If we can extend the object but cannot extend the
1249                  * map entry, we have to create a new map entry.  We
1250                  * must bump the ref count on the extended object to
1251                  * account for it.  object may be NULL.
1252                  */
1253                 object = prev_entry->object.vm_object;
1254                 offset = prev_entry->offset +
1255                         (prev_entry->end - prev_entry->start);
1256                 vm_object_reference(object);
1257                 if (uip != NULL && object != NULL && object->uip != NULL &&
1258                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1259                         /* Object already accounts for this uid. */
1260                         uifree(uip);
1261                         uip = NULL;
1262                 }
1263         }
1264
1265         /*
1266          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1267          * in things like the buffer map where we manage kva but do not manage
1268          * backing objects.
1269          */
1270
1271         /*
1272          * Create a new entry
1273          */
1274         new_entry = vm_map_entry_create(map);
1275         new_entry->start = start;
1276         new_entry->end = end;
1277         new_entry->uip = NULL;
1278
1279         new_entry->eflags = protoeflags;
1280         new_entry->object.vm_object = object;
1281         new_entry->offset = offset;
1282         new_entry->avail_ssize = 0;
1283
1284         new_entry->inheritance = VM_INHERIT_DEFAULT;
1285         new_entry->protection = prot;
1286         new_entry->max_protection = max;
1287         new_entry->wired_count = 0;
1288
1289         KASSERT(uip == NULL || !ENTRY_CHARGED(new_entry),
1290             ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1291         new_entry->uip = uip;
1292
1293         /*
1294          * Insert the new entry into the list
1295          */
1296         vm_map_entry_link(map, prev_entry, new_entry);
1297         map->size += new_entry->end - new_entry->start;
1298
1299 #if 0
1300         /*
1301          * Temporarily removed to avoid MAP_STACK panic, due to
1302          * MAP_STACK being a huge hack.  Will be added back in
1303          * when MAP_STACK (and the user stack mapping) is fixed.
1304          */
1305         /*
1306          * It may be possible to simplify the entry
1307          */
1308         vm_map_simplify_entry(map, new_entry);
1309 #endif
1310
1311         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1312                 vm_map_pmap_enter(map, start, prot,
1313                                     object, OFF_TO_IDX(offset), end - start,
1314                                     cow & MAP_PREFAULT_PARTIAL);
1315         }
1316
1317         return (KERN_SUCCESS);
1318 }
1319
1320 /*
1321  *      vm_map_findspace:
1322  *
1323  *      Find the first fit (lowest VM address) for "length" free bytes
1324  *      beginning at address >= start in the given map.
1325  *
1326  *      In a vm_map_entry, "adj_free" is the amount of free space
1327  *      adjacent (higher address) to this entry, and "max_free" is the
1328  *      maximum amount of contiguous free space in its subtree.  This
1329  *      allows finding a free region in one path down the tree, so
1330  *      O(log n) amortized with splay trees.
1331  *
1332  *      The map must be locked, and leaves it so.
1333  *
1334  *      Returns: 0 on success, and starting address in *addr,
1335  *               1 if insufficient space.
1336  */
1337 int
1338 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1339     vm_offset_t *addr)  /* OUT */
1340 {
1341         vm_map_entry_t entry;
1342         vm_offset_t st;
1343
1344         /*
1345          * Request must fit within min/max VM address and must avoid
1346          * address wrap.
1347          */
1348         if (start < map->min_offset)
1349                 start = map->min_offset;
1350         if (start + length > map->max_offset || start + length < start)
1351                 return (1);
1352
1353         /* Empty tree means wide open address space. */
1354         if (map->root == NULL) {
1355                 *addr = start;
1356                 return (0);
1357         }
1358
1359         /*
1360          * After splay, if start comes before root node, then there
1361          * must be a gap from start to the root.
1362          */
1363         map->root = vm_map_entry_splay(start, map->root);
1364         if (start + length <= map->root->start) {
1365                 *addr = start;
1366                 return (0);
1367         }
1368
1369         /*
1370          * Root is the last node that might begin its gap before
1371          * start, and this is the last comparison where address
1372          * wrap might be a problem.
1373          */
1374         st = (start > map->root->end) ? start : map->root->end;
1375         if (length <= map->root->end + map->root->adj_free - st) {
1376                 *addr = st;
1377                 return (0);
1378         }
1379
1380         /* With max_free, can immediately tell if no solution. */
1381         entry = map->root->right;
1382         if (entry == NULL || length > entry->max_free)
1383                 return (1);
1384
1385         /*
1386          * Search the right subtree in the order: left subtree, root,
1387          * right subtree (first fit).  The previous splay implies that
1388          * all regions in the right subtree have addresses > start.
1389          */
1390         while (entry != NULL) {
1391                 if (entry->left != NULL && entry->left->max_free >= length)
1392                         entry = entry->left;
1393                 else if (entry->adj_free >= length) {
1394                         *addr = entry->end;
1395                         return (0);
1396                 } else
1397                         entry = entry->right;
1398         }
1399
1400         /* Can't get here, so panic if we do. */
1401         panic("vm_map_findspace: max_free corrupt");
1402 }
1403
1404 int
1405 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1406     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1407     vm_prot_t max, int cow)
1408 {
1409         vm_offset_t end;
1410         int result;
1411
1412         end = start + length;
1413         vm_map_lock(map);
1414         VM_MAP_RANGE_CHECK(map, start, end);
1415         (void) vm_map_delete(map, start, end);
1416         result = vm_map_insert(map, object, offset, start, end, prot,
1417             max, cow);
1418         vm_map_unlock(map);
1419         return (result);
1420 }
1421
1422 /*
1423  *      vm_map_find finds an unallocated region in the target address
1424  *      map with the given length.  The search is defined to be
1425  *      first-fit from the specified address; the region found is
1426  *      returned in the same parameter.
1427  *
1428  *      If object is non-NULL, ref count must be bumped by caller
1429  *      prior to making call to account for the new entry.
1430  */
1431 int
1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433             vm_offset_t *addr,  /* IN/OUT */
1434             vm_size_t length, int find_space, vm_prot_t prot,
1435             vm_prot_t max, int cow)
1436 {
1437         vm_offset_t start;
1438         int result;
1439
1440         start = *addr;
1441         vm_map_lock(map);
1442         do {
1443                 if (find_space != VMFS_NO_SPACE) {
1444                         if (vm_map_findspace(map, start, length, addr)) {
1445                                 vm_map_unlock(map);
1446                                 return (KERN_NO_SPACE);
1447                         }
1448                         switch (find_space) {
1449                         case VMFS_ALIGNED_SPACE:
1450                                 pmap_align_superpage(object, offset, addr,
1451                                     length);
1452                                 break;
1453 #ifdef VMFS_TLB_ALIGNED_SPACE
1454                         case VMFS_TLB_ALIGNED_SPACE:
1455                                 pmap_align_tlb(addr);
1456                                 break;
1457 #endif
1458                         default:
1459                                 break;
1460                         }
1461
1462                         start = *addr;
1463                 }
1464                 result = vm_map_insert(map, object, offset, start, start +
1465                     length, prot, max, cow);
1466         } while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1467         vm_map_unlock(map);
1468         return (result);
1469 }
1470
1471 /*
1472  *      vm_map_simplify_entry:
1473  *
1474  *      Simplify the given map entry by merging with either neighbor.  This
1475  *      routine also has the ability to merge with both neighbors.
1476  *
1477  *      The map must be locked.
1478  *
1479  *      This routine guarentees that the passed entry remains valid (though
1480  *      possibly extended).  When merging, this routine may delete one or
1481  *      both neighbors.
1482  */
1483 void
1484 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1485 {
1486         vm_map_entry_t next, prev;
1487         vm_size_t prevsize, esize;
1488
1489         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1490                 return;
1491
1492         prev = entry->prev;
1493         if (prev != &map->header) {
1494                 prevsize = prev->end - prev->start;
1495                 if ( (prev->end == entry->start) &&
1496                      (prev->object.vm_object == entry->object.vm_object) &&
1497                      (!prev->object.vm_object ||
1498                         (prev->offset + prevsize == entry->offset)) &&
1499                      (prev->eflags == entry->eflags) &&
1500                      (prev->protection == entry->protection) &&
1501                      (prev->max_protection == entry->max_protection) &&
1502                      (prev->inheritance == entry->inheritance) &&
1503                      (prev->wired_count == entry->wired_count) &&
1504                      (prev->uip == entry->uip)) {
1505                         vm_map_entry_unlink(map, prev);
1506                         entry->start = prev->start;
1507                         entry->offset = prev->offset;
1508                         if (entry->prev != &map->header)
1509                                 vm_map_entry_resize_free(map, entry->prev);
1510
1511                         /*
1512                          * If the backing object is a vnode object,
1513                          * vm_object_deallocate() calls vrele().
1514                          * However, vrele() does not lock the vnode
1515                          * because the vnode has additional
1516                          * references.  Thus, the map lock can be kept
1517                          * without causing a lock-order reversal with
1518                          * the vnode lock.
1519                          */
1520                         if (prev->object.vm_object)
1521                                 vm_object_deallocate(prev->object.vm_object);
1522                         if (prev->uip != NULL)
1523                                 uifree(prev->uip);
1524                         vm_map_entry_dispose(map, prev);
1525                 }
1526         }
1527
1528         next = entry->next;
1529         if (next != &map->header) {
1530                 esize = entry->end - entry->start;
1531                 if ((entry->end == next->start) &&
1532                     (next->object.vm_object == entry->object.vm_object) &&
1533                      (!entry->object.vm_object ||
1534                         (entry->offset + esize == next->offset)) &&
1535                     (next->eflags == entry->eflags) &&
1536                     (next->protection == entry->protection) &&
1537                     (next->max_protection == entry->max_protection) &&
1538                     (next->inheritance == entry->inheritance) &&
1539                     (next->wired_count == entry->wired_count) &&
1540                     (next->uip == entry->uip)) {
1541                         vm_map_entry_unlink(map, next);
1542                         entry->end = next->end;
1543                         vm_map_entry_resize_free(map, entry);
1544
1545                         /*
1546                          * See comment above.
1547                          */
1548                         if (next->object.vm_object)
1549                                 vm_object_deallocate(next->object.vm_object);
1550                         if (next->uip != NULL)
1551                                 uifree(next->uip);
1552                         vm_map_entry_dispose(map, next);
1553                 }
1554         }
1555 }
1556 /*
1557  *      vm_map_clip_start:      [ internal use only ]
1558  *
1559  *      Asserts that the given entry begins at or after
1560  *      the specified address; if necessary,
1561  *      it splits the entry into two.
1562  */
1563 #define vm_map_clip_start(map, entry, startaddr) \
1564 { \
1565         if (startaddr > entry->start) \
1566                 _vm_map_clip_start(map, entry, startaddr); \
1567 }
1568
1569 /*
1570  *      This routine is called only when it is known that
1571  *      the entry must be split.
1572  */
1573 static void
1574 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1575 {
1576         vm_map_entry_t new_entry;
1577
1578         VM_MAP_ASSERT_LOCKED(map);
1579
1580         /*
1581          * Split off the front portion -- note that we must insert the new
1582          * entry BEFORE this one, so that this entry has the specified
1583          * starting address.
