]> CyberLeo.Net >> Repos - FreeBSD/stable/9.git/blob - sys/vm/vm_object.c
MFC r319414:
[FreeBSD/stable/9.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int old_msync;
100 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
101     "Use old (insecure) msync behavior");
102
103 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
104                     int pagerflags, int flags, boolean_t *clearobjflags,
105                     boolean_t *eio);
106 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
107                     boolean_t *clearobjflags);
108 static void     vm_object_qcollapse(vm_object_t object);
109 static void     vm_object_vndeallocate(vm_object_t object);
110
111 /*
112  *      Virtual memory objects maintain the actual data
113  *      associated with allocated virtual memory.  A given
114  *      page of memory exists within exactly one object.
115  *
116  *      An object is only deallocated when all "references"
117  *      are given up.  Only one "reference" to a given
118  *      region of an object should be writeable.
119  *
120  *      Associated with each object is a list of all resident
121  *      memory pages belonging to that object; this list is
122  *      maintained by the "vm_page" module, and locked by the object's
123  *      lock.
124  *
125  *      Each object also records a "pager" routine which is
126  *      used to retrieve (and store) pages to the proper backing
127  *      storage.  In addition, objects may be backed by other
128  *      objects from which they were virtual-copied.
129  *
130  *      The only items within the object structure which are
131  *      modified after time of creation are:
132  *              reference count         locked by object's lock
133  *              pager routine           locked by object's lock
134  *
135  */
136
137 struct object_q vm_object_list;
138 struct mtx vm_object_list_mtx;  /* lock for object list and count */
139
140 struct vm_object kernel_object_store;
141 struct vm_object kmem_object_store;
142
143 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
144     "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(object->ref_count == 0,
168             ("object %p ref_count = %d", object, object->ref_count));
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages",
171             object));
172 #if VM_NRESERVLEVEL > 0
173         KASSERT(LIST_EMPTY(&object->rvq),
174             ("object %p has reservations",
175             object));
176 #endif
177         KASSERT(object->cache == NULL,
178             ("object %p has cached pages",
179             object));
180         KASSERT(object->paging_in_progress == 0,
181             ("object %p paging_in_progress = %d",
182             object, object->paging_in_progress));
183         KASSERT(object->resident_page_count == 0,
184             ("object %p resident_page_count = %d",
185             object, object->resident_page_count));
186         KASSERT(object->shadow_count == 0,
187             ("object %p shadow_count = %d",
188             object, object->shadow_count));
189         KASSERT(object->type == OBJT_DEAD,
190             ("object %p has non-dead type %d",
191             object, object->type));
192 }
193 #endif
194
195 static int
196 vm_object_zinit(void *mem, int size, int flags)
197 {
198         vm_object_t object;
199
200         object = (vm_object_t)mem;
201         bzero(&object->mtx, sizeof(object->mtx));
202         VM_OBJECT_LOCK_INIT(object, "standard object");
203
204         /* These are true for any object that has been freed */
205         object->type = OBJT_DEAD;
206         object->ref_count = 0;
207         object->paging_in_progress = 0;
208         object->resident_page_count = 0;
209         object->shadow_count = 0;
210
211         mtx_lock(&vm_object_list_mtx);
212         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
213         mtx_unlock(&vm_object_list_mtx);
214         return (0);
215 }
216
217 void
218 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
219 {
220
221         TAILQ_INIT(&object->memq);
222         LIST_INIT(&object->shadow_head);
223
224         object->root = NULL;
225         object->type = type;
226         object->size = size;
227         object->generation = 1;
228         object->ref_count = 1;
229         object->memattr = VM_MEMATTR_DEFAULT;
230         object->flags = 0;
231         object->cred = NULL;
232         object->charge = 0;
233         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
234                 object->flags = OBJ_ONEMAPPING;
235         object->pg_color = 0;
236         object->handle = NULL;
237         object->backing_object = NULL;
238         object->backing_object_offset = (vm_ooffset_t) 0;
239 #if VM_NRESERVLEVEL > 0
240         LIST_INIT(&object->rvq);
241 #endif
242         object->cache = NULL;
243 }
244
245 /*
246  *      vm_object_init:
247  *
248  *      Initialize the VM objects module.
249  */
250 void
251 vm_object_init(void)
252 {
253         TAILQ_INIT(&vm_object_list);
254         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255         
256         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258             kernel_object);
259 #if VM_NRESERVLEVEL > 0
260         kernel_object->flags |= OBJ_COLORED;
261         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263
264         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
265         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266             kmem_object);
267 #if VM_NRESERVLEVEL > 0
268         kmem_object->flags |= OBJ_COLORED;
269         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270 #endif
271
272         /*
273          * The lock portion of struct vm_object must be type stable due
274          * to vm_pageout_fallback_object_lock locking a vm object
275          * without holding any references to it.
276          */
277         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278 #ifdef INVARIANTS
279             vm_object_zdtor,
280 #else
281             NULL,
282 #endif
283             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284 }
285
286 void
287 vm_object_clear_flag(vm_object_t object, u_short bits)
288 {
289
290         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291         object->flags &= ~bits;
292 }
293
294 /*
295  *      Sets the default memory attribute for the specified object.  Pages
296  *      that are allocated to this object are by default assigned this memory
297  *      attribute.
298  *
299  *      Presently, this function must be called before any pages are allocated
300  *      to the object.  In the future, this requirement may be relaxed for
301  *      "default" and "swap" objects.
302  */
303 int
304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305 {
306
307         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308         switch (object->type) {
309         case OBJT_DEFAULT:
310         case OBJT_DEVICE:
311         case OBJT_PHYS:
312         case OBJT_SG:
313         case OBJT_SWAP:
314         case OBJT_VNODE:
315                 if (!TAILQ_EMPTY(&object->memq))
316                         return (KERN_FAILURE);
317                 break;
318         case OBJT_DEAD:
319                 return (KERN_INVALID_ARGUMENT);
320         }
321         object->memattr = memattr;
322         return (KERN_SUCCESS);
323 }
324
325 void
326 vm_object_pip_add(vm_object_t object, short i)
327 {
328
329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330         object->paging_in_progress += i;
331 }
332
333 void
334 vm_object_pip_subtract(vm_object_t object, short i)
335 {
336
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338         object->paging_in_progress -= i;
339 }
340
341 void
342 vm_object_pip_wakeup(vm_object_t object)
343 {
344
345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346         object->paging_in_progress--;
347         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
348                 vm_object_clear_flag(object, OBJ_PIPWNT);
349                 wakeup(object);
350         }
351 }
352
353 void
354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356
357         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
358         if (i)
359                 object->paging_in_progress -= i;
360         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
361                 vm_object_clear_flag(object, OBJ_PIPWNT);
362                 wakeup(object);
363         }
364 }
365
366 void
367 vm_object_pip_wait(vm_object_t object, char *waitid)
368 {
369
370         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
371         while (object->paging_in_progress) {
372                 object->flags |= OBJ_PIPWNT;
373                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
374         }
375 }
376
377 /*
378  *      vm_object_allocate:
379  *
380  *      Returns a new object with the given size.
381  */
382 vm_object_t
383 vm_object_allocate(objtype_t type, vm_pindex_t size)
384 {
385         vm_object_t object;
386
387         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
388         _vm_object_allocate(type, size, object);
389         return (object);
390 }
391
392
393 /*
394  *      vm_object_reference:
395  *
396  *      Gets another reference to the given object.  Note: OBJ_DEAD
397  *      objects can be referenced during final cleaning.
398  */
399 void
400 vm_object_reference(vm_object_t object)
401 {
402         if (object == NULL)
403                 return;
404         VM_OBJECT_LOCK(object);
405         vm_object_reference_locked(object);
406         VM_OBJECT_UNLOCK(object);
407 }
408
409 /*
410  *      vm_object_reference_locked:
411  *
412  *      Gets another reference to the given object.
413  *
414  *      The object must be locked.
415  */
416 void
417 vm_object_reference_locked(vm_object_t object)
418 {
419         struct vnode *vp;
420
421         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422         object->ref_count++;
423         if (object->type == OBJT_VNODE) {
424                 vp = object->handle;
425                 vref(vp);
426         }
427 }
428
429 /*
430  * Handle deallocating an object of type OBJT_VNODE.
431  */
432 static void
433 vm_object_vndeallocate(vm_object_t object)
434 {
435         struct vnode *vp = (struct vnode *) object->handle;
436
437         VFS_ASSERT_GIANT(vp->v_mount);
438         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439         KASSERT(object->type == OBJT_VNODE,
440             ("vm_object_vndeallocate: not a vnode object"));
441         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
442 #ifdef INVARIANTS
443         if (object->ref_count == 0) {
444                 vprint("vm_object_vndeallocate", vp);
445                 panic("vm_object_vndeallocate: bad object reference count");
446         }
447 #endif
448
449         if (object->ref_count > 1) {
450                 object->ref_count--;
451                 VM_OBJECT_UNLOCK(object);
452                 /* vrele may need the vnode lock. */
453                 vrele(vp);
454         } else {
455                 vhold(vp);
456                 VM_OBJECT_UNLOCK(object);
457                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
458                 vdrop(vp);
459                 VM_OBJECT_LOCK(object);
460                 object->ref_count--;
461                 if (object->type == OBJT_DEAD) {
462                         VM_OBJECT_UNLOCK(object);
463                         VOP_UNLOCK(vp, 0);
464                 } else {
465                         if (object->ref_count == 0)
466                                 VOP_UNSET_TEXT(vp);
467                         VM_OBJECT_UNLOCK(object);
468                         vput(vp);
469                 }
470         }
471 }
472
473 /*
474  *      vm_object_deallocate:
475  *
476  *      Release a reference to the specified object,
477  *      gained either through a vm_object_allocate
478  *      or a vm_object_reference call.  When all references
479  *      are gone, storage associated with this object
480  *      may be relinquished.
481  *
482  *      No object may be locked.
483  */
484 void
485 vm_object_deallocate(vm_object_t object)
486 {
487         vm_object_t temp;
488
489         while (object != NULL) {
490                 int vfslocked;
491
492                 vfslocked = 0;
493         restart:
494                 VM_OBJECT_LOCK(object);
495                 if (object->type == OBJT_VNODE) {
496                         struct vnode *vp = (struct vnode *) object->handle;
497
498                         /*
499                          * Conditionally acquire Giant for a vnode-backed
500                          * object.  We have to be careful since the type of
501                          * a vnode object can change while the object is
502                          * unlocked.
503                          */
504                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
505                                 vfslocked = 1;
506                                 if (!mtx_trylock(&Giant)) {
507                                         VM_OBJECT_UNLOCK(object);
508                                         mtx_lock(&Giant);
509                                         goto restart;
510                                 }
511                         }
512                         vm_object_vndeallocate(object);
513                         VFS_UNLOCK_GIANT(vfslocked);
514                         return;
515                 } else
516                         /*
517                          * This is to handle the case that the object
518                          * changed type while we dropped its lock to
519                          * obtain Giant.
520                          */
521                         VFS_UNLOCK_GIANT(vfslocked);
522
523                 KASSERT(object->ref_count != 0,
524                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
525
526                 /*
527                  * If the reference count goes to 0 we start calling
528                  * vm_object_terminate() on the object chain.
529                  * A ref count of 1 may be a special case depending on the
530                  * shadow count being 0 or 1.
531                  */
532                 object->ref_count--;
533                 if (object->ref_count > 1) {
534                         VM_OBJECT_UNLOCK(object);
535                         return;
536                 } else if (object->ref_count == 1) {
537                         if (object->shadow_count == 0 &&
538                             object->handle == NULL &&
539                             (object->type == OBJT_DEFAULT ||
540                              object->type == OBJT_SWAP)) {
541                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
542                         } else if ((object->shadow_count == 1) &&
543                             (object->handle == NULL) &&
544                             (object->type == OBJT_DEFAULT ||
545                              object->type == OBJT_SWAP)) {
546                                 vm_object_t robject;
547
548                                 robject = LIST_FIRST(&object->shadow_head);
549                                 KASSERT(robject != NULL,
550                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
551                                          object->ref_count,
552                                          object->shadow_count));
553                                 if (!VM_OBJECT_TRYLOCK(robject)) {
554                                         /*
555                                          * Avoid a potential deadlock.
556                                          */
557                                         object->ref_count++;
558                                         VM_OBJECT_UNLOCK(object);
559                                         /*
560                                          * More likely than not the thread
561                                          * holding robject's lock has lower
562                                          * priority than the current thread.
563                                          * Let the lower priority thread run.
564                                          */
565                                         pause("vmo_de", 1);
566                                         continue;
567                                 }
568                                 /*
569                                  * Collapse object into its shadow unless its
570                                  * shadow is dead.  In that case, object will
571                                  * be deallocated by the thread that is
572                                  * deallocating its shadow.
573                                  */
574                                 if ((robject->flags & OBJ_DEAD) == 0 &&
575                                     (robject->handle == NULL) &&
576                                     (robject->type == OBJT_DEFAULT ||
577                                      robject->type == OBJT_SWAP)) {
578
579                                         robject->ref_count++;
580 retry:
581                                         if (robject->paging_in_progress) {
582                                                 VM_OBJECT_UNLOCK(object);
583                                                 vm_object_pip_wait(robject,
584                                                     "objde1");
585                                                 temp = robject->backing_object;
586                                                 if (object == temp) {
587                                                         VM_OBJECT_LOCK(object);
588                                                         goto retry;
589                                                 }
590                                         } else if (object->paging_in_progress) {
591                                                 VM_OBJECT_UNLOCK(robject);
592                                                 object->flags |= OBJ_PIPWNT;
593                                                 msleep(object,
594                                                     VM_OBJECT_MTX(object),
595                                                     PDROP | PVM, "objde2", 0);
596                                                 VM_OBJECT_LOCK(robject);
597                                                 temp = robject->backing_object;
598                                                 if (object == temp) {
599                                                         VM_OBJECT_LOCK(object);
600                                                         goto retry;
601                                                 }
602                                         } else
603                                                 VM_OBJECT_UNLOCK(object);
604
605                                         if (robject->ref_count == 1) {
606                                                 robject->ref_count--;
607                                                 object = robject;
608                                                 goto doterm;
609                                         }
610                                         object = robject;
611                                         vm_object_collapse(object);
612                                         VM_OBJECT_UNLOCK(object);
613                                         continue;
614                                 }
615                                 VM_OBJECT_UNLOCK(robject);
616                         }
617                         VM_OBJECT_UNLOCK(object);
618                         return;
619                 }
620 doterm:
621                 temp = object->backing_object;
622                 if (temp != NULL) {
623                         VM_OBJECT_LOCK(temp);
624                         LIST_REMOVE(object, shadow_list);
625                         temp->shadow_count--;
626                         VM_OBJECT_UNLOCK(temp);
627                         object->backing_object = NULL;
628                 }
629                 /*
630                  * Don't double-terminate, we could be in a termination
631                  * recursion due to the terminate having to sync data
632                  * to disk.
633                  */
634                 if ((object->flags & OBJ_DEAD) == 0)
635                         vm_object_terminate(object);
636                 else
637                         VM_OBJECT_UNLOCK(object);
638                 object = temp;
639         }
640 }
641
642 /*
643  *      vm_object_destroy removes the object from the global object list
644  *      and frees the space for the object.
645  */
646 void
647 vm_object_destroy(vm_object_t object)
648 {
649
650         /*
651          * Release the allocation charge.
652          */
653         if (object->cred != NULL) {
654                 swap_release_by_cred(object->charge, object->cred);
655                 object->charge = 0;
656                 crfree(object->cred);
657                 object->cred = NULL;
658         }
659
660         /*
661          * Free the space for the object.
662          */
663         uma_zfree(obj_zone, object);
664 }
665
666 /*
667  *      vm_object_terminate actually destroys the specified object, freeing
668  *      up all previously used resources.
669  *
670  *      The object must be locked.
671  *      This routine may block.
672  */
673 void
674 vm_object_terminate(vm_object_t object)
675 {
676         vm_page_t p, p_next;
677
678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679
680         /*
681          * Make sure no one uses us.
682          */
683         vm_object_set_flag(object, OBJ_DEAD);
684
685         /*
686          * wait for the pageout daemon to be done with the object
687          */
688         vm_object_pip_wait(object, "objtrm");
689
690         KASSERT(!object->paging_in_progress,
691                 ("vm_object_terminate: pageout in progress"));
692
693         /*
694          * Clean and free the pages, as appropriate. All references to the
695          * object are gone, so we don't need to lock it.
696          */
697         if (object->type == OBJT_VNODE) {
698                 struct vnode *vp = (struct vnode *)object->handle;
699
700                 /*
701                  * Clean pages and flush buffers.
702                  */
703                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704                 VM_OBJECT_UNLOCK(object);
705
706                 vinvalbuf(vp, V_SAVE, 0, 0);
707
708                 VM_OBJECT_LOCK(object);
709         }
710
711         KASSERT(object->ref_count == 0, 
712                 ("vm_object_terminate: object with references, ref_count=%d",
713                 object->ref_count));
714
715         /*
716          * Free any remaining pageable pages.  This also removes them from the
717          * paging queues.  However, don't free wired pages, just remove them
718          * from the object.  Rather than incrementally removing each page from
719          * the object, the page and object are reset to any empty state. 
720          */
721         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
722                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
723                     ("vm_object_terminate: freeing busy page %p", p));
724                 vm_page_lock(p);
725                 /*
726                  * Optimize the page's removal from the object by resetting
727                  * its "object" field.  Specifically, if the page is not
728                  * wired, then the effect of this assignment is that
729                  * vm_page_free()'s call to vm_page_remove() will return
730                  * immediately without modifying the page or the object.