1584          */
1585         vm_map_simplify_entry(map, entry);
1586
1587         /*
1588          * If there is no object backing this entry, we might as well create
1589          * one now.  If we defer it, an object can get created after the map
1590          * is clipped, and individual objects will be created for the split-up
1591          * map.  This is a bit of a hack, but is also about the best place to
1592          * put this improvement.
1593          */
1594         if (entry->object.vm_object == NULL && !map->system_map) {
1595                 vm_object_t object;
1596                 object = vm_object_allocate(OBJT_DEFAULT,
1597                                 atop(entry->end - entry->start));
1598                 entry->object.vm_object = object;
1599                 entry->offset = 0;
1600                 if (entry->uip != NULL) {
1601                         object->uip = entry->uip;
1602                         object->charge = entry->end - entry->start;
1603                         entry->uip = NULL;
1604                 }
1605         } else if (entry->object.vm_object != NULL &&
1606                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1607                    entry->uip != NULL) {
1608                 VM_OBJECT_LOCK(entry->object.vm_object);
1609                 KASSERT(entry->object.vm_object->uip == NULL,
1610                     ("OVERCOMMIT: vm_entry_clip_start: both uip e %p", entry));
1611                 entry->object.vm_object->uip = entry->uip;
1612                 entry->object.vm_object->charge = entry->end - entry->start;
1613                 VM_OBJECT_UNLOCK(entry->object.vm_object);
1614                 entry->uip = NULL;
1615         }
1616
1617         new_entry = vm_map_entry_create(map);
1618         *new_entry = *entry;
1619
1620         new_entry->end = start;
1621         entry->offset += (start - entry->start);
1622         entry->start = start;
1623         if (new_entry->uip != NULL)
1624                 uihold(entry->uip);
1625
1626         vm_map_entry_link(map, entry->prev, new_entry);
1627
1628         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1629                 vm_object_reference(new_entry->object.vm_object);
1630         }
1631 }
1632
1633 /*
1634  *      vm_map_clip_end:        [ internal use only ]
1635  *
1636  *      Asserts that the given entry ends at or before
1637  *      the specified address; if necessary,
1638  *      it splits the entry into two.
1639  */
1640 #define vm_map_clip_end(map, entry, endaddr) \
1641 { \
1642         if ((endaddr) < (entry->end)) \
1643                 _vm_map_clip_end((map), (entry), (endaddr)); \
1644 }
1645
1646 /*
1647  *      This routine is called only when it is known that
1648  *      the entry must be split.
1649  */
1650 static void
1651 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1652 {
1653         vm_map_entry_t new_entry;
1654
1655         VM_MAP_ASSERT_LOCKED(map);
1656
1657         /*
1658          * If there is no object backing this entry, we might as well create
1659          * one now.  If we defer it, an object can get created after the map
1660          * is clipped, and individual objects will be created for the split-up
1661          * map.  This is a bit of a hack, but is also about the best place to
1662          * put this improvement.
1663          */
1664         if (entry->object.vm_object == NULL && !map->system_map) {
1665                 vm_object_t object;
1666                 object = vm_object_allocate(OBJT_DEFAULT,
1667                                 atop(entry->end - entry->start));
1668                 entry->object.vm_object = object;
1669                 entry->offset = 0;
1670                 if (entry->uip != NULL) {
1671                         object->uip = entry->uip;
1672                         object->charge = entry->end - entry->start;
1673                         entry->uip = NULL;
1674                 }
1675         } else if (entry->object.vm_object != NULL &&
1676                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1677                    entry->uip != NULL) {
1678                 VM_OBJECT_LOCK(entry->object.vm_object);
1679                 KASSERT(entry->object.vm_object->uip == NULL,
1680                     ("OVERCOMMIT: vm_entry_clip_end: both uip e %p", entry));
1681                 entry->object.vm_object->uip = entry->uip;
1682                 entry->object.vm_object->charge = entry->end - entry->start;
1683                 VM_OBJECT_UNLOCK(entry->object.vm_object);
1684                 entry->uip = NULL;
1685         }
1686
1687         /*
1688          * Create a new entry and insert it AFTER the specified entry
1689          */
1690         new_entry = vm_map_entry_create(map);
1691         *new_entry = *entry;
1692
1693         new_entry->start = entry->end = end;
1694         new_entry->offset += (end - entry->start);
1695         if (new_entry->uip != NULL)
1696                 uihold(entry->uip);
1697
1698         vm_map_entry_link(map, entry, new_entry);
1699
1700         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1701                 vm_object_reference(new_entry->object.vm_object);
1702         }
1703 }
1704
1705 /*
1706  *      vm_map_submap:          [ kernel use only ]
1707  *
1708  *      Mark the given range as handled by a subordinate map.
1709  *
1710  *      This range must have been created with vm_map_find,
1711  *      and no other operations may have been performed on this
1712  *      range prior to calling vm_map_submap.
1713  *
1714  *      Only a limited number of operations can be performed
1715  *      within this rage after calling vm_map_submap:
1716  *              vm_fault
1717  *      [Don't try vm_map_copy!]
1718  *
1719  *      To remove a submapping, one must first remove the
1720  *      range from the superior map, and then destroy the
1721  *      submap (if desired).  [Better yet, don't try it.]
1722  */
1723 int
1724 vm_map_submap(
1725         vm_map_t map,
1726         vm_offset_t start,
1727         vm_offset_t end,
1728         vm_map_t submap)
1729 {
1730         vm_map_entry_t entry;
1731         int result = KERN_INVALID_ARGUMENT;
1732
1733         vm_map_lock(map);
1734
1735         VM_MAP_RANGE_CHECK(map, start, end);
1736
1737         if (vm_map_lookup_entry(map, start, &entry)) {
1738                 vm_map_clip_start(map, entry, start);
1739         } else
1740                 entry = entry->next;
1741
1742         vm_map_clip_end(map, entry, end);
1743
1744         if ((entry->start == start) && (entry->end == end) &&
1745             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1746             (entry->object.vm_object == NULL)) {
1747                 entry->object.sub_map = submap;
1748                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1749                 result = KERN_SUCCESS;
1750         }
1751         vm_map_unlock(map);
1752
1753         return (result);
1754 }
1755
1756 /*
1757  * The maximum number of pages to map
1758  */
1759 #define MAX_INIT_PT     96
1760
1761 /*
1762  *      vm_map_pmap_enter:
1763  *
1764  *      Preload read-only mappings for the given object's resident pages into
1765  *      the given map.  This eliminates the soft faults on process startup and
1766  *      immediately after an mmap(2).  Because these are speculative mappings,
1767  *      cached pages are not reactivated and mapped.
1768  */
1769 void
1770 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1771     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1772 {
1773         vm_offset_t start;
1774         vm_page_t p, p_start;
1775         vm_pindex_t psize, tmpidx;
1776         boolean_t are_queues_locked;
1777
1778         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1779                 return;
1780         VM_OBJECT_LOCK(object);
1781         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1782                 pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1783                 goto unlock_return;
1784         }
1785
1786         psize = atop(size);
1787
1788         if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1789             object->resident_page_count > MAX_INIT_PT)
1790                 goto unlock_return;
1791
1792         if (psize + pindex > object->size) {
1793                 if (object->size < pindex)
1794                         goto unlock_return;
1795                 psize = object->size - pindex;
1796         }
1797
1798         are_queues_locked = FALSE;
1799         start = 0;
1800         p_start = NULL;
1801
1802         p = vm_page_find_least(object, pindex);
1803         /*
1804          * Assert: the variable p is either (1) the page with the
1805          * least pindex greater than or equal to the parameter pindex
1806          * or (2) NULL.
1807          */
1808         for (;
1809              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1810              p = TAILQ_NEXT(p, listq)) {
1811                 /*
1812                  * don't allow an madvise to blow away our really
1813                  * free pages allocating pv entries.
1814                  */
1815                 if ((flags & MAP_PREFAULT_MADVISE) &&
1816                     cnt.v_free_count < cnt.v_free_reserved) {
1817                         psize = tmpidx;
1818                         break;
1819                 }
1820                 if (p->valid == VM_PAGE_BITS_ALL) {
1821                         if (p_start == NULL) {
1822                                 start = addr + ptoa(tmpidx);
1823                                 p_start = p;
1824                         }
1825                 } else if (p_start != NULL) {
1826                         if (!are_queues_locked) {
1827                                 are_queues_locked = TRUE;
1828                                 vm_page_lock_queues();
1829                         }
1830                         pmap_enter_object(map->pmap, start, addr +
1831                             ptoa(tmpidx), p_start, prot);
1832                         p_start = NULL;
1833                 }
1834         }
1835         if (p_start != NULL) {
1836                 if (!are_queues_locked) {
1837                         are_queues_locked = TRUE;
1838                         vm_page_lock_queues();
1839                 }
1840                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1841                     p_start, prot);
1842         }
1843         if (are_queues_locked)
1844                 vm_page_unlock_queues();
1845 unlock_return:
1846         VM_OBJECT_UNLOCK(object);
1847 }
1848
1849 /*
1850  *      vm_map_protect:
1851  *
1852  *      Sets the protection of the specified address
1853  *      region in the target map.  If "set_max" is
1854  *      specified, the maximum protection is to be set;
1855  *      otherwise, only the current protection is affected.
1856  */
1857 int
1858 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1859                vm_prot_t new_prot, boolean_t set_max)
1860 {
1861         vm_map_entry_t current, entry;
1862         vm_object_t obj;
1863         struct uidinfo *uip;
1864         vm_prot_t old_prot;
1865
1866         vm_map_lock(map);
1867
1868         VM_MAP_RANGE_CHECK(map, start, end);
1869
1870         if (vm_map_lookup_entry(map, start, &entry)) {
1871                 vm_map_clip_start(map, entry, start);
1872         } else {
1873                 entry = entry->next;
1874         }
1875
1876         /*
1877          * Make a first pass to check for protection violations.
1878          */
1879         current = entry;
1880         while ((current != &map->header) && (current->start < end)) {
1881                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1882                         vm_map_unlock(map);
1883                         return (KERN_INVALID_ARGUMENT);
1884                 }
1885                 if ((new_prot & current->max_protection) != new_prot) {
1886                         vm_map_unlock(map);
1887                         return (KERN_PROTECTION_FAILURE);
1888                 }
1889                 current = current->next;
1890         }
1891
1892
1893         /*
1894          * Do an accounting pass for private read-only mappings that
1895          * now will do cow due to allowed write (e.g. debugger sets
1896          * breakpoint on text segment)
1897          */
1898         for (current = entry; (current != &map->header) &&
1899              (current->start < end); current = current->next) {
1900
1901                 vm_map_clip_end(map, current, end);
1902
1903                 if (set_max ||
1904                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1905                     ENTRY_CHARGED(current)) {
1906                         continue;
1907                 }
1908
1909                 uip = curthread->td_ucred->cr_ruidinfo;
1910                 obj = current->object.vm_object;
1911
1912                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1913                         if (!swap_reserve(current->end - current->start)) {
1914                                 vm_map_unlock(map);
1915                                 return (KERN_RESOURCE_SHORTAGE);
1916                         }
1917                         uihold(uip);
1918                         current->uip = uip;
1919                         continue;
1920                 }
1921
1922                 VM_OBJECT_LOCK(obj);
1923                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1924                         VM_OBJECT_UNLOCK(obj);
1925                         continue;
1926                 }
1927
1928                 /*
1929                  * Charge for the whole object allocation now, since
1930                  * we cannot distinguish between non-charged and
1931                  * charged clipped mapping of the same object later.