731                  */ 
732                 p->object = NULL;
733                 if (p->wire_count == 0) {
734                         vm_page_free(p);
735                         PCPU_INC(cnt.v_pfree);
736                 }
737                 vm_page_unlock(p);
738         }
739         /*
740          * If the object contained any pages, then reset it to an empty state.
741          * None of the object's fields, including "resident_page_count", were
742          * modified by the preceding loop.
743          */
744         if (object->resident_page_count != 0) {
745                 object->root = NULL;
746                 TAILQ_INIT(&object->memq);
747                 object->resident_page_count = 0;
748                 if (object->type == OBJT_VNODE)
749                         vdrop(object->handle);
750         }
751
752 #if VM_NRESERVLEVEL > 0
753         if (__predict_false(!LIST_EMPTY(&object->rvq)))
754                 vm_reserv_break_all(object);
755 #endif
756         if (__predict_false(object->cache != NULL))
757                 vm_page_cache_free(object, 0, 0);
758
759         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
760             object->type == OBJT_SWAP,
761             ("%s: non-swap obj %p has cred", __func__, object));
762
763         /*
764          * Let the pager know object is dead.
765          */
766         vm_pager_deallocate(object);
767         VM_OBJECT_UNLOCK(object);
768
769         vm_object_destroy(object);
770 }
771
772 /*
773  * Make the page read-only so that we can clear the object flags.  However, if
774  * this is a nosync mmap then the object is likely to stay dirty so do not
775  * mess with the page and do not clear the object flags.  Returns TRUE if the
776  * page should be flushed, and FALSE otherwise.
777  */
778 static boolean_t
779 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
780 {
781
782         /*
783          * If we have been asked to skip nosync pages and this is a
784          * nosync page, skip it.  Note that the object flags were not
785          * cleared in this case so we do not have to set them.
786          */
787         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
788                 *clearobjflags = FALSE;
789                 return (FALSE);
790         } else {
791                 pmap_remove_write(p);
792                 return (p->dirty != 0);
793         }
794 }
795
796 /*
797  *      vm_object_page_clean
798  *
799  *      Clean all dirty pages in the specified range of object.  Leaves page 
800  *      on whatever queue it is currently on.   If NOSYNC is set then do not
801  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
802  *      leaving the object dirty.
803  *
804  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
805  *      synchronous clustering mode implementation.
806  *
807  *      Odd semantics: if start == end, we clean everything.
808  *
809  *      The object must be locked.
810  *
811  *      Returns FALSE if some page from the range was not written, as
812  *      reported by the pager, and TRUE otherwise.
813  */
814 boolean_t
815 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
816     int flags)
817 {
818         vm_page_t np, p;
819         vm_pindex_t pi, tend, tstart;
820         int curgeneration, n, pagerflags;
821         boolean_t clearobjflags, eio, res;
822
823         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
824         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
825         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
826         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
827             object->resident_page_count == 0)
828                 return (TRUE);
829
830         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
831             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
832         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
833
834         tstart = OFF_TO_IDX(start);
835         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
836         clearobjflags = tstart == 0 && tend >= object->size;
837         res = TRUE;
838
839 rescan:
840         curgeneration = object->generation;
841
842         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
843                 pi = p->pindex;
844                 if (pi >= tend)
845                         break;
846                 np = TAILQ_NEXT(p, listq);
847                 if (p->valid == 0)
848                         continue;
849                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
850                         if (object->generation != curgeneration) {
851                                 if ((flags & OBJPC_SYNC) != 0)
852                                         goto rescan;
853                                 else
854                                         clearobjflags = FALSE;
855                         }
856                         np = vm_page_find_least(object, pi);
857                         continue;
858                 }
859                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
860                         continue;
861
862                 n = vm_object_page_collect_flush(object, p, pagerflags,
863                     flags, &clearobjflags, &eio);
864                 if (eio) {
865                         res = FALSE;
866                         clearobjflags = FALSE;
867                 }
868                 if (object->generation != curgeneration) {
869                         if ((flags & OBJPC_SYNC) != 0)
870                                 goto rescan;
871                         else
872                                 clearobjflags = FALSE;
873                 }
874
875                 /*
876                  * If the VOP_PUTPAGES() did a truncated write, so
877                  * that even the first page of the run is not fully
878                  * written, vm_pageout_flush() returns 0 as the run
879                  * length.  Since the condition that caused truncated
880                  * write may be permanent, e.g. exhausted free space,
881                  * accepting n == 0 would cause an infinite loop.
882                  *
883                  * Forwarding the iterator leaves the unwritten page
884                  * behind, but there is not much we can do there if
885                  * filesystem refuses to write it.
886                  */
887                 if (n == 0) {
888                         n = 1;
889                         clearobjflags = FALSE;
890                 }
891                 np = vm_page_find_least(object, pi + n);
892         }
893 #if 0
894         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
895 #endif
896
897         if (clearobjflags)
898                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
899         return (res);
900 }
901
902 static int
903 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
904     int flags, boolean_t *clearobjflags, boolean_t *eio)
905 {
906         vm_page_t ma[vm_pageout_page_count], p_first, tp;
907         int count, i, mreq, runlen;
908
909         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
910         vm_page_lock_assert(p, MA_NOTOWNED);
911         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
912
913         count = 1;
914         mreq = 0;
915
916         for (tp = p; count < vm_pageout_page_count; count++) {
917                 tp = vm_page_next(tp);
918                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
919                         break;
920                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
921                         break;
922         }
923
924         for (p_first = p; count < vm_pageout_page_count; count++) {
925                 tp = vm_page_prev(p_first);
926                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
927                         break;
928                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
929                         break;
930                 p_first = tp;
931                 mreq++;
932         }
933
934         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
935                 ma[i] = tp;
936
937         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
938         return (runlen);
939 }
940
941 /*
942  * Note that there is absolutely no sense in writing out
943  * anonymous objects, so we track down the vnode object
944  * to write out.
945  * We invalidate (remove) all pages from the address space
946  * for semantic correctness.
947  *
948  * If the backing object is a device object with unmanaged pages, then any
949  * mappings to the specified range of pages must be removed before this
950  * function is called.
951  *
952  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
953  * may start out with a NULL object.
954  */
955 boolean_t
956 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
957     boolean_t syncio, boolean_t invalidate)
958 {
959         vm_object_t backing_object;
960         struct vnode *vp;
961         struct mount *mp;
962         int error, flags, fsync_after;
963         boolean_t res;
964
965         if (object == NULL)
966                 return (TRUE);
967         res = TRUE;
968         error = 0;
969         VM_OBJECT_LOCK(object);
970         while ((backing_object = object->backing_object) != NULL) {
971                 VM_OBJECT_LOCK(backing_object);
972                 offset += object->backing_object_offset;
973                 VM_OBJECT_UNLOCK(object);
974                 object = backing_object;
975                 if (object->size < OFF_TO_IDX(offset + size))
976                         size = IDX_TO_OFF(object->size) - offset;
977         }
978         /*
979          * Flush pages if writing is allowed, invalidate them
980          * if invalidation requested.  Pages undergoing I/O
981          * will be ignored by vm_object_page_remove().
982          *
983          * We cannot lock the vnode and then wait for paging
984          * to complete without deadlocking against vm_fault.
985          * Instead we simply call vm_object_page_remove() and
986          * allow it to block internally on a page-by-page
987          * basis when it encounters pages undergoing async
988          * I/O.
989          */
990         if (object->type == OBJT_VNODE &&
991             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
992                 int vfslocked;
993                 vp = object->handle;
994                 VM_OBJECT_UNLOCK(object);
995                 (void) vn_start_write(vp, &mp, V_WAIT);
996                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
997                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
998                 if (syncio && !invalidate && offset == 0 &&
999                     OFF_TO_IDX(size) == object->size) {
1000                         /*
1001                          * If syncing the whole mapping of the file,
1002                          * it is faster to schedule all the writes in
1003                          * async mode, also allowing the clustering,
1004                          * and then wait for i/o to complete.
1005                          */
1006                         flags = 0;
1007                         fsync_after = TRUE;
1008                 } else {
1009                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1010                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1011                         fsync_after = FALSE;
1012                 }
1013                 VM_OBJECT_LOCK(object);
1014                 res = vm_object_page_clean(object, offset, offset + size,
1015                     flags);
1016                 VM_OBJECT_UNLOCK(object);
1017                 if (fsync_after)
1018                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1019                 VOP_UNLOCK(vp, 0);
1020                 VFS_UNLOCK_GIANT(vfslocked);
1021                 vn_finished_write(mp);
1022                 if (error != 0)
1023                         res = FALSE;
1024                 VM_OBJECT_LOCK(object);
1025         }
1026         if ((object->type == OBJT_VNODE ||
1027              object->type == OBJT_DEVICE) && invalidate) {
1028                 if (object->type == OBJT_DEVICE)
1029                         /*
1030                          * The option OBJPR_NOTMAPPED must be passed here
1031                          * because vm_object_page_remove() cannot remove
1032                          * unmanaged mappings.