1932                  */
1933                 KASSERT(obj->charge == 0,
1934                     ("vm_map_protect: object %p overcharged\n", obj));
1935                 if (!swap_reserve(ptoa(obj->size))) {
1936                         VM_OBJECT_UNLOCK(obj);
1937                         vm_map_unlock(map);
1938                         return (KERN_RESOURCE_SHORTAGE);
1939                 }
1940
1941                 uihold(uip);
1942                 obj->uip = uip;
1943                 obj->charge = ptoa(obj->size);
1944                 VM_OBJECT_UNLOCK(obj);
1945         }
1946
1947         /*
1948          * Go back and fix up protections. [Note that clipping is not
1949          * necessary the second time.]
1950          */
1951         current = entry;
1952         while ((current != &map->header) && (current->start < end)) {
1953                 old_prot = current->protection;
1954
1955                 if (set_max)
1956                         current->protection =
1957                             (current->max_protection = new_prot) &
1958                             old_prot;
1959                 else
1960                         current->protection = new_prot;
1961
1962                 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1963                      == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1964                     (current->protection & VM_PROT_WRITE) != 0 &&
1965                     (old_prot & VM_PROT_WRITE) == 0) {
1966                         vm_fault_copy_entry(map, map, current, current, NULL);
1967                 }
1968
1969                 /*
1970                  * Update physical map if necessary. Worry about copy-on-write
1971                  * here.
1972                  */
1973                 if (current->protection != old_prot) {
1974 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1975                                                         VM_PROT_ALL)
1976                         pmap_protect(map->pmap, current->start,
1977                             current->end,
1978                             current->protection & MASK(current));
1979 #undef  MASK
1980                 }
1981                 vm_map_simplify_entry(map, current);
1982                 current = current->next;
1983         }
1984         vm_map_unlock(map);
1985         return (KERN_SUCCESS);
1986 }
1987
1988 /*
1989  *      vm_map_madvise:
1990  *
1991  *      This routine traverses a processes map handling the madvise
1992  *      system call.  Advisories are classified as either those effecting
1993  *      the vm_map_entry structure, or those effecting the underlying
1994  *      objects.
1995  */
1996 int
1997 vm_map_madvise(
1998         vm_map_t map,
1999         vm_offset_t start,
2000         vm_offset_t end,
2001         int behav)
2002 {
2003         vm_map_entry_t current, entry;
2004         int modify_map = 0;
2005
2006         /*
2007          * Some madvise calls directly modify the vm_map_entry, in which case
2008          * we need to use an exclusive lock on the map and we need to perform
2009          * various clipping operations.  Otherwise we only need a read-lock
2010          * on the map.
2011          */
2012         switch(behav) {
2013         case MADV_NORMAL:
2014         case MADV_SEQUENTIAL:
2015         case MADV_RANDOM:
2016         case MADV_NOSYNC:
2017         case MADV_AUTOSYNC:
2018         case MADV_NOCORE:
2019         case MADV_CORE:
2020                 modify_map = 1;
2021                 vm_map_lock(map);
2022                 break;
2023         case MADV_WILLNEED:
2024         case MADV_DONTNEED:
2025         case MADV_FREE:
2026                 vm_map_lock_read(map);
2027                 break;
2028         default:
2029                 return (KERN_INVALID_ARGUMENT);
2030         }
2031
2032         /*
2033          * Locate starting entry and clip if necessary.
2034          */
2035         VM_MAP_RANGE_CHECK(map, start, end);
2036
2037         if (vm_map_lookup_entry(map, start, &entry)) {
2038                 if (modify_map)
2039                         vm_map_clip_start(map, entry, start);
2040         } else {
2041                 entry = entry->next;
2042         }
2043
2044         if (modify_map) {
2045                 /*
2046                  * madvise behaviors that are implemented in the vm_map_entry.
2047                  *
2048                  * We clip the vm_map_entry so that behavioral changes are
2049                  * limited to the specified address range.
2050                  */
2051                 for (current = entry;
2052                      (current != &map->header) && (current->start < end);
2053                      current = current->next
2054                 ) {
2055                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2056                                 continue;
2057
2058                         vm_map_clip_end(map, current, end);
2059
2060                         switch (behav) {
2061                         case MADV_NORMAL:
2062                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2063                                 break;
2064                         case MADV_SEQUENTIAL:
2065                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2066                                 break;
2067                         case MADV_RANDOM:
2068                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2069                                 break;
2070                         case MADV_NOSYNC:
2071                                 current->eflags |= MAP_ENTRY_NOSYNC;
2072                                 break;
2073                         case MADV_AUTOSYNC:
2074                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2075                                 break;
2076                         case MADV_NOCORE:
2077                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2078                                 break;
2079                         case MADV_CORE:
2080                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2081                                 break;
2082                         default:
2083                                 break;
2084                         }
2085                         vm_map_simplify_entry(map, current);
2086                 }
2087                 vm_map_unlock(map);
2088         } else {
2089                 vm_pindex_t pstart, pend;
2090
2091                 /*
2092                  * madvise behaviors that are implemented in the underlying
2093                  * vm_object.
2094                  *
2095                  * Since we don't clip the vm_map_entry, we have to clip
2096                  * the vm_object pindex and count.
2097                  */
2098                 for (current = entry;
2099                      (current != &map->header) && (current->start < end);
2100                      current = current->next
2101                 ) {
2102                         vm_offset_t useStart;
2103
2104                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2105                                 continue;
2106
2107                         pstart = OFF_TO_IDX(current->offset);
2108                         pend = pstart + atop(current->end - current->start);
2109                         useStart = current->start;
2110
2111                         if (current->start < start) {
2112                                 pstart += atop(start - current->start);
2113                                 useStart = start;
2114                         }
2115                         if (current->end > end)
2116                                 pend -= atop(current->end - end);
2117
2118                         if (pstart >= pend)
2119                                 continue;
2120
2121                         vm_object_madvise(current->object.vm_object, pstart,
2122                             pend, behav);
2123                         if (behav == MADV_WILLNEED) {
2124                                 vm_map_pmap_enter(map,
2125                                     useStart,
2126                                     current->protection,
2127                                     current->object.vm_object,
2128                                     pstart,
2129                                     ptoa(pend - pstart),
2130                                     MAP_PREFAULT_MADVISE
2131                                 );
2132                         }
2133                 }
2134                 vm_map_unlock_read(map);
2135         }
2136         return (0);
2137 }
2138
2139
2140 /*
2141  *      vm_map_inherit:
2142  *
2143  *      Sets the inheritance of the specified address
2144  *      range in the target map.  Inheritance
2145  *      affects how the map will be shared with
2146  *      child maps at the time of vmspace_fork.
2147  */
2148 int
2149 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2150                vm_inherit_t new_inheritance)
2151 {
2152         vm_map_entry_t entry;
2153         vm_map_entry_t temp_entry;
2154
2155         switch (new_inheritance) {
2156         case VM_INHERIT_NONE:
2157         case VM_INHERIT_COPY:
2158         case VM_INHERIT_SHARE:
2159                 break;
2160         default:
2161                 return (KERN_INVALID_ARGUMENT);
2162         }
2163         vm_map_lock(map);
2164         VM_MAP_RANGE_CHECK(map, start, end);
2165         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2166                 entry = temp_entry;
2167                 vm_map_clip_start(map, entry, start);
2168         } else
2169                 entry = temp_entry->next;
2170         while ((entry != &map->header) && (entry->start < end)) {
2171                 vm_map_clip_end(map, entry, end);
2172                 entry->inheritance = new_inheritance;
2173                 vm_map_simplify_entry(map, entry);
2174                 entry = entry->next;
2175         }
2176         vm_map_unlock(map);
2177         return (KERN_SUCCESS);
2178 }
2179
2180 /*
2181  *      vm_map_unwire:
2182  *
2183  *      Implements both kernel and user unwiring.
2184  */
2185 int
2186 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2187     int flags)
2188 {
2189         vm_map_entry_t entry, first_entry, tmp_entry;
2190         vm_offset_t saved_start;
2191         unsigned int last_timestamp;
2192         int rv;
2193         boolean_t need_wakeup, result, user_unwire;
2194
2195         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2196         vm_map_lock(map);
2197         VM_MAP_RANGE_CHECK(map, start, end);
2198         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2199                 if (flags & VM_MAP_WIRE_HOLESOK)
2200                         first_entry = first_entry->next;
2201                 else {
2202                         vm_map_unlock(map);
2203                         return (KERN_INVALID_ADDRESS);
2204                 }
2205         }
2206         last_timestamp = map->timestamp;
2207         entry = first_entry;
2208         while (entry != &map->header && entry->start < end) {
2209                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2210                         /*
2211                          * We have not yet clipped the entry.
2212                          */
2213                         saved_start = (start >= entry->start) ? start :
2214                             entry->start;
2215                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2216                         if (vm_map_unlock_and_wait(map, 0)) {
2217                                 /*
2218                                  * Allow interruption of user unwiring?
2219                                  */
2220                         }
2221                         vm_map_lock(map);
2222                         if (last_timestamp+1 != map->timestamp) {
2223                                 /*
2224                                  * Look again for the entry because the map was
2225                                  * modified while it was unlocked.
2226                                  * Specifically, the entry may have been
2227                                  * clipped, merged, or deleted.
2228                                  */
2229                                 if (!vm_map_lookup_entry(map, saved_start,
2230                                     &tmp_entry)) {
2231                                         if (flags & VM_MAP_WIRE_HOLESOK)
2232                                                 tmp_entry = tmp_entry->next;
2233                                         else {
2234                                                 if (saved_start == start) {
2235                                                         /*
2236                                                          * First_entry has been deleted.
2237                                                          */
2238                                                         vm_map_unlock(map);
2239                                                         return (KERN_INVALID_ADDRESS);
2240                                                 }
2241                                                 end = saved_start;
2242                                                 rv = KERN_INVALID_ADDRESS;
2243                                                 goto done;
2244                                         }
2245                                 }
2246                                 if (entry == first_entry)
2247                                         first_entry = tmp_entry;
2248                                 else
2249                                         first_entry = NULL;
2250                                 entry = tmp_entry;
2251                         }
2252                         last_timestamp = map->timestamp;
2253                         continue;
2254                 }
2255                 vm_map_clip_start(map, entry, start);
2256                 vm_map_clip_end(map, entry, end);
2257                 /*
2258                  * Mark the entry in case the map lock is released.  (See
2259                  * above.)
2260                  */
2261                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2262                 /*
2263                  * Check the map for holes in the specified region.
2264                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2265                  */
2266                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2267                     (entry->end < end && (entry->next == &map->header ||
2268                     entry->next->start > entry->end))) {
2269                         end = entry->end;
2270                         rv = KERN_INVALID_ADDRESS;
2271                         goto done;
2272                 }
2273                 /*
2274                  * If system unwiring, require that the entry is system wired.
2275                  */
2276                 if (!user_unwire &&
2277                     vm_map_entry_system_wired_count(entry) == 0) {
2278                         end = entry->end;
2279                         rv = KERN_INVALID_ARGUMENT;
2280                         goto done;
2281                 }
2282                 entry = entry->next;
2283         }
2284         rv = KERN_SUCCESS;
2285 done:
2286         need_wakeup = FALSE;
2287         if (first_entry == NULL) {
2288                 result = vm_map_lookup_entry(map, start, &first_entry);
2289                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2290                         first_entry = first_entry->next;
2291                 else
2292                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2293         }
2294         entry = first_entry;
2295         while (entry != &map->header && entry->start < end) {
2296                 if (rv == KERN_SUCCESS && (!user_unwire ||
2297                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2298                         if (user_unwire)
2299                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2300                         entry->wired_count--;
2301                         if (entry->wired_count == 0) {
2302                                 /*
2303                                  * Retain the map lock.
2304                                  */
2305                                 vm_fault_unwire(map, entry->start, entry->end,
2306                                     entry->object.vm_object != NULL &&
2307                                     (entry->object.vm_object->type == OBJT_DEVICE ||
2308                                     entry->object.vm_object->type == OBJT_SG));
2309                         }
2310                 }
2311                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2312                         ("vm_map_unwire: in-transition flag missing"));
2313                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2314                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2315                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2316                         need_wakeup = TRUE;
2317                 }
2318                 vm_map_simplify_entry(map, entry);
2319                 entry = entry->next;
2320         }
2321         vm_map_unlock(map);
2322         if (need_wakeup)
2323                 vm_map_wakeup(map);
2324         return (rv);
2325 }
2326
2327 /*
2328  *      vm_map_wire:
2329  *
2330  *      Implements both kernel and user wiring.
2331  */
2332 int
2333 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2334     int flags)
2335 {
2336         vm_map_entry_t entry, first_entry, tmp_entry;
2337         vm_offset_t saved_end, saved_start;
2338         unsigned int last_timestamp;
2339         int rv;
2340         boolean_t fictitious, need_wakeup, result, user_wire;
2341
2342         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2343         vm_map_lock(map);
2344         VM_MAP_RANGE_CHECK(map, start, end);
2345         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2346                 if (flags & VM_MAP_WIRE_HOLESOK)
2347                         first_entry = first_entry->next;
2348                 else {
2349                         vm_map_unlock(map);
2350                         return (KERN_INVALID_ADDRESS);
2351                 }
2352         }
2353         last_timestamp = map->timestamp;
2354         entry = first_entry;
2355         while (entry != &map->header && entry->start < end) {
2356                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2357                         /*
2358                          * We have not yet clipped the entry.
2359                          */
2360                         saved_start = (start >= entry->start) ? start :
2361                             entry->start;
2362                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2363                         if (vm_map_unlock_and_wait(map, 0)) {
2364                                 /*
2365                                  * Allow interruption of user wiring?
2366                                  */
2367                         }
2368                         vm_map_lock(map);
2369                         if (last_timestamp + 1 != map->timestamp) {
2370                                 /*
2371                                  * Look again for the entry because the map was
2372                                  * modified while it was unlocked.
2373                                  * Specifically, the entry may have been
2374                                  * clipped, merged, or deleted.
2375                                  */
2376                                 if (!vm_map_lookup_entry(map, saved_start,
2377                                     &tmp_entry)) {
2378                                         if (flags & VM_MAP_WIRE_HOLESOK)
2379                                                 tmp_entry = tmp_entry->next;
2380                                         else {
2381                                                 if (saved_start == start) {
2382                                                         /*
2383                                                          * first_entry has been deleted.
2384                                                          */
2385                                                         vm_map_unlock(map);
2386                                                         return (KERN_INVALID_ADDRESS);
2387                                                 }
2388                                                 end = saved_start;
2389                                                 rv = KERN_INVALID_ADDRESS;
2390                                                 goto done;
2391                                         }
2392                                 }
2393                                 if (entry == first_entry)
2394                                         first_entry = tmp_entry;
2395                                 else
2396                                         first_entry = NULL;
2397                                 entry = tmp_entry;
2398                         }
2399                         last_timestamp = map->timestamp;
2400                         continue;
2401                 }
2402                 vm_map_clip_start(map, entry, start);
2403                 vm_map_clip_end(map, entry, end);
2404                 /*
2405                  * Mark the entry in case the map lock is released.  (See
2406                  * above.)
2407                  */
2408                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2409                 /*
2410                  *
2411                  */
2412                 if (entry->wired_count == 0) {
2413                         if ((entry->protection & (VM_PROT_READ|VM_PROT_EXECUTE))
2414                             == 0) {
2415                                 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2416                                 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2417                                         end = entry->end;
2418                                         rv = KERN_INVALID_ADDRESS;
2419                                         goto done;
2420                                 }
2421                                 goto next_entry;
2422                         }
2423                         entry->wired_count++;
2424                         saved_start = entry->start;
2425                         saved_end = entry->end;
2426                         fictitious = entry->object.vm_object != NULL &&
2427                             (entry->object.vm_object->type == OBJT_DEVICE ||
2428                             entry->object.vm_object->type == OBJT_SG);
2429                         /*
2430                          * Release the map lock, relying on the in-transition
2431                          * mark.  Mark the map busy for fork.
2432                          */
2433                         vm_map_busy(map);
2434                         vm_map_unlock(map);
2435                         rv = vm_fault_wire(map, saved_start, saved_end,
2436                             user_wire, fictitious);
2437                         vm_map_lock(map);
2438                         vm_map_unbusy(map);
2439                         if (last_timestamp + 1 != map->timestamp) {
2440                                 /*
2441                                  * Look again for the entry because the map was
2442                                  * modified while it was unlocked.  The entry
2443                                  * may have been clipped, but NOT merged or
2444                                  * deleted.
2445                                  */
2446                                 result = vm_map_lookup_entry(map, saved_start,
2447                                     &tmp_entry);
2448                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2449                                 if (entry == first_entry)
2450                                         first_entry = tmp_entry;
2451                                 else
2452                                         first_entry = NULL;
2453                                 entry = tmp_entry;
2454                                 while (entry->end < saved_end) {
2455                                         if (rv != KERN_SUCCESS) {
2456                                                 KASSERT(entry->wired_count == 1,
2457                                                     ("vm_map_wire: bad count"));
2458                                                 entry->wired_count = -1;
2459                                         }
2460                                         entry = entry->next;
2461                                 }
2462                         }
2463                         last_timestamp = map->timestamp;
2464                         if (rv != KERN_SUCCESS) {
2465                                 KASSERT(entry->wired_count == 1,
2466                                     ("vm_map_wire: bad count"));
2467                                 /*
2468                                  * Assign an out-of-range value to represent
2469                                  * the failure to wire this entry.
2470                                  */
2471                                 entry->wired_count = -1;
2472                                 end = entry->end;
2473                                 goto done;
2474                         }
2475                 } else if (!user_wire ||
2476                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2477                         entry->wired_count++;
2478                 }
2479                 /*
2480                  * Check the map for holes in the specified region.
2481                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2482                  */
2483         next_entry:
2484                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2485                     (entry->end < end && (entry->next == &map->header ||
2486                     entry->next->start > entry->end))) {
2487                         end = entry->end;
2488                         rv = KERN_INVALID_ADDRESS;
2489                         goto done;
2490                 }
2491                 entry = entry->next;
2492         }
2493         rv = KERN_SUCCESS;
2494 done:
2495         need_wakeup = FALSE;
2496         if (first_entry == NULL) {
2497                 result = vm_map_lookup_entry(map, start, &first_entry);
2498                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2499                         first_entry = first_entry->next;
2500                 else
2501                         KASSERT(result, ("vm_map_wire: lookup failed"));
2502         }
2503         entry = first_entry;
2504         while (entry != &map->header && entry->start < end) {
2505                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2506                         goto next_entry_done;
2507                 if (rv == KERN_SUCCESS) {
2508                         if (user_wire)
2509                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2510                 } else if (entry->wired_count == -1) {
2511                         /*
2512                          * Wiring failed on this entry.  Thus, unwiring is
2513                          * unnecessary.
2514                          */
2515                         entry->wired_count = 0;
2516                 } else {
2517                         if (!user_wire ||
2518                             (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2519                                 entry->wired_count--;
2520                         if (entry->wired_count == 0) {
2521                                 /*
2522                                  * Retain the map lock.
2523                                  */
2524                                 vm_fault_unwire(map, entry->start, entry->end,
2525                                     entry->object.vm_object != NULL &&
2526                                     (entry->object.vm_object->type == OBJT_DEVICE ||
2527                                     entry->object.vm_object->type == OBJT_SG));
2528                         }
2529                 }
2530         next_entry_done:
2531                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2532                         ("vm_map_wire: in-transition flag missing"));
2533                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2534                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2535                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2536                         need_wakeup = TRUE;
2537                 }
2538                 vm_map_simplify_entry(map, entry);
2539                 entry = entry->next;
2540         }
2541         vm_map_unlock(map);
2542         if (need_wakeup)
2543                 vm_map_wakeup(map);
2544         return (rv);
2545 }
2546
2547 /*
2548  * vm_map_sync
2549  *
2550  * Push any dirty cached pages in the address range to their pager.
2551  * If syncio is TRUE, dirty pages are written synchronously.
2552  * If invalidate is TRUE, any cached pages are freed as well.
2553  *
2554  * If the size of the region from start to end is zero, we are
2555  * supposed to flush all modified pages within the region containing
2556  * start.  Unfortunately, a region can be split or coalesced with
2557  * neighboring regions, making it difficult to determine what the
2558  * original region was.  Therefore, we approximate this requirement by
2559  * flushing the current region containing start.
2560  *
2561  * Returns an error if any part of the specified range is not mapped.
2562  */
2563 int
2564 vm_map_sync(
2565         vm_map_t map,
2566         vm_offset_t start,
2567         vm_offset_t end,
2568         boolean_t syncio,
2569         boolean_t invalidate)
2570 {
2571         vm_map_entry_t current;
2572         vm_map_entry_t entry;
2573         vm_size_t size;
2574         vm_object_t object;
2575         vm_ooffset_t offset;
2576         unsigned int last_timestamp;
2577         boolean_t failed;
2578
2579         vm_map_lock_read(map);
2580         VM_MAP_RANGE_CHECK(map, start, end);
2581         if (!vm_map_lookup_entry(map, start, &entry)) {
2582                 vm_map_unlock_read(map);
2583                 return (KERN_INVALID_ADDRESS);
2584         } else if (start == end) {
2585                 start = entry->start;
2586                 end = entry->end;
2587         }
2588         /*
2589          * Make a first pass to check for user-wired memory and holes.
2590          */
2591         for (current = entry; current != &map->header && current->start < end;
2592             current = current->next) {
2593                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2594                         vm_map_unlock_read(map);
2595                         return (KERN_INVALID_ARGUMENT);
2596                 }
2597                 if (end > current->end &&
2598                     (current->next == &map->header ||
2599                         current->end != current->next->start)) {
2600                         vm_map_unlock_read(map);
2601                         return (KERN_INVALID_ADDRESS);
2602                 }
2603         }
2604
2605         if (invalidate)
2606                 pmap_remove(map->pmap, start, end);
2607         failed = FALSE;
2608
2609         /*
2610          * Make a second pass, cleaning/uncaching pages from the indicated
2611          * objects as we go.