1033                          */
1034                         flags = OBJPR_NOTMAPPED;
1035                 else if (old_msync)
1036                         flags = OBJPR_NOTWIRED;
1037                 else
1038                         flags = OBJPR_CLEANONLY | OBJPR_NOTWIRED;
1039                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1040                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1041         }
1042         VM_OBJECT_UNLOCK(object);
1043         return (res);
1044 }
1045
1046 /*
1047  *      vm_object_madvise:
1048  *
1049  *      Implements the madvise function at the object/page level.
1050  *
1051  *      MADV_WILLNEED   (any object)
1052  *
1053  *          Activate the specified pages if they are resident.
1054  *
1055  *      MADV_DONTNEED   (any object)
1056  *
1057  *          Deactivate the specified pages if they are resident.
1058  *
1059  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1060  *                       OBJ_ONEMAPPING only)
1061  *
1062  *          Deactivate and clean the specified pages if they are
1063  *          resident.  This permits the process to reuse the pages
1064  *          without faulting or the kernel to reclaim the pages
1065  *          without I/O.
1066  */
1067 void
1068 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1069     int advise)
1070 {
1071         vm_pindex_t tpindex;
1072         vm_object_t backing_object, tobject;
1073         vm_page_t m;
1074
1075         if (object == NULL)
1076                 return;
1077         VM_OBJECT_LOCK(object);
1078         /*
1079          * Locate and adjust resident pages
1080          */
1081         for (; pindex < end; pindex += 1) {
1082 relookup:
1083                 tobject = object;
1084                 tpindex = pindex;
1085 shadowlookup:
1086                 /*
1087                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1088                  * and those pages must be OBJ_ONEMAPPING.
1089                  */
1090                 if (advise == MADV_FREE) {
1091                         if ((tobject->type != OBJT_DEFAULT &&
1092                              tobject->type != OBJT_SWAP) ||
1093                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1094                                 goto unlock_tobject;
1095                         }
1096                 } else if (tobject->type == OBJT_PHYS)
1097                         goto unlock_tobject;
1098                 m = vm_page_lookup(tobject, tpindex);
1099                 if (m == NULL && advise == MADV_WILLNEED) {
1100                         /*
1101                          * If the page is cached, reactivate it.
1102                          */
1103                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1104                             VM_ALLOC_NOBUSY);
1105                 }
1106                 if (m == NULL) {
1107                         /*
1108                          * There may be swap even if there is no backing page
1109                          */
1110                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1111                                 swap_pager_freespace(tobject, tpindex, 1);
1112                         /*
1113                          * next object
1114                          */
1115                         backing_object = tobject->backing_object;
1116                         if (backing_object == NULL)
1117                                 goto unlock_tobject;
1118                         VM_OBJECT_LOCK(backing_object);
1119                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1120                         if (tobject != object)
1121                                 VM_OBJECT_UNLOCK(tobject);
1122                         tobject = backing_object;
1123                         goto shadowlookup;
1124                 } else if (m->valid != VM_PAGE_BITS_ALL)
1125                         goto unlock_tobject;
1126                 /*
1127                  * If the page is not in a normal state, skip it.
1128                  */
1129                 vm_page_lock(m);
1130                 if (m->hold_count != 0 || m->wire_count != 0) {
1131                         vm_page_unlock(m);
1132                         goto unlock_tobject;
1133                 }
1134                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1135                     ("vm_object_madvise: page %p is fictitious", m));
1136                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1137                     ("vm_object_madvise: page %p is not managed", m));
1138                 if ((m->oflags & VPO_BUSY) || m->busy) {
1139                         if (advise == MADV_WILLNEED) {
1140                                 /*
1141                                  * Reference the page before unlocking and
1142                                  * sleeping so that the page daemon is less
1143                                  * likely to reclaim it. 
1144                                  */
1145                                 vm_page_aflag_set(m, PGA_REFERENCED);
1146                         }
1147                         vm_page_unlock(m);
1148                         if (object != tobject)
1149                                 VM_OBJECT_UNLOCK(object);
1150                         m->oflags |= VPO_WANTED;
1151                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1152                             0);
1153                         VM_OBJECT_LOCK(object);
1154                         goto relookup;
1155                 }
1156                 if (advise == MADV_WILLNEED) {
1157                         vm_page_activate(m);
1158                 } else if (advise == MADV_DONTNEED) {
1159                         vm_page_dontneed(m);
1160                 } else if (advise == MADV_FREE) {
1161                         /*
1162                          * Mark the page clean.  This will allow the page
1163                          * to be freed up by the system.  However, such pages
1164                          * are often reused quickly by malloc()/free()
1165                          * so we do not do anything that would cause
1166                          * a page fault if we can help it.
1167                          *
1168                          * Specifically, we do not try to actually free
1169                          * the page now nor do we try to put it in the
1170                          * cache (which would cause a page fault on reuse).
1171                          *
1172                          * But we do make the page is freeable as we
1173                          * can without actually taking the step of unmapping
1174                          * it.
1175                          */
1176                         pmap_clear_modify(m);
1177                         m->dirty = 0;
1178                         m->act_count = 0;
1179                         vm_page_dontneed(m);
1180                 }
1181                 vm_page_unlock(m);
1182                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1183                         swap_pager_freespace(tobject, tpindex, 1);
1184 unlock_tobject:
1185                 if (tobject != object)
1186                         VM_OBJECT_UNLOCK(tobject);
1187         }       
1188         VM_OBJECT_UNLOCK(object);
1189 }
1190
1191 /*
1192  *      vm_object_shadow:
1193  *
1194  *      Create a new object which is backed by the
1195  *      specified existing object range.  The source
1196  *      object reference is deallocated.
1197  *
1198  *      The new object and offset into that object
1199  *      are returned in the source parameters.
1200  */
1201 void
1202 vm_object_shadow(
1203         vm_object_t *object,    /* IN/OUT */
1204         vm_ooffset_t *offset,   /* IN/OUT */
1205         vm_size_t length)
1206 {
1207         vm_object_t source;
1208         vm_object_t result;
1209
1210         source = *object;
1211
1212         /*
1213          * Don't create the new object if the old object isn't shared.
1214          */
1215         if (source != NULL) {
1216                 VM_OBJECT_LOCK(source);
1217                 if (source->ref_count == 1 &&
1218                     source->handle == NULL &&
1219                     (source->type == OBJT_DEFAULT ||
1220                      source->type == OBJT_SWAP)) {
1221                         VM_OBJECT_UNLOCK(source);
1222                         return;
1223                 }
1224                 VM_OBJECT_UNLOCK(source);
1225         }
1226
1227         /*
1228          * Allocate a new object with the given length.
1229          */
1230         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1231
1232         /*
1233          * The new object shadows the source object, adding a reference to it.
1234          * Our caller changes his reference to point to the new object,
1235          * removing a reference to the source object.  Net result: no change
1236          * of reference count.
1237          *
1238          * Try to optimize the result object's page color when shadowing
1239          * in order to maintain page coloring consistency in the combined 
1240          * shadowed object.
1241          */
1242         result->backing_object = source;
1243         /*
1244          * Store the offset into the source object, and fix up the offset into
1245          * the new object.
1246          */
1247         result->backing_object_offset = *offset;
1248         if (source != NULL) {
1249                 VM_OBJECT_LOCK(source);
1250                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1251                 source->shadow_count++;
1252 #if VM_NRESERVLEVEL > 0
1253                 result->flags |= source->flags & OBJ_COLORED;
1254                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1255                     ((1 << (VM_NFREEORDER - 1)) - 1);
1256 #endif
1257                 VM_OBJECT_UNLOCK(source);
1258         }
1259
1260
1261         /*
1262          * Return the new things
1263          */
1264         *offset = 0;
1265         *object = result;
1266 }
1267
1268 /*
1269  *      vm_object_split:
1270  *
1271  * Split the pages in a map entry into a new object.  This affords
1272  * easier removal of unused pages, and keeps object inheritance from
1273  * being a negative impact on memory usage.
1274  */
1275 void
1276 vm_object_split(vm_map_entry_t entry)
1277 {
1278         vm_page_t m, m_next;
1279         vm_object_t orig_object, new_object, source;
1280         vm_pindex_t idx, offidxstart;
1281         vm_size_t size;
1282
1283         orig_object = entry->object.vm_object;
1284         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1285                 return;
1286         if (orig_object->ref_count <= 1)
1287                 return;
1288         VM_OBJECT_UNLOCK(orig_object);
1289
1290         offidxstart = OFF_TO_IDX(entry->offset);
1291         size = atop(entry->end - entry->start);
1292
1293         /*
1294          * If swap_pager_copy() is later called, it will convert new_object
1295          * into a swap object.