2612          */
2613         for (current = entry; current != &map->header && current->start < end;) {
2614                 offset = current->offset + (start - current->start);
2615                 size = (end <= current->end ? end : current->end) - start;
2616                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2617                         vm_map_t smap;
2618                         vm_map_entry_t tentry;
2619                         vm_size_t tsize;
2620
2621                         smap = current->object.sub_map;
2622                         vm_map_lock_read(smap);
2623                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2624                         tsize = tentry->end - offset;
2625                         if (tsize < size)
2626                                 size = tsize;
2627                         object = tentry->object.vm_object;
2628                         offset = tentry->offset + (offset - tentry->start);
2629                         vm_map_unlock_read(smap);
2630                 } else {
2631                         object = current->object.vm_object;
2632                 }
2633                 vm_object_reference(object);
2634                 last_timestamp = map->timestamp;
2635                 vm_map_unlock_read(map);
2636                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2637                         failed = TRUE;
2638                 start += size;
2639                 vm_object_deallocate(object);
2640                 vm_map_lock_read(map);
2641                 if (last_timestamp == map->timestamp ||
2642                     !vm_map_lookup_entry(map, start, &current))
2643                         current = current->next;
2644         }
2645
2646         vm_map_unlock_read(map);
2647         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2648 }
2649
2650 /*
2651  *      vm_map_entry_unwire:    [ internal use only ]
2652  *
2653  *      Make the region specified by this entry pageable.
2654  *
2655  *      The map in question should be locked.
2656  *      [This is the reason for this routine's existence.]
2657  */
2658 static void
2659 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2660 {
2661         vm_fault_unwire(map, entry->start, entry->end,
2662             entry->object.vm_object != NULL &&
2663             (entry->object.vm_object->type == OBJT_DEVICE ||
2664             entry->object.vm_object->type == OBJT_SG));
2665         entry->wired_count = 0;
2666 }
2667
2668 static void
2669 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2670 {
2671
2672         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2673                 vm_object_deallocate(entry->object.vm_object);
2674         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2675 }
2676
2677 /*
2678  *      vm_map_entry_delete:    [ internal use only ]
2679  *
2680  *      Deallocate the given entry from the target map.
2681  */
2682 static void
2683 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2684 {
2685         vm_object_t object;
2686         vm_pindex_t offidxstart, offidxend, count, size1;
2687         vm_ooffset_t size;
2688
2689         vm_map_entry_unlink(map, entry);
2690         object = entry->object.vm_object;
2691         size = entry->end - entry->start;
2692         map->size -= size;
2693
2694         if (entry->uip != NULL) {
2695                 swap_release_by_uid(size, entry->uip);
2696                 uifree(entry->uip);
2697         }
2698
2699         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2700             (object != NULL)) {
2701                 KASSERT(entry->uip == NULL || object->uip == NULL ||
2702                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2703                     ("OVERCOMMIT vm_map_entry_delete: both uip %p", entry));
2704                 count = OFF_TO_IDX(size);
2705                 offidxstart = OFF_TO_IDX(entry->offset);
2706                 offidxend = offidxstart + count;
2707                 VM_OBJECT_LOCK(object);
2708                 if (object->ref_count != 1 &&
2709                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2710                     object == kernel_object || object == kmem_object)) {
2711                         vm_object_collapse(object);
2712                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2713                         if (object->type == OBJT_SWAP)
2714                                 swap_pager_freespace(object, offidxstart, count);
2715                         if (offidxend >= object->size &&
2716                             offidxstart < object->size) {
2717                                 size1 = object->size;
2718                                 object->size = offidxstart;
2719                                 if (object->uip != NULL) {
2720                                         size1 -= object->size;
2721                                         KASSERT(object->charge >= ptoa(size1),
2722                                             ("vm_map_entry_delete: object->charge < 0"));
2723                                         swap_release_by_uid(ptoa(size1), object->uip);
2724                                         object->charge -= ptoa(size1);
2725                                 }
2726                         }
2727                 }
2728                 VM_OBJECT_UNLOCK(object);
2729         } else
2730                 entry->object.vm_object = NULL;
2731         if (map->system_map)
2732                 vm_map_entry_deallocate(entry, TRUE);
2733         else {
2734                 entry->next = curthread->td_map_def_user;
2735                 curthread->td_map_def_user = entry;
2736         }
2737 }
2738
2739 /*
2740  *      vm_map_delete:  [ internal use only ]
2741  *
2742  *      Deallocates the given address range from the target
2743  *      map.
2744  */
2745 int
2746 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2747 {
2748         vm_map_entry_t entry;
2749         vm_map_entry_t first_entry;
2750
2751         VM_MAP_ASSERT_LOCKED(map);
2752
2753         /*
2754          * Find the start of the region, and clip it
2755          */
2756         if (!vm_map_lookup_entry(map, start, &first_entry))
2757                 entry = first_entry->next;
2758         else {
2759                 entry = first_entry;
2760                 vm_map_clip_start(map, entry, start);
2761         }
2762
2763         /*
2764          * Step through all entries in this region
2765          */
2766         while ((entry != &map->header) && (entry->start < end)) {
2767                 vm_map_entry_t next;
2768
2769                 /*
2770                  * Wait for wiring or unwiring of an entry to complete.
2771                  * Also wait for any system wirings to disappear on
2772                  * user maps.
2773                  */
2774                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2775                     (vm_map_pmap(map) != kernel_pmap &&
2776                     vm_map_entry_system_wired_count(entry) != 0)) {
2777                         unsigned int last_timestamp;
2778                         vm_offset_t saved_start;
2779                         vm_map_entry_t tmp_entry;
2780
2781                         saved_start = entry->start;
2782                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2783                         last_timestamp = map->timestamp;
2784                         (void) vm_map_unlock_and_wait(map, 0);
2785                         vm_map_lock(map);
2786                         if (last_timestamp + 1 != map->timestamp) {
2787                                 /*
2788                                  * Look again for the entry because the map was
2789                                  * modified while it was unlocked.
2790                                  * Specifically, the entry may have been
2791                                  * clipped, merged, or deleted.
2792                                  */
2793                                 if (!vm_map_lookup_entry(map, saved_start,
2794                                                          &tmp_entry))
2795                                         entry = tmp_entry->next;
2796                                 else {
2797                                         entry = tmp_entry;
2798                                         vm_map_clip_start(map, entry,
2799                                                           saved_start);
2800                                 }
2801                         }
2802                         continue;
2803                 }
2804                 vm_map_clip_end(map, entry, end);
2805
2806                 next = entry->next;
2807
2808                 /*
2809                  * Unwire before removing addresses from the pmap; otherwise,
2810                  * unwiring will put the entries back in the pmap.
2811                  */
2812                 if (entry->wired_count != 0) {
2813                         vm_map_entry_unwire(map, entry);
2814                 }
2815
2816                 pmap_remove(map->pmap, entry->start, entry->end);
2817
2818                 /*
2819                  * Delete the entry only after removing all pmap
2820                  * entries pointing to its pages.  (Otherwise, its
2821                  * page frames may be reallocated, and any modify bits
2822                  * will be set in the wrong object!)
2823                  */
2824                 vm_map_entry_delete(map, entry);
2825                 entry = next;
2826         }
2827         return (KERN_SUCCESS);
2828 }
2829
2830 /*
2831  *      vm_map_remove:
2832  *
2833  *      Remove the given address range from the target map.
2834  *      This is the exported form of vm_map_delete.
2835  */
2836 int
2837 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2838 {
2839         int result;
2840
2841         vm_map_lock(map);
2842         VM_MAP_RANGE_CHECK(map, start, end);
2843         result = vm_map_delete(map, start, end);
2844         vm_map_unlock(map);
2845         return (result);
2846 }
2847
2848 /*
2849  *      vm_map_check_protection:
2850  *
2851  *      Assert that the target map allows the specified privilege on the
2852  *      entire address region given.  The entire region must be allocated.
2853  *
2854  *      WARNING!  This code does not and should not check whether the
2855  *      contents of the region is accessible.  For example a smaller file
2856  *      might be mapped into a larger address space.
2857  *
2858  *      NOTE!  This code is also called by munmap().
2859  *
2860  *      The map must be locked.  A read lock is sufficient.
2861  */
2862 boolean_t
2863 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2864                         vm_prot_t protection)
2865 {
2866         vm_map_entry_t entry;
2867         vm_map_entry_t tmp_entry;
2868
2869         if (!vm_map_lookup_entry(map, start, &tmp_entry))
2870                 return (FALSE);
2871         entry = tmp_entry;
2872
2873         while (start < end) {
2874                 if (entry == &map->header)
2875                         return (FALSE);
2876                 /*
2877                  * No holes allowed!
2878                  */
2879                 if (start < entry->start)
2880                         return (FALSE);
2881                 /*
2882                  * Check protection associated with entry.
2883                  */
2884                 if ((entry->protection & protection) != protection)
2885                         return (FALSE);
2886                 /* go to next entry */
2887                 start = entry->end;
2888                 entry = entry->next;
2889         }
2890         return (TRUE);
2891 }
2892
2893 /*
2894  *      vm_map_copy_entry:
2895  *
2896  *      Copies the contents of the source entry to the destination
2897  *      entry.  The entries *must* be aligned properly.
2898  */
2899 static void
2900 vm_map_copy_entry(
2901         vm_map_t src_map,
2902         vm_map_t dst_map,
2903         vm_map_entry_t src_entry,
2904         vm_map_entry_t dst_entry,
2905         vm_ooffset_t *fork_charge)
2906 {
2907         vm_object_t src_object;
2908         vm_offset_t size;
2909         struct uidinfo *uip;
2910         int charged;
2911
2912         VM_MAP_ASSERT_LOCKED(dst_map);
2913
2914         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2915                 return;
2916
2917         if (src_entry->wired_count == 0) {
2918
2919                 /*
2920                  * If the source entry is marked needs_copy, it is already
2921                  * write-protected.
2922                  */
2923                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2924                         pmap_protect(src_map->pmap,
2925                             src_entry->start,
2926                             src_entry->end,
2927                             src_entry->protection & ~VM_PROT_WRITE);
2928                 }
2929
2930                 /*
2931                  * Make a copy of the object.
2932                  */
2933                 size = src_entry->end - src_entry->start;
2934                 if ((src_object = src_entry->object.vm_object) != NULL) {
2935                         VM_OBJECT_LOCK(src_object);
2936                         charged = ENTRY_CHARGED(src_entry);
2937                         if ((src_object->handle == NULL) &&
2938                                 (src_object->type == OBJT_DEFAULT ||
2939                                  src_object->type == OBJT_SWAP)) {
2940                                 vm_object_collapse(src_object);
2941                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2942                                         vm_object_split(src_entry);
2943                                         src_object = src_entry->object.vm_object;
2944                                 }
2945                         }
2946                         vm_object_reference_locked(src_object);
2947                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2948                         if (src_entry->uip != NULL &&
2949                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2950                                 KASSERT(src_object->uip == NULL,
2951                                     ("OVERCOMMIT: vm_map_copy_entry: uip %p",
2952                                      src_object));
2953                                 src_object->uip = src_entry->uip;
2954                                 src_object->charge = size;
2955                         }
2956                         VM_OBJECT_UNLOCK(src_object);
2957                         dst_entry->object.vm_object = src_object;
2958                         if (charged) {
2959                                 uip = curthread->td_ucred->cr_ruidinfo;
2960                                 uihold(uip);
2961                                 dst_entry->uip = uip;
2962                                 *fork_charge += size;
2963                                 if (!(src_entry->eflags &
2964                                       MAP_ENTRY_NEEDS_COPY)) {
2965                                         uihold(uip);
2966                                         src_entry->uip = uip;
2967                                         *fork_charge += size;
2968                                 }
2969                         }
2970                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2971                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2972                         dst_entry->offset = src_entry->offset;
2973                 } else {
2974                         dst_entry->object.vm_object = NULL;
2975                         dst_entry->offset = 0;
2976                         if (src_entry->uip != NULL) {
2977                                 dst_entry->uip = curthread->td_ucred->cr_ruidinfo;
2978                                 uihold(dst_entry->uip);
2979                                 *fork_charge += size;
2980                         }
2981                 }
2982
2983                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2984                     dst_entry->end - dst_entry->start, src_entry->start);
2985         } else {
2986                 /*
2987                  * Of course, wired down pages can't be set copy-on-write.