1296          */
1297         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1298
1299         /*
1300          * At this point, the new object is still private, so the order in
1301          * which the original and new objects are locked does not matter.
1302          */
1303         VM_OBJECT_LOCK(new_object);
1304         VM_OBJECT_LOCK(orig_object);
1305         source = orig_object->backing_object;
1306         if (source != NULL) {
1307                 VM_OBJECT_LOCK(source);
1308                 if ((source->flags & OBJ_DEAD) != 0) {
1309                         VM_OBJECT_UNLOCK(source);
1310                         VM_OBJECT_UNLOCK(orig_object);
1311                         VM_OBJECT_UNLOCK(new_object);
1312                         vm_object_deallocate(new_object);
1313                         VM_OBJECT_LOCK(orig_object);
1314                         return;
1315                 }
1316                 LIST_INSERT_HEAD(&source->shadow_head,
1317                                   new_object, shadow_list);
1318                 source->shadow_count++;
1319                 vm_object_reference_locked(source);     /* for new_object */
1320                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1321                 VM_OBJECT_UNLOCK(source);
1322                 new_object->backing_object_offset = 
1323                         orig_object->backing_object_offset + entry->offset;
1324                 new_object->backing_object = source;
1325         }
1326         if (orig_object->cred != NULL) {
1327                 new_object->cred = orig_object->cred;
1328                 crhold(orig_object->cred);
1329                 new_object->charge = ptoa(size);
1330                 KASSERT(orig_object->charge >= ptoa(size),
1331                     ("orig_object->charge < 0"));
1332                 orig_object->charge -= ptoa(size);
1333         }
1334 retry:
1335         m = vm_page_find_least(orig_object, offidxstart);
1336         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1337             m = m_next) {
1338                 m_next = TAILQ_NEXT(m, listq);
1339
1340                 /*
1341                  * We must wait for pending I/O to complete before we can
1342                  * rename the page.
1343                  *
1344                  * We do not have to VM_PROT_NONE the page as mappings should
1345                  * not be changed by this operation.
1346                  */
1347                 if ((m->oflags & VPO_BUSY) || m->busy) {
1348                         VM_OBJECT_UNLOCK(new_object);
1349                         m->oflags |= VPO_WANTED;
1350                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1351                         VM_OBJECT_LOCK(new_object);
1352                         goto retry;
1353                 }
1354                 vm_page_lock(m);
1355                 vm_page_rename(m, new_object, idx);
1356                 vm_page_unlock(m);
1357                 /* page automatically made dirty by rename and cache handled */
1358                 vm_page_busy(m);
1359         }
1360         if (orig_object->type == OBJT_SWAP) {
1361                 /*
1362                  * swap_pager_copy() can sleep, in which case the orig_object's
1363                  * and new_object's locks are released and reacquired. 
1364                  */
1365                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1366
1367                 /*
1368                  * Transfer any cached pages from orig_object to new_object.
1369                  */
1370                 if (__predict_false(orig_object->cache != NULL))
1371                         vm_page_cache_transfer(orig_object, offidxstart,
1372                             new_object);
1373         }
1374         VM_OBJECT_UNLOCK(orig_object);
1375         TAILQ_FOREACH(m, &new_object->memq, listq)
1376                 vm_page_wakeup(m);
1377         VM_OBJECT_UNLOCK(new_object);
1378         entry->object.vm_object = new_object;
1379         entry->offset = 0LL;
1380         vm_object_deallocate(orig_object);
1381         VM_OBJECT_LOCK(new_object);
1382 }
1383
1384 #define OBSC_TEST_ALL_SHADOWED  0x0001
1385 #define OBSC_COLLAPSE_NOWAIT    0x0002
1386 #define OBSC_COLLAPSE_WAIT      0x0004
1387
1388 static int
1389 vm_object_backing_scan(vm_object_t object, int op)
1390 {
1391         int r = 1;
1392         vm_page_t p;
1393         vm_object_t backing_object;
1394         vm_pindex_t backing_offset_index;
1395
1396         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1397         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1398
1399         backing_object = object->backing_object;
1400         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1401
1402         /*
1403          * Initial conditions
1404          */
1405         if (op & OBSC_TEST_ALL_SHADOWED) {
1406                 /*
1407                  * We do not want to have to test for the existence of cache
1408                  * or swap pages in the backing object.  XXX but with the
1409                  * new swapper this would be pretty easy to do.
1410                  *
1411                  * XXX what about anonymous MAP_SHARED memory that hasn't
1412                  * been ZFOD faulted yet?  If we do not test for this, the
1413                  * shadow test may succeed! XXX
1414                  */
1415                 if (backing_object->type != OBJT_DEFAULT) {
1416                         return (0);
1417                 }
1418         }
1419         if (op & OBSC_COLLAPSE_WAIT) {
1420                 vm_object_set_flag(backing_object, OBJ_DEAD);
1421         }
1422
1423         /*
1424          * Our scan
1425          */
1426         p = TAILQ_FIRST(&backing_object->memq);
1427         while (p) {
1428                 vm_page_t next = TAILQ_NEXT(p, listq);
1429                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1430
1431                 if (op & OBSC_TEST_ALL_SHADOWED) {
1432                         vm_page_t pp;
1433
1434                         /*
1435                          * Ignore pages outside the parent object's range
1436                          * and outside the parent object's mapping of the 
1437                          * backing object.
1438                          *
1439                          * note that we do not busy the backing object's
1440                          * page.
1441                          */
1442                         if (
1443                             p->pindex < backing_offset_index ||
1444                             new_pindex >= object->size
1445                         ) {
1446                                 p = next;
1447                                 continue;
1448                         }
1449
1450                         /*
1451                          * See if the parent has the page or if the parent's
1452                          * object pager has the page.  If the parent has the
1453                          * page but the page is not valid, the parent's
1454                          * object pager must have the page.
1455                          *
1456                          * If this fails, the parent does not completely shadow
1457                          * the object and we might as well give up now.
1458                          */
1459
1460                         pp = vm_page_lookup(object, new_pindex);
1461                         if (
1462                             (pp == NULL || pp->valid == 0) &&
1463                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1464                         ) {
1465                                 r = 0;
1466                                 break;
1467                         }
1468                 }
1469
1470                 /*
1471                  * Check for busy page
1472                  */
1473                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1474                         vm_page_t pp;
1475
1476                         if (op & OBSC_COLLAPSE_NOWAIT) {
1477                                 if ((p->oflags & VPO_BUSY) ||
1478                                     !p->valid || 
1479                                     p->busy) {
1480                                         p = next;
1481                                         continue;
1482                                 }
1483                         } else if (op & OBSC_COLLAPSE_WAIT) {
1484                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1485                                         VM_OBJECT_UNLOCK(object);
1486                                         p->oflags |= VPO_WANTED;
1487                                         msleep(p, VM_OBJECT_MTX(backing_object),
1488                                             PDROP | PVM, "vmocol", 0);
1489                                         VM_OBJECT_LOCK(object);
1490                                         VM_OBJECT_LOCK(backing_object);
1491                                         /*
1492                                          * If we slept, anything could have
1493                                          * happened.  Since the object is
1494                                          * marked dead, the backing offset
1495                                          * should not have changed so we
1496                                          * just restart our scan.
1497                                          */
1498                                         p = TAILQ_FIRST(&backing_object->memq);
1499                                         continue;
1500                                 }
1501                         }
1502
1503                         KASSERT(
1504                             p->object == backing_object,
1505                             ("vm_object_backing_scan: object mismatch")
1506                         );
1507
1508                         /*
1509                          * Destroy any associated swap
1510                          */
1511                         if (backing_object->type == OBJT_SWAP) {
1512                                 swap_pager_freespace(
1513                                     backing_object, 
1514                                     p->pindex,
1515                                     1
1516                                 );
1517                         }
1518
1519                         if (
1520                             p->pindex < backing_offset_index ||
1521                             new_pindex >= object->size
1522                         ) {
1523                                 /*
1524                                  * Page is out of the parent object's range, we 
1525                                  * can simply destroy it. 
1526                                  */
1527                                 vm_page_lock(p);
1528                                 KASSERT(!pmap_page_is_mapped(p),
1529                                     ("freeing mapped page %p", p));
1530                                 if (p->wire_count == 0)
1531                                         vm_page_free(p);
1532                                 else
1533                                         vm_page_remove(p);
1534                                 vm_page_unlock(p);
1535                                 p = next;
1536                                 continue;
1537                         }
1538
1539                         pp = vm_page_lookup(object, new_pindex);
1540                         if (
1541                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1542                             (pp != NULL && pp->valid == 0)
1543                         ) {
1544                                 /*
1545                                  * The page in the parent is not (yet) valid.
1546                                  * We don't know anything about the state of
1547                                  * the original page.  It might be mapped,
1548                                  * so we must avoid the next if here.