2988                  * Cause wired pages to be copied into the new map by
2989                  * simulating faults (the new pages are pageable)
2990                  */
2991                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
2992                     fork_charge);
2993         }
2994 }
2995
2996 /*
2997  * vmspace_map_entry_forked:
2998  * Update the newly-forked vmspace each time a map entry is inherited
2999  * or copied.  The values for vm_dsize and vm_tsize are approximate
3000  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3001  */
3002 static void
3003 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3004     vm_map_entry_t entry)
3005 {
3006         vm_size_t entrysize;
3007         vm_offset_t newend;
3008
3009         entrysize = entry->end - entry->start;
3010         vm2->vm_map.size += entrysize;
3011         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3012                 vm2->vm_ssize += btoc(entrysize);
3013         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3014             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3015                 newend = MIN(entry->end,
3016                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3017                 vm2->vm_dsize += btoc(newend - entry->start);
3018         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3019             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3020                 newend = MIN(entry->end,
3021                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3022                 vm2->vm_tsize += btoc(newend - entry->start);
3023         }
3024 }
3025
3026 /*
3027  * vmspace_fork:
3028  * Create a new process vmspace structure and vm_map
3029  * based on those of an existing process.  The new map
3030  * is based on the old map, according to the inheritance
3031  * values on the regions in that map.
3032  *
3033  * XXX It might be worth coalescing the entries added to the new vmspace.
3034  *
3035  * The source map must not be locked.
3036  */
3037 struct vmspace *
3038 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3039 {
3040         struct vmspace *vm2;
3041         vm_map_t old_map = &vm1->vm_map;
3042         vm_map_t new_map;
3043         vm_map_entry_t old_entry;
3044         vm_map_entry_t new_entry;
3045         vm_object_t object;
3046         int locked;
3047
3048         vm_map_lock(old_map);
3049         if (old_map->busy)
3050                 vm_map_wait_busy(old_map);
3051         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3052         if (vm2 == NULL)
3053                 goto unlock_and_return;
3054         vm2->vm_taddr = vm1->vm_taddr;
3055         vm2->vm_daddr = vm1->vm_daddr;
3056         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3057         new_map = &vm2->vm_map; /* XXX */
3058         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3059         KASSERT(locked, ("vmspace_fork: lock failed"));
3060         new_map->timestamp = 1;
3061
3062         old_entry = old_map->header.next;
3063
3064         while (old_entry != &old_map->header) {
3065                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3066                         panic("vm_map_fork: encountered a submap");
3067
3068                 switch (old_entry->inheritance) {
3069                 case VM_INHERIT_NONE:
3070                         break;
3071
3072                 case VM_INHERIT_SHARE:
3073                         /*
3074                          * Clone the entry, creating the shared object if necessary.
3075                          */
3076                         object = old_entry->object.vm_object;
3077                         if (object == NULL) {
3078                                 object = vm_object_allocate(OBJT_DEFAULT,
3079                                         atop(old_entry->end - old_entry->start));
3080                                 old_entry->object.vm_object = object;
3081                                 old_entry->offset = 0;
3082                                 if (old_entry->uip != NULL) {
3083                                         object->uip = old_entry->uip;
3084                                         object->charge = old_entry->end -
3085                                             old_entry->start;
3086                                         old_entry->uip = NULL;
3087                                 }
3088                         }
3089
3090                         /*
3091                          * Add the reference before calling vm_object_shadow
3092                          * to insure that a shadow object is created.
3093                          */
3094                         vm_object_reference(object);
3095                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3096                                 vm_object_shadow(&old_entry->object.vm_object,
3097                                         &old_entry->offset,
3098                                         atop(old_entry->end - old_entry->start));
3099                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3100                                 /* Transfer the second reference too. */
3101                                 vm_object_reference(
3102                                     old_entry->object.vm_object);
3103
3104                                 /*
3105                                  * As in vm_map_simplify_entry(), the
3106                                  * vnode lock will not be acquired in
3107                                  * this call to vm_object_deallocate().
3108                                  */
3109                                 vm_object_deallocate(object);
3110                                 object = old_entry->object.vm_object;
3111                         }
3112                         VM_OBJECT_LOCK(object);
3113                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3114                         if (old_entry->uip != NULL) {
3115                                 KASSERT(object->uip == NULL, ("vmspace_fork both uip"));
3116                                 object->uip = old_entry->uip;
3117                                 object->charge = old_entry->end - old_entry->start;
3118                                 old_entry->uip = NULL;
3119                         }
3120                         VM_OBJECT_UNLOCK(object);
3121
3122                         /*
3123                          * Clone the entry, referencing the shared object.
3124                          */
3125                         new_entry = vm_map_entry_create(new_map);
3126                         *new_entry = *old_entry;
3127                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3128                             MAP_ENTRY_IN_TRANSITION);
3129                         new_entry->wired_count = 0;
3130
3131                         /*
3132                          * Insert the entry into the new map -- we know we're
3133                          * inserting at the end of the new map.
3134                          */
3135                         vm_map_entry_link(new_map, new_map->header.prev,
3136                             new_entry);
3137                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3138
3139                         /*
3140                          * Update the physical map
3141                          */
3142                         pmap_copy(new_map->pmap, old_map->pmap,
3143                             new_entry->start,
3144                             (old_entry->end - old_entry->start),
3145                             old_entry->start);
3146                         break;
3147
3148                 case VM_INHERIT_COPY:
3149                         /*
3150                          * Clone the entry and link into the map.
3151                          */
3152                         new_entry = vm_map_entry_create(new_map);
3153                         *new_entry = *old_entry;
3154                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3155                             MAP_ENTRY_IN_TRANSITION);
3156                         new_entry->wired_count = 0;
3157                         new_entry->object.vm_object = NULL;
3158                         new_entry->uip = NULL;
3159                         vm_map_entry_link(new_map, new_map->header.prev,
3160                             new_entry);
3161                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3162                         vm_map_copy_entry(old_map, new_map, old_entry,
3163                             new_entry, fork_charge);
3164                         break;
3165                 }
3166                 old_entry = old_entry->next;
3167         }
3168 unlock_and_return:
3169         vm_map_unlock(old_map);
3170         if (vm2 != NULL)
3171                 vm_map_unlock(new_map);
3172
3173         return (vm2);
3174 }
3175
3176 int
3177 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3178     vm_prot_t prot, vm_prot_t max, int cow)
3179 {
3180         vm_map_entry_t new_entry, prev_entry;
3181         vm_offset_t bot, top;
3182         vm_size_t growsize, init_ssize;
3183         int orient, rv;
3184         rlim_t vmemlim;
3185
3186         /*
3187          * The stack orientation is piggybacked with the cow argument.
3188          * Extract it into orient and mask the cow argument so that we
3189          * don't pass it around further.
3190          * NOTE: We explicitly allow bi-directional stacks.
3191          */
3192         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3193         KASSERT(orient != 0, ("No stack grow direction"));
3194
3195         if (addrbos < vm_map_min(map) ||
3196             addrbos > vm_map_max(map) ||
3197             addrbos + max_ssize < addrbos)
3198                 return (KERN_NO_SPACE);
3199
3200         growsize = sgrowsiz;
3201         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3202
3203         PROC_LOCK(curthread->td_proc);
3204         vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3205         PROC_UNLOCK(curthread->td_proc);
3206
3207         vm_map_lock(map);
3208
3209         /* If addr is already mapped, no go */
3210         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3211                 vm_map_unlock(map);
3212                 return (KERN_NO_SPACE);
3213         }
3214
3215         /* If we would blow our VMEM resource limit, no go */
3216         if (map->size + init_ssize > vmemlim) {
3217                 vm_map_unlock(map);
3218                 return (KERN_NO_SPACE);
3219         }
3220
3221         /*
3222          * If we can't accomodate max_ssize in the current mapping, no go.
3223          * However, we need to be aware that subsequent user mappings might
3224          * map into the space we have reserved for stack, and currently this
3225          * space is not protected.
3226          *
3227          * Hopefully we will at least detect this condition when we try to
3228          * grow the stack.
3229          */
3230         if ((prev_entry->next != &map->header) &&
3231             (prev_entry->next->start < addrbos + max_ssize)) {
3232                 vm_map_unlock(map);
3233                 return (KERN_NO_SPACE);
3234         }
3235
3236         /*
3237          * We initially map a stack of only init_ssize.  We will grow as
3238          * needed later.  Depending on the orientation of the stack (i.e.
3239          * the grow direction) we either map at the top of the range, the
3240          * bottom of the range or in the middle.
3241          *
3242          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3243          * and cow to be 0.  Possibly we should eliminate these as input
3244          * parameters, and just pass these values here in the insert call.
3245          */
3246         if (orient == MAP_STACK_GROWS_DOWN)
3247                 bot = addrbos + max_ssize - init_ssize;
3248         else if (orient == MAP_STACK_GROWS_UP)
3249                 bot = addrbos;
3250         else
3251                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3252         top = bot + init_ssize;
3253         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3254
3255         /* Now set the avail_ssize amount. */
3256         if (rv == KERN_SUCCESS) {
3257                 if (prev_entry != &map->header)
3258                         vm_map_clip_end(map, prev_entry, bot);
3259                 new_entry = prev_entry->next;
3260                 if (new_entry->end != top || new_entry->start != bot)
3261                         panic("Bad entry start/end for new stack entry");
3262
3263                 new_entry->avail_ssize = max_ssize - init_ssize;
3264                 if (orient & MAP_STACK_GROWS_DOWN)
3265                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3266                 if (orient & MAP_STACK_GROWS_UP)
3267                         new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3268         }
3269
3270         vm_map_unlock(map);
3271         return (rv);
3272 }
3273
3274 static int stack_guard_page = 0;
3275 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3276 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3277     &stack_guard_page, 0,
3278     "Insert stack guard page ahead of the growable segments.");
3279
3280 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3281  * desired address is already mapped, or if we successfully grow
3282  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3283  * stack range (this is strange, but preserves compatibility with
3284  * the grow function in vm_machdep.c).
3285  */
3286 int
3287 vm_map_growstack(struct proc *p, vm_offset_t addr)
3288 {
3289         vm_map_entry_t next_entry, prev_entry;
3290         vm_map_entry_t new_entry, stack_entry;
3291         struct vmspace *vm = p->p_vmspace;
3292         vm_map_t map = &vm->vm_map;
3293         vm_offset_t end;
3294         vm_size_t growsize;
3295         size_t grow_amount, max_grow;
3296         rlim_t stacklim, vmemlim;
3297         int is_procstack, rv;
3298         struct uidinfo *uip;
3299
3300 Retry:
3301         PROC_LOCK(p);
3302         stacklim = lim_cur(p, RLIMIT_STACK);
3303         vmemlim = lim_cur(p, RLIMIT_VMEM);
3304         PROC_UNLOCK(p);
3305
3306         vm_map_lock_read(map);
3307
3308         /* If addr is already in the entry range, no need to grow.*/
3309         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3310                 vm_map_unlock_read(map);
3311                 return (KERN_SUCCESS);
3312         }
3313
3314         next_entry = prev_entry->next;
3315         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3316                 /*
3317                  * This entry does not grow upwards. Since the address lies
3318                  * beyond this entry, the next entry (if one exists) has to
3319                  * be a downward growable entry. The entry list header is
3320                  * never a growable entry, so it suffices to check the flags.
3321                  */
3322                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3323                         vm_map_unlock_read(map);
3324                         return (KERN_SUCCESS);
3325                 }
3326                 stack_entry = next_entry;
3327         } else {
3328                 /*
3329                  * This entry grows upward. If the next entry does not at
3330                  * least grow downwards, this is the entry we need to grow.
3331                  * otherwise we have two possible choices and we have to
3332                  * select one.
3333                  */
3334                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3335                         /*
3336                          * We have two choices; grow the entry closest to
3337                          * the address to minimize the amount of growth.
3338                          */
3339                         if (addr - prev_entry->end <= next_entry->start - addr)
3340                                 stack_entry = prev_entry;
3341                         else
3342                                 stack_entry = next_entry;
3343                 } else
3344                         stack_entry = prev_entry;
3345         }
3346
3347         if (stack_entry == next_entry) {
3348                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3349                 KASSERT(addr < stack_entry->start, ("foo"));
3350                 end = (prev_entry != &map->header) ? prev_entry->end :
3351                     stack_entry->start - stack_entry->avail_ssize;
3352                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3353                 max_grow = stack_entry->start - end;
3354         } else {
3355                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3356                 KASSERT(addr >= stack_entry->end, ("foo"));
3357                 end = (next_entry != &map->header) ? next_entry->start :
3358                     stack_entry->end + stack_entry->avail_ssize;
3359                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3360                 max_grow = end - stack_entry->end;
3361         }
3362
3363         if (grow_amount > stack_entry->avail_ssize) {
3364                 vm_map_unlock_read(map);
3365                 return (KERN_NO_SPACE);
3366         }
3367
3368         /*
3369          * If there is no longer enough space between the entries nogo, and
3370          * adjust the available space.  Note: this  should only happen if the
3371          * user has mapped into the stack area after the stack was created,
3372          * and is probably an error.
3373          *
3374          * This also effectively destroys any guard page the user might have
3375          * intended by limiting the stack size.
3376          */
3377         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3378                 if (vm_map_lock_upgrade(map))
3379                         goto Retry;
3380
3381                 stack_entry->avail_ssize = max_grow;
3382
3383                 vm_map_unlock(map);
3384                 return (KERN_NO_SPACE);
3385         }
3386
3387         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3388
3389         /*
3390          * If this is the main process stack, see if we're over the stack
3391          * limit.
3392          */
3393         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3394                 vm_map_unlock_read(map);
3395                 return (KERN_NO_SPACE);
3396         }
3397
3398         /* Round up the grow amount modulo sgrowsiz */
3399         growsize = sgrowsiz;
3400         grow_amount = roundup(grow_amount, growsize);
3401         if (grow_amount > stack_entry->avail_ssize)
3402                 grow_amount = stack_entry->avail_ssize;
3403         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3404                 grow_amount = trunc_page((vm_size_t)stacklim) -
3405                     ctob(vm->vm_ssize);
3406         }
3407
3408         /* If we would blow our VMEM resource limit, no go */
3409         if (map->size + grow_amount > vmemlim) {
3410                 vm_map_unlock_read(map);
3411                 return (KERN_NO_SPACE);
3412         }
3413
3414         if (vm_map_lock_upgrade(map))
3415                 goto Retry;
3416
3417         if (stack_entry == next_entry) {
3418                 /*
3419                  * Growing downward.
3420                  */
3421                 /* Get the preliminary new entry start value */
3422                 addr = stack_entry->start - grow_amount;
3423
3424                 /*
3425                  * If this puts us into the previous entry, cut back our
3426                  * growth to the available space. Also, see the note above.
3427                  */
3428                 if (addr < end) {
3429                         stack_entry->avail_ssize = max_grow;
3430                         addr = end;
3431                         if (stack_guard_page)
3432                                 addr += PAGE_SIZE;
3433                 }
3434
3435                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3436                     p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3437
3438                 /* Adjust the available stack space by the amount we grew. */
3439                 if (rv == KERN_SUCCESS) {
3440                         if (prev_entry != &map->header)
3441                                 vm_map_clip_end(map, prev_entry, addr);
3442                         new_entry = prev_entry->next;
3443                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3444                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3445                         KASSERT(new_entry->start == addr, ("foo"));
3446                         grow_amount = new_entry->end - new_entry->start;
3447                         new_entry->avail_ssize = stack_entry->avail_ssize -
3448                             grow_amount;
3449                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3450                         new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3451                 }
3452         } else {
3453                 /*
3454                  * Growing upward.
3455                  */
3456                 addr = stack_entry->end + grow_amount;
3457
3458                 /*
3459                  * If this puts us into the next entry, cut back our growth
3460                  * to the available space. Also, see the note above.
3461                  */
3462                 if (addr > end) {
3463                         stack_entry->avail_ssize = end - stack_entry->end;
3464                         addr = end;
3465                         if (stack_guard_page)
3466                                 addr -= PAGE_SIZE;
3467                 }
3468
3469                 grow_amount = addr - stack_entry->end;
3470                 uip = stack_entry->uip;
3471                 if (uip == NULL && stack_entry->object.vm_object != NULL)
3472                         uip = stack_entry->object.vm_object->uip;
3473                 if (uip != NULL && !swap_reserve_by_uid(grow_amount, uip))
3474                         rv = KERN_NO_SPACE;
3475                 /* Grow the underlying object if applicable. */
3476                 else if (stack_entry->object.vm_object == NULL ||
3477                          vm_object_coalesce(stack_entry->object.vm_object,
3478                          stack_entry->offset,
3479                          (vm_size_t)(stack_entry->end - stack_entry->start),
3480                          (vm_size_t)grow_amount, uip != NULL)) {
3481                         map->size += (addr - stack_entry->end);
3482                         /* Update the current entry. */
3483                         stack_entry->end = addr;
3484                         stack_entry->avail_ssize -= grow_amount;
3485                         vm_map_entry_resize_free(map, stack_entry);
3486                         rv = KERN_SUCCESS;
3487
3488                         if (next_entry != &map->header)
3489                                 vm_map_clip_start(map, next_entry, addr);
3490                 } else
3491                         rv = KERN_FAILURE;
3492         }
3493
3494         if (rv == KERN_SUCCESS && is_procstack)
3495                 vm->vm_ssize += btoc(grow_amount);
3496
3497         vm_map_unlock(map);
3498
3499         /*
3500          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3501          */
3502         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3503                 vm_map_wire(map,
3504                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3505                     (stack_entry == next_entry) ? stack_entry->start : addr,
3506                     (p->p_flag & P_SYSTEM)
3507                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3508                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3509         }
3510
3511         return (rv);
3512 }
3513
3514 /*
3515  * Unshare the specified VM space for exec.  If other processes are
3516  * mapped to it, then create a new one.  The new vmspace is null.
3517  */
3518 int
3519 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3520 {
3521         struct vmspace *oldvmspace = p->p_vmspace;
3522         struct vmspace *newvmspace;
3523
3524         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3525             ("vmspace_exec recursed"));
3526         newvmspace = vmspace_alloc(minuser, maxuser);
3527         if (newvmspace == NULL)
3528                 return (ENOMEM);
3529         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3530         /*
3531          * This code is written like this for prototype purposes.  The
3532          * goal is to avoid running down the vmspace here, but let the
3533          * other process's that are still using the vmspace to finally
3534          * run it down.  Even though there is little or no chance of blocking
3535          * here, it is a good idea to keep this form for future mods.
3536          */
3537         PROC_VMSPACE_LOCK(p);
3538         p->p_vmspace = newvmspace;
3539         PROC_VMSPACE_UNLOCK(p);
3540         if (p == curthread->td_proc)
3541                 pmap_activate(curthread);
3542         curthread->td_pflags |= TDP_EXECVMSPC;
3543         return (0);
3544 }
3545
3546 /*
3547  * Unshare the specified VM space for forcing COW.  This
3548  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3549  */
3550 int
3551 vmspace_unshare(struct proc *p)
3552 {
3553         struct vmspace *oldvmspace = p->p_vmspace;
3554         struct vmspace *newvmspace;
3555         vm_ooffset_t fork_charge;
3556
3557         if (oldvmspace->vm_refcnt == 1)
3558                 return (0);
3559         fork_charge = 0;
3560         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3561         if (newvmspace == NULL)
3562                 return (ENOMEM);
3563         if (!swap_reserve_by_uid(fork_charge, p->p_ucred->cr_ruidinfo)) {
3564                 vmspace_free(newvmspace);
3565                 return (ENOMEM);
3566         }
3567         PROC_VMSPACE_LOCK(p);
3568         p->p_vmspace = newvmspace;
3569         PROC_VMSPACE_UNLOCK(p);
3570         if (p == curthread->td_proc)
3571                 pmap_activate(curthread);
3572         vmspace_free(oldvmspace);
3573         return (0);
3574 }
3575
3576 /*
3577  *      vm_map_lookup:
3578  *
3579  *      Finds the VM object, offset, and
3580  *      protection for a given virtual address in the
3581  *      specified map, assuming a page fault of the
3582  *      type specified.
3583  *
3584  *      Leaves the map in question locked for read; return
3585  *      values are guaranteed until a vm_map_lookup_done
3586  *      call is performed.  Note that the map argument
3587  *      is in/out; the returned map must be used in
3588  *      the call to vm_map_lookup_done.
3589  *
3590  *      A handle (out_entry) is returned for use in
3591  *      vm_map_lookup_done, to make that fast.
3592  *
3593  *      If a lookup is requested with "write protection"
3594  *      specified, the map may be changed to perform virtual
3595  *      copying operations, although the data referenced will
3596  *      remain the same.
3597  */
3598 int
3599 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3600               vm_offset_t vaddr,
3601               vm_prot_t fault_typea,
3602               vm_map_entry_t *out_entry,        /* OUT */
3603               vm_object_t *object,              /* OUT */
3604               vm_pindex_t *pindex,              /* OUT */
3605               vm_prot_t *out_prot,              /* OUT */
3606               boolean_t *wired)                 /* OUT */
3607 {
3608         vm_map_entry_t entry;
3609         vm_map_t map = *var_map;
3610         vm_prot_t prot;
3611         vm_prot_t fault_type = fault_typea;
3612         vm_object_t eobject;
3613         struct uidinfo *uip;
3614         vm_ooffset_t size;
3615
3616 RetryLookup:;
3617
3618         vm_map_lock_read(map);
3619
3620         /*
3621          * Lookup the faulting address.
3622          */
3623         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3624                 vm_map_unlock_read(map);
3625                 return (KERN_INVALID_ADDRESS);
3626         }
3627
3628         entry = *out_entry;
3629
3630         /*
3631          * Handle submaps.