1549                                  *
1550                                  * This is due to a race in vm_fault() where
1551                                  * we must unbusy the original (backing_obj)
1552                                  * page before we can (re)lock the parent.
1553                                  * Hence we can get here.
1554                                  */
1555                                 p = next;
1556                                 continue;
1557                         }
1558                         if (
1559                             pp != NULL ||
1560                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1561                         ) {
1562                                 /*
1563                                  * page already exists in parent OR swap exists
1564                                  * for this location in the parent.  Destroy 
1565                                  * the original page from the backing object.
1566                                  *
1567                                  * Leave the parent's page alone
1568                                  */
1569                                 vm_page_lock(p);
1570                                 KASSERT(!pmap_page_is_mapped(p),
1571                                     ("freeing mapped page %p", p));
1572                                 if (p->wire_count == 0)
1573                                         vm_page_free(p);
1574                                 else
1575                                         vm_page_remove(p);
1576                                 vm_page_unlock(p);
1577                                 p = next;
1578                                 continue;
1579                         }
1580
1581 #if VM_NRESERVLEVEL > 0
1582                         /*
1583                          * Rename the reservation.
1584                          */
1585                         vm_reserv_rename(p, object, backing_object,
1586                             backing_offset_index);
1587 #endif
1588
1589                         /*
1590                          * Page does not exist in parent, rename the
1591                          * page from the backing object to the main object. 
1592                          *
1593                          * If the page was mapped to a process, it can remain 
1594                          * mapped through the rename.
1595                          */
1596                         vm_page_lock(p);
1597                         vm_page_rename(p, object, new_pindex);
1598                         vm_page_unlock(p);
1599                         /* page automatically made dirty by rename */
1600                 }
1601                 p = next;
1602         }
1603         return (r);
1604 }
1605
1606
1607 /*
1608  * this version of collapse allows the operation to occur earlier and
1609  * when paging_in_progress is true for an object...  This is not a complete
1610  * operation, but should plug 99.9% of the rest of the leaks.
1611  */
1612 static void
1613 vm_object_qcollapse(vm_object_t object)
1614 {
1615         vm_object_t backing_object = object->backing_object;
1616
1617         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1618         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1619
1620         if (backing_object->ref_count != 1)
1621                 return;
1622
1623         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1624 }
1625
1626 /*
1627  *      vm_object_collapse:
1628  *
1629  *      Collapse an object with the object backing it.
1630  *      Pages in the backing object are moved into the
1631  *      parent, and the backing object is deallocated.
1632  */
1633 void
1634 vm_object_collapse(vm_object_t object)
1635 {
1636         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1637         
1638         while (TRUE) {
1639                 vm_object_t backing_object;
1640
1641                 /*
1642                  * Verify that the conditions are right for collapse:
1643                  *
1644                  * The object exists and the backing object exists.
1645                  */
1646                 if ((backing_object = object->backing_object) == NULL)
1647                         break;
1648
1649                 /*
1650                  * we check the backing object first, because it is most likely
1651                  * not collapsable.
1652                  */
1653                 VM_OBJECT_LOCK(backing_object);
1654                 if (backing_object->handle != NULL ||
1655                     (backing_object->type != OBJT_DEFAULT &&
1656                      backing_object->type != OBJT_SWAP) ||
1657                     (backing_object->flags & OBJ_DEAD) ||
1658                     object->handle != NULL ||
1659                     (object->type != OBJT_DEFAULT &&
1660                      object->type != OBJT_SWAP) ||
1661                     (object->flags & OBJ_DEAD)) {
1662                         VM_OBJECT_UNLOCK(backing_object);
1663                         break;
1664                 }
1665
1666                 if (
1667                     object->paging_in_progress != 0 ||
1668                     backing_object->paging_in_progress != 0
1669                 ) {
1670                         vm_object_qcollapse(object);
1671                         VM_OBJECT_UNLOCK(backing_object);
1672                         break;
1673                 }
1674                 /*
1675                  * We know that we can either collapse the backing object (if
1676                  * the parent is the only reference to it) or (perhaps) have
1677                  * the parent bypass the object if the parent happens to shadow
1678                  * all the resident pages in the entire backing object.
1679                  *
1680                  * This is ignoring pager-backed pages such as swap pages.
1681                  * vm_object_backing_scan fails the shadowing test in this
1682                  * case.
1683                  */
1684                 if (backing_object->ref_count == 1) {
1685                         /*
1686                          * If there is exactly one reference to the backing
1687                          * object, we can collapse it into the parent.  
1688                          */
1689                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1690
1691 #if VM_NRESERVLEVEL > 0
1692                         /*
1693                          * Break any reservations from backing_object.
1694                          */
1695                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1696                                 vm_reserv_break_all(backing_object);
1697 #endif
1698
1699                         /*
1700                          * Move the pager from backing_object to object.
1701                          */
1702                         if (backing_object->type == OBJT_SWAP) {
1703                                 /*
1704                                  * swap_pager_copy() can sleep, in which case
1705                                  * the backing_object's and object's locks are
1706                                  * released and reacquired.
1707                                  */
1708                                 swap_pager_copy(
1709                                     backing_object,
1710                                     object,
1711                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1712
1713                                 /*
1714                                  * Free any cached pages from backing_object.
1715                                  */
1716                                 if (__predict_false(backing_object->cache != NULL))
1717                                         vm_page_cache_free(backing_object, 0, 0);
1718                         }
1719                         /*
1720                          * Object now shadows whatever backing_object did.
1721                          * Note that the reference to 
1722                          * backing_object->backing_object moves from within 
1723                          * backing_object to within object.
1724                          */
1725                         LIST_REMOVE(object, shadow_list);
1726                         backing_object->shadow_count--;
1727                         if (backing_object->backing_object) {
1728                                 VM_OBJECT_LOCK(backing_object->backing_object);
1729                                 LIST_REMOVE(backing_object, shadow_list);
1730                                 LIST_INSERT_HEAD(
1731                                     &backing_object->backing_object->shadow_head,
1732                                     object, shadow_list);
1733                                 /*
1734                                  * The shadow_count has not changed.
1735                                  */
1736                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1737                         }
1738                         object->backing_object = backing_object->backing_object;
1739                         object->backing_object_offset +=
1740                             backing_object->backing_object_offset;
1741
1742                         /*
1743                          * Discard backing_object.
1744                          *
1745                          * Since the backing object has no pages, no pager left,
1746                          * and no object references within it, all that is
1747                          * necessary is to dispose of it.
1748                          */
1749                         KASSERT(backing_object->ref_count == 1, (
1750 "backing_object %p was somehow re-referenced during collapse!",
1751                             backing_object));
1752                         backing_object->type = OBJT_DEAD;
1753                         backing_object->ref_count = 0;
1754                         VM_OBJECT_UNLOCK(backing_object);
1755                         vm_object_destroy(backing_object);
1756
1757                         object_collapses++;
1758                 } else {
1759                         vm_object_t new_backing_object;
1760
1761                         /*
1762                          * If we do not entirely shadow the backing object,
1763                          * there is nothing we can do so we give up.
1764                          */
1765                         if (object->resident_page_count != object->size &&
1766                             vm_object_backing_scan(object,
1767                             OBSC_TEST_ALL_SHADOWED) == 0) {
1768                                 VM_OBJECT_UNLOCK(backing_object);
1769                                 break;
1770                         }
1771
1772                         /*
1773                          * Make the parent shadow the next object in the
1774                          * chain.  Deallocating backing_object will not remove
1775                          * it, since its reference count is at least 2.
1776                          */
1777                         LIST_REMOVE(object, shadow_list);
1778                         backing_object->shadow_count--;
1779
1780                         new_backing_object = backing_object->backing_object;
1781                         if ((object->backing_object = new_backing_object) != NULL) {
1782                                 VM_OBJECT_LOCK(new_backing_object);
1783                                 LIST_INSERT_HEAD(
1784                                     &new_backing_object->shadow_head,
1785                                     object,
1786                                     shadow_list
1787                                 );
1788                                 new_backing_object->shadow_count++;
1789                                 vm_object_reference_locked(new_backing_object);
1790                                 VM_OBJECT_UNLOCK(new_backing_object);
1791                                 object->backing_object_offset +=
1792                                         backing_object->backing_object_offset;
1793                         }
1794
1795                         /*
1796                          * Drop the reference count on backing_object. Since
1797                          * its ref_count was at least 2, it will not vanish.
1798                          */
1799                         backing_object->ref_count--;
1800                         VM_OBJECT_UNLOCK(backing_object);
1801                         object_bypasses++;
1802                 }
1803
1804                 /*
1805                  * Try again with this object's new backing object.
1806                  */
1807         }
1808 }
1809
1810 /*
1811  *      vm_object_page_remove:
1812  *
1813  *      For the given object, either frees or invalidates each of the
1814  *      specified pages.  In general, a page is freed.  However, if a page is
1815  *      wired for any reason other than the existence of a managed, wired
1816  *      mapping, then it may be invalidated but not removed from the object.