3632          */
3633         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3634                 vm_map_t old_map = map;
3635
3636                 *var_map = map = entry->object.sub_map;
3637                 vm_map_unlock_read(old_map);
3638                 goto RetryLookup;
3639         }
3640
3641         /*
3642          * Check whether this task is allowed to have this page.
3643          * Note the special case for MAP_ENTRY_COW
3644          * pages with an override.  This is to implement a forced
3645          * COW for debuggers.
3646          */
3647         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3648                 prot = entry->max_protection;
3649         else
3650                 prot = entry->protection;
3651         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3652         if ((fault_type & prot) != fault_type) {
3653                 vm_map_unlock_read(map);
3654                 return (KERN_PROTECTION_FAILURE);
3655         }
3656         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3657             (entry->eflags & MAP_ENTRY_COW) &&
3658             (fault_type & VM_PROT_WRITE) &&
3659             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3660                 vm_map_unlock_read(map);
3661                 return (KERN_PROTECTION_FAILURE);
3662         }
3663
3664         /*
3665          * If this page is not pageable, we have to get it for all possible
3666          * accesses.
3667          */
3668         *wired = (entry->wired_count != 0);
3669         if (*wired)
3670                 prot = fault_type = entry->protection;
3671         size = entry->end - entry->start;
3672         /*
3673          * If the entry was copy-on-write, we either ...
3674          */
3675         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3676                 /*
3677                  * If we want to write the page, we may as well handle that
3678                  * now since we've got the map locked.
3679                  *
3680                  * If we don't need to write the page, we just demote the
3681                  * permissions allowed.
3682                  */
3683                 if (fault_type & VM_PROT_WRITE) {
3684                         /*
3685                          * Make a new object, and place it in the object
3686                          * chain.  Note that no new references have appeared
3687                          * -- one just moved from the map to the new
3688                          * object.
3689                          */
3690                         if (vm_map_lock_upgrade(map))
3691                                 goto RetryLookup;
3692
3693                         if (entry->uip == NULL) {
3694                                 /*
3695                                  * The debugger owner is charged for
3696                                  * the memory.
3697                                  */
3698                                 uip = curthread->td_ucred->cr_ruidinfo;
3699                                 uihold(uip);
3700                                 if (!swap_reserve_by_uid(size, uip)) {
3701                                         uifree(uip);
3702                                         vm_map_unlock(map);
3703                                         return (KERN_RESOURCE_SHORTAGE);
3704                                 }
3705                                 entry->uip = uip;
3706                         }
3707                         vm_object_shadow(
3708                             &entry->object.vm_object,
3709                             &entry->offset,
3710                             atop(size));
3711                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3712                         eobject = entry->object.vm_object;
3713                         if (eobject->uip != NULL) {
3714                                 /*
3715                                  * The object was not shadowed.
3716                                  */
3717                                 swap_release_by_uid(size, entry->uip);
3718                                 uifree(entry->uip);
3719                                 entry->uip = NULL;
3720                         } else if (entry->uip != NULL) {
3721                                 VM_OBJECT_LOCK(eobject);
3722                                 eobject->uip = entry->uip;
3723                                 eobject->charge = size;
3724                                 VM_OBJECT_UNLOCK(eobject);
3725                                 entry->uip = NULL;
3726                         }
3727
3728                         vm_map_lock_downgrade(map);
3729                 } else {
3730                         /*
3731                          * We're attempting to read a copy-on-write page --
3732                          * don't allow writes.
3733                          */
3734                         prot &= ~VM_PROT_WRITE;
3735                 }
3736         }
3737
3738         /*
3739          * Create an object if necessary.
3740          */
3741         if (entry->object.vm_object == NULL &&
3742             !map->system_map) {
3743                 if (vm_map_lock_upgrade(map))
3744                         goto RetryLookup;
3745                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3746                     atop(size));
3747                 entry->offset = 0;
3748                 if (entry->uip != NULL) {
3749                         VM_OBJECT_LOCK(entry->object.vm_object);
3750                         entry->object.vm_object->uip = entry->uip;
3751                         entry->object.vm_object->charge = size;
3752                         VM_OBJECT_UNLOCK(entry->object.vm_object);
3753                         entry->uip = NULL;
3754                 }
3755                 vm_map_lock_downgrade(map);
3756         }
3757
3758         /*
3759          * Return the object/offset from this entry.  If the entry was
3760          * copy-on-write or empty, it has been fixed up.
3761          */
3762         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3763         *object = entry->object.vm_object;
3764
3765         *out_prot = prot;
3766         return (KERN_SUCCESS);
3767 }
3768
3769 /*
3770  *      vm_map_lookup_locked:
3771  *
3772  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
3773  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3774  */
3775 int
3776 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
3777                      vm_offset_t vaddr,
3778                      vm_prot_t fault_typea,
3779                      vm_map_entry_t *out_entry, /* OUT */
3780                      vm_object_t *object,       /* OUT */
3781                      vm_pindex_t *pindex,       /* OUT */
3782                      vm_prot_t *out_prot,       /* OUT */
3783                      boolean_t *wired)          /* OUT */
3784 {
3785         vm_map_entry_t entry;
3786         vm_map_t map = *var_map;
3787         vm_prot_t prot;
3788         vm_prot_t fault_type = fault_typea;
3789
3790         /*
3791          * Lookup the faulting address.
3792          */
3793         if (!vm_map_lookup_entry(map, vaddr, out_entry))
3794                 return (KERN_INVALID_ADDRESS);
3795
3796         entry = *out_entry;
3797
3798         /*
3799          * Fail if the entry refers to a submap.
3800          */
3801         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3802                 return (KERN_FAILURE);
3803
3804         /*
3805          * Check whether this task is allowed to have this page.
3806          * Note the special case for MAP_ENTRY_COW
3807          * pages with an override.  This is to implement a forced
3808          * COW for debuggers.
3809          */
3810         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3811                 prot = entry->max_protection;
3812         else
3813                 prot = entry->protection;
3814         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3815         if ((fault_type & prot) != fault_type)
3816                 return (KERN_PROTECTION_FAILURE);
3817         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3818             (entry->eflags & MAP_ENTRY_COW) &&
3819             (fault_type & VM_PROT_WRITE) &&
3820             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3821                 return (KERN_PROTECTION_FAILURE);
3822
3823         /*
3824          * If this page is not pageable, we have to get it for all possible
3825          * accesses.
3826          */
3827         *wired = (entry->wired_count != 0);
3828         if (*wired)
3829                 prot = fault_type = entry->protection;
3830
3831         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3832                 /*
3833                  * Fail if the entry was copy-on-write for a write fault.
3834                  */
3835                 if (fault_type & VM_PROT_WRITE)
3836                         return (KERN_FAILURE);
3837                 /*
3838                  * We're attempting to read a copy-on-write page --
3839                  * don't allow writes.
3840                  */
3841                 prot &= ~VM_PROT_WRITE;
3842         }
3843
3844         /*
3845          * Fail if an object should be created.
3846          */
3847         if (entry->object.vm_object == NULL && !map->system_map)
3848                 return (KERN_FAILURE);
3849
3850         /*
3851          * Return the object/offset from this entry.  If the entry was
3852          * copy-on-write or empty, it has been fixed up.
3853          */
3854         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3855         *object = entry->object.vm_object;
3856
3857         *out_prot = prot;
3858         return (KERN_SUCCESS);
3859 }
3860
3861 /*
3862  *      vm_map_lookup_done:
3863  *
3864  *      Releases locks acquired by a vm_map_lookup
3865  *      (according to the handle returned by that lookup).
3866  */
3867 void
3868 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3869 {
3870         /*
3871          * Unlock the main-level map
3872          */
3873         vm_map_unlock_read(map);
3874 }
3875
3876 #include "opt_ddb.h"
3877 #ifdef DDB
3878 #include <sys/kernel.h>
3879
3880 #include <ddb/ddb.h>
3881
3882 /*
3883  *      vm_map_print:   [ debug ]
3884  */
3885 DB_SHOW_COMMAND(map, vm_map_print)
3886 {
3887         static int nlines;
3888         /* XXX convert args. */
3889         vm_map_t map = (vm_map_t)addr;
3890         boolean_t full = have_addr;
3891
3892         vm_map_entry_t entry;
3893
3894         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3895             (void *)map,
3896             (void *)map->pmap, map->nentries, map->timestamp);
3897         nlines++;
3898
3899         if (!full && db_indent)
3900                 return;
3901
3902         db_indent += 2;
3903         for (entry = map->header.next; entry != &map->header;
3904             entry = entry->next) {
3905                 db_iprintf("map entry %p: start=%p, end=%p\n",
3906                     (void *)entry, (void *)entry->start, (void *)entry->end);
3907                 nlines++;
3908                 {
3909                         static char *inheritance_name[4] =
3910                         {"share", "copy", "none", "donate_copy"};
3911
3912                         db_iprintf(" prot=%x/%x/%s",
3913                             entry->protection,
3914                             entry->max_protection,
3915                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3916                         if (entry->wired_count != 0)
3917                                 db_printf(", wired");
3918                 }
3919                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3920                         db_printf(", share=%p, offset=0x%jx\n",
3921                             (void *)entry->object.sub_map,
3922                             (uintmax_t)entry->offset);
3923                         nlines++;
3924                         if ((entry->prev == &map->header) ||
3925                             (entry->prev->object.sub_map !=
3926                                 entry->object.sub_map)) {
3927                                 db_indent += 2;
3928                                 vm_map_print((db_expr_t)(intptr_t)
3929                                              entry->object.sub_map,
3930                                              full, 0, (char *)0);
3931                                 db_indent -= 2;
3932                         }
3933                 } else {
3934                         if (entry->uip != NULL)
3935                                 db_printf(", uip %d", entry->uip->ui_uid);
3936                         db_printf(", object=%p, offset=0x%jx",
3937                             (void *)entry->object.vm_object,
3938                             (uintmax_t)entry->offset);
3939                         if (entry->object.vm_object && entry->object.vm_object->uip)
3940                                 db_printf(", obj uip %d charge %jx",
3941                                     entry->object.vm_object->uip->ui_uid,
3942                                     (uintmax_t)entry->object.vm_object->charge);
3943                         if (entry->eflags & MAP_ENTRY_COW)
3944                                 db_printf(", copy (%s)",
3945                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3946                         db_printf("\n");
3947                         nlines++;
3948
3949                         if ((entry->prev == &map->header) ||
3950                             (entry->prev->object.vm_object !=
3951                                 entry->object.vm_object)) {
3952                                 db_indent += 2;
3953                                 vm_object_print((db_expr_t)(intptr_t)
3954                                                 entry->object.vm_object,
3955                                                 full, 0, (char *)0);
3956                                 nlines += 4;
3957                                 db_indent -= 2;
3958                         }
3959                 }
3960         }
3961         db_indent -= 2;
3962         if (db_indent == 0)
3963                 nlines = 0;
3964 }
3965
3966
3967 DB_SHOW_COMMAND(procvm, procvm)
3968 {
3969         struct proc *p;
3970
3971         if (have_addr) {
3972                 p = (struct proc *) addr;
3973         } else {
3974                 p = curproc;
3975         }
3976
3977         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3978             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3979             (void *)vmspace_pmap(p->p_vmspace));
3980
3981         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3982 }
3983
3984 #endif /* DDB */