1817  *      Pages are specified by the given range ["start", "end") and the option
1818  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1819  *      extends from "start" to the end of the object.  If the option
1820  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1821  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1822  *      specified, then the pages within the specified range must have no
1823  *      mappings.  Otherwise, if this option is not specified, any mappings to
1824  *      the specified pages are removed before the pages are freed or
1825  *      invalidated.
1826  *
1827  *      In general, this operation should only be performed on objects that
1828  *      contain managed pages.  There are, however, two exceptions.  First, it
1829  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1830  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1831  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1832  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1833  *
1834  *      The object must be locked.
1835  */
1836 void
1837 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1838     int options)
1839 {
1840         vm_page_t p, next;
1841         int wirings;
1842
1843         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1844         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_PHYS) ||
1845             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1846             ("vm_object_page_remove: illegal options for object %p", object));
1847         if (object->resident_page_count == 0)
1848                 goto skipmemq;
1849         vm_object_pip_add(object, 1);
1850 again:
1851         p = vm_page_find_least(object, start);
1852
1853         /*
1854          * Here, the variable "p" is either (1) the page with the least pindex
1855          * greater than or equal to the parameter "start" or (2) NULL. 
1856          */
1857         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1858                 next = TAILQ_NEXT(p, listq);
1859
1860                 /*
1861                  * If the page is wired for any reason besides the existence
1862                  * of managed, wired mappings, then it cannot be freed.  For
1863                  * example, fictitious pages, which represent device memory,
1864                  * are inherently wired and cannot be freed.  They can,
1865                  * however, be invalidated if the option OBJPR_CLEANONLY is
1866                  * not specified.
1867                  */
1868                 vm_page_lock(p);
1869                 if ((wirings = p->wire_count) != 0 &&
1870                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1871                         if ((options & (OBJPR_NOTWIRED | OBJPR_NOTMAPPED)) ==
1872                             0) {
1873                                 pmap_remove_all(p);
1874                                 /* Account for removal of wired mappings. */
1875                                 if (wirings != 0)
1876                                         p->wire_count -= wirings;
1877                         }
1878                         if ((options & OBJPR_CLEANONLY) == 0) {
1879                                 p->valid = 0;
1880                                 vm_page_undirty(p);
1881                         }
1882                         goto next;
1883                 }
1884                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1885                         goto again;
1886                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1887                     ("vm_object_page_remove: page %p is fictitious", p));
1888                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1889                         if ((options & OBJPR_NOTMAPPED) == 0)
1890                                 pmap_remove_write(p);
1891                         if (p->dirty)
1892                                 goto next;
1893                 }
1894                 if ((options & OBJPR_NOTMAPPED) == 0) {
1895                         if ((options & OBJPR_NOTWIRED) != 0 && wirings != 0)
1896                                 goto next;
1897                         pmap_remove_all(p);
1898                         /* Account for removal of wired mappings. */
1899                         if (wirings != 0) {
1900                                 KASSERT(p->wire_count == wirings,
1901                                     ("inconsistent wire count %d %d %p",
1902                                     p->wire_count, wirings, p));
1903                                 p->wire_count = 0;
1904                                 atomic_subtract_int(&cnt.v_wire_count, 1);
1905                         }
1906                 }
1907                 vm_page_free(p);
1908 next:
1909                 vm_page_unlock(p);
1910         }
1911         vm_object_pip_wakeup(object);
1912 skipmemq:
1913         if (__predict_false(object->cache != NULL))
1914                 vm_page_cache_free(object, start, end);
1915 }
1916
1917 /*
1918  *      vm_object_page_cache:
1919  *
1920  *      For the given object, attempt to move the specified clean
1921  *      pages to the cache queue.  If a page is wired for any reason,
1922  *      then it will not be changed.  Pages are specified by the given
1923  *      range ["start", "end").  As a special case, if "end" is zero,
1924  *      then the range extends from "start" to the end of the object.
1925  *      Any mappings to the specified pages are removed before the
1926  *      pages are moved to the cache queue.
1927  *
1928  *      This operation should only be performed on objects that
1929  *      contain managed pages.
1930  *
1931  *      The object must be locked.
1932  */
1933 void
1934 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1935 {
1936         struct mtx *mtx, *new_mtx;
1937         vm_page_t p, next;
1938
1939         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1940         KASSERT((object->type != OBJT_DEVICE && object->type != OBJT_SG &&
1941             object->type != OBJT_PHYS),
1942             ("vm_object_page_cache: illegal object %p", object));
1943         if (object->resident_page_count == 0)
1944                 return;
1945         p = vm_page_find_least(object, start);
1946
1947         /*
1948          * Here, the variable "p" is either (1) the page with the least pindex
1949          * greater than or equal to the parameter "start" or (2) NULL. 
1950          */
1951         mtx = NULL;
1952         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1953                 next = TAILQ_NEXT(p, listq);
1954
1955                 /*
1956                  * Avoid releasing and reacquiring the same page lock.
1957                  */
1958                 new_mtx = vm_page_lockptr(p);
1959                 if (mtx != new_mtx) {
1960                         if (mtx != NULL)
1961                                 mtx_unlock(mtx);
1962                         mtx = new_mtx;
1963                         mtx_lock(mtx);
1964                 }
1965                 vm_page_try_to_cache(p);
1966         }
1967         if (mtx != NULL)
1968                 mtx_unlock(mtx);
1969 }
1970
1971 /*
1972  *      Populate the specified range of the object with valid pages.  Returns
1973  *      TRUE if the range is successfully populated and FALSE otherwise.
1974  *
1975  *      Note: This function should be optimized to pass a larger array of
1976  *      pages to vm_pager_get_pages() before it is applied to a non-
1977  *      OBJT_DEVICE object.
1978  *
1979  *      The object must be locked.
1980  */
1981 boolean_t
1982 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1983 {
1984         vm_page_t m, ma[1];
1985         vm_pindex_t pindex;
1986         int rv;
1987
1988         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1989         for (pindex = start; pindex < end; pindex++) {
1990                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1991                     VM_ALLOC_RETRY);
1992                 if (m->valid != VM_PAGE_BITS_ALL) {
1993                         ma[0] = m;
1994                         rv = vm_pager_get_pages(object, ma, 1, 0);
1995                         m = vm_page_lookup(object, pindex);
1996                         if (m == NULL)
1997                                 break;
1998                         if (rv != VM_PAGER_OK) {
1999                                 vm_page_lock(m);
2000                                 vm_page_free(m);
2001                                 vm_page_unlock(m);
2002                                 break;
2003                         }
2004                 }
2005                 /*
2006                  * Keep "m" busy because a subsequent iteration may unlock
2007                  * the object.
2008                  */
2009         }
2010         if (pindex > start) {
2011                 m = vm_page_lookup(object, start);
2012                 while (m != NULL && m->pindex < pindex) {
2013                         vm_page_wakeup(m);
2014                         m = TAILQ_NEXT(m, listq);
2015                 }
2016         }
2017         return (pindex == end);
2018 }
2019
2020 /*
2021  *      Routine:        vm_object_coalesce
2022  *      Function:       Coalesces two objects backing up adjoining
2023  *                      regions of memory into a single object.
2024  *
2025  *      returns TRUE if objects were combined.
2026  *
2027  *      NOTE:   Only works at the moment if the second object is NULL -
2028  *              if it's not, which object do we lock first?
2029  *
2030  *      Parameters:
2031  *              prev_object     First object to coalesce
2032  *              prev_offset     Offset into prev_object
2033  *              prev_size       Size of reference to prev_object
2034  *              next_size       Size of reference to the second object
2035  *              reserved        Indicator that extension region has
2036  *                              swap accounted for
2037  *
2038  *      Conditions:
2039  *      The object must *not* be locked.
2040  */
2041 boolean_t
2042 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2043     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2044 {
2045         vm_pindex_t next_pindex;
2046
2047         if (prev_object == NULL)
2048                 return (TRUE);
2049         VM_OBJECT_LOCK(prev_object);
2050         if (prev_object->type != OBJT_DEFAULT &&
2051             prev_object->type != OBJT_SWAP) {
2052                 VM_OBJECT_UNLOCK(prev_object);
2053                 return (FALSE);
2054         }
2055
2056         /*
2057          * Try to collapse the object first
2058          */
2059         vm_object_collapse(prev_object);
2060
2061         /*
2062          * Can't coalesce if: . more than one reference . paged out . shadows
2063          * another object . has a copy elsewhere (any of which mean that the
2064          * pages not mapped to prev_entry may be in use anyway)
2065          */
2066         if (prev_object->backing_object != NULL) {
2067                 VM_OBJECT_UNLOCK(prev_object);
2068                 return (FALSE);
2069         }
2070
2071         prev_size >>= PAGE_SHIFT;
2072         next_size >>= PAGE_SHIFT;
2073         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2074
2075         if ((prev_object->ref_count > 1) &&
2076             (prev_object->size != next_pindex)) {
2077                 VM_OBJECT_UNLOCK(prev_object);
2078                 return (FALSE);
2079         }
2080
2081         /*
2082          * Account for the charge.
2083          */
2084         if (prev_object->cred != NULL) {
2085
2086                 /*
2087                  * If prev_object was charged, then this mapping,
2088                  * althought not charged now, may become writable
2089                  * later. Non-NULL cred in the object would prevent
2090                  * swap reservation during enabling of the write
2091                  * access, so reserve swap now. Failed reservation
2092                  * cause allocation of the separate object for the map
2093                  * entry, and swap reservation for this entry is
2094                  * managed in appropriate time.
2095                  */
2096                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2097                     prev_object->cred)) {
2098                         return (FALSE);
2099                 }
2100                 prev_object->charge += ptoa(next_size);
2101         }
2102
2103         /*
2104          * Remove any pages that may still be in the object from a previous
2105          * deallocation.
2106          */
2107         if (next_pindex < prev_object->size) {
2108                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2109                     next_size, 0);
2110                 if (prev_object->type == OBJT_SWAP)
2111                         swap_pager_freespace(prev_object,
2112                                              next_pindex, next_size);
2113 #if 0
2114                 if (prev_object->cred != NULL) {
2115                         KASSERT(prev_object->charge >=
2116                             ptoa(prev_object->size - next_pindex),
2117                             ("object %p overcharged 1 %jx %jx", prev_object,
2118                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2119                         prev_object->charge -= ptoa(prev_object->size -
2120                             next_pindex);
2121                 }
2122 #endif
2123         }
2124
2125         /*
2126          * Extend the object if necessary.
2127          */
2128         if (next_pindex + next_size > prev_object->size)
2129                 prev_object->size = next_pindex + next_size;
2130
2131         VM_OBJECT_UNLOCK(prev_object);
2132         return (TRUE);
2133 }
2134
2135 void
2136 vm_object_set_writeable_dirty(vm_object_t object)
2137 {
2138
2139         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2140         if (object->type != OBJT_VNODE)
2141                 return;
2142         object->generation++;
2143         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2144                 return;
2145         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2146 }
2147
2148 #include "opt_ddb.h"
2149 #ifdef DDB
2150 #include <sys/kernel.h>
2151
2152 #include <sys/cons.h>
2153
2154 #include <ddb/ddb.h>
2155
2156 static int
2157 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2158 {
2159         vm_map_t tmpm;
2160         vm_map_entry_t tmpe;
2161         vm_object_t obj;
2162         int entcount;
2163
2164         if (map == 0)
2165                 return 0;
2166
2167         if (entry == 0) {
2168                 tmpe = map->header.next;
2169                 entcount = map->nentries;
2170                 while (entcount-- && (tmpe != &map->header)) {
2171                         if (_vm_object_in_map(map, object, tmpe)) {
2172                                 return 1;
2173                         }
2174                         tmpe = tmpe->next;
2175                 }
2176         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2177                 tmpm = entry->object.sub_map;
2178                 tmpe = tmpm->header.next;
2179                 entcount = tmpm->nentries;
2180                 while (entcount-- && tmpe != &tmpm->header) {
2181                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2182                                 return 1;
2183                         }
2184                         tmpe = tmpe->next;
2185                 }
2186         } else if ((obj = entry->object.vm_object) != NULL) {
2187                 for (; obj; obj = obj->backing_object)
2188                         if (obj == object) {
2189                                 return 1;
2190                         }
2191         }
2192         return 0;
2193 }
2194
2195 static int
2196 vm_object_in_map(vm_object_t object)
2197 {
2198         struct proc *p;
2199
2200         /* sx_slock(&allproc_lock); */
2201         FOREACH_PROC_IN_SYSTEM(p) {
2202                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2203                         continue;
2204                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2205                         /* sx_sunlock(&allproc_lock); */
2206                         return 1;
2207                 }
2208         }
2209         /* sx_sunlock(&allproc_lock); */
2210         if (_vm_object_in_map(kernel_map, object, 0))
2211                 return 1;
2212         if (_vm_object_in_map(kmem_map, object, 0))
2213                 return 1;
2214         if (_vm_object_in_map(pager_map, object, 0))
2215                 return 1;
2216         if (_vm_object_in_map(buffer_map, object, 0))
2217                 return 1;
2218         return 0;
2219 }
2220
2221 DB_SHOW_COMMAND(vmochk, vm_object_check)
2222 {
2223         vm_object_t object;
2224
2225         /*
2226          * make sure that internal objs are in a map somewhere
2227          * and none have zero ref counts.
2228          */
2229         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2230                 if (object->handle == NULL &&
2231                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2232                         if (object->ref_count == 0) {
2233                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2234                                         (long)object->size);
2235                         }
2236                         if (!vm_object_in_map(object)) {
2237                                 db_printf(
2238                         "vmochk: internal obj is not in a map: "
2239                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2240                                     object->ref_count, (u_long)object->size, 
2241                                     (u_long)object->size,
2242                                     (void *)object->backing_object);
2243                         }
2244                 }
2245         }
2246 }
2247
2248 /*
2249  *      vm_object_print:        [ debug ]
2250  */
2251 DB_SHOW_COMMAND(object, vm_object_print_static)
2252 {
2253         /* XXX convert args. */
2254         vm_object_t object = (vm_object_t)addr;
2255         boolean_t full = have_addr;
2256
2257         vm_page_t p;
2258
2259         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2260 #define count   was_count
2261
2262         int count;
2263
2264         if (object == NULL)
2265                 return;
2266
2267         db_iprintf(
2268             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2269             object, (int)object->type, (uintmax_t)object->size,
2270             object->resident_page_count, object->ref_count, object->flags,
2271             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2272         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2273             object->shadow_count, 
2274             object->backing_object ? object->backing_object->ref_count : 0,
2275             object->backing_object, (uintmax_t)object->backing_object_offset);
2276
2277         if (!full)
2278                 return;
2279
2280         db_indent += 2;
2281         count = 0;
2282         TAILQ_FOREACH(p, &object->memq, listq) {
2283                 if (count == 0)
2284                         db_iprintf("memory:=");
2285                 else if (count == 6) {
2286                         db_printf("\n");
2287                         db_iprintf(" ...");
2288                         count = 0;
2289                 } else
2290                         db_printf(",");
2291                 count++;
2292
2293                 db_printf("(off=0x%jx,page=0x%jx)",
2294                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2295         }
2296         if (count != 0)
2297                 db_printf("\n");
2298         db_indent -= 2;
2299 }
2300
2301 /* XXX. */
2302 #undef count
2303
2304 /* XXX need this non-static entry for calling from vm_map_print. */
2305 void
2306 vm_object_print(
2307         /* db_expr_t */ long addr,
2308         boolean_t have_addr,
2309         /* db_expr_t */ long count,
2310         char *modif)
2311 {
2312         vm_object_print_static(addr, have_addr, count, modif);
2313 }
2314
2315 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2316 {
2317         vm_object_t object;
2318         vm_pindex_t fidx;
2319         vm_paddr_t pa;
2320         vm_page_t m, prev_m;
2321         int rcount, nl, c;
2322
2323         nl = 0;
2324         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2325                 db_printf("new object: %p\n", (void *)object);
2326                 if (nl > 18) {
2327                         c = cngetc();
2328                         if (c != ' ')
2329                                 return;
2330                         nl = 0;
2331                 }
2332                 nl++;
2333                 rcount = 0;
2334                 fidx = 0;
2335                 pa = -1;
2336                 TAILQ_FOREACH(m, &object->memq, listq) {
2337                         if (m->pindex > 128)
2338                                 break;
2339                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2340                             prev_m->pindex + 1 != m->pindex) {
2341                                 if (rcount) {
2342                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2343                                                 (long)fidx, rcount, (long)pa);
2344                                         if (nl > 18) {
2345                                                 c = cngetc();
2346                                                 if (c != ' ')
2347                                                         return;
2348                                                 nl = 0;
2349                                         }
2350                                         nl++;
2351                                         rcount = 0;
2352                                 }
2353                         }                               
2354                         if (rcount &&
2355                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2356                                 ++rcount;
2357                                 continue;
2358                         }
2359                         if (rcount) {
2360                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2361                                         (long)fidx, rcount, (long)pa);
2362                                 if (nl > 18) {
2363                                         c = cngetc();
2364                                         if (c != ' ')
2365                                                 return;
2366                                         nl = 0;
2367                                 }
2368                                 nl++;
2369                         }
2370                         fidx = m->pindex;
2371                         pa = VM_PAGE_TO_PHYS(m);
2372                         rcount = 1;
2373                 }
2374                 if (rcount) {
2375                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2376                                 (long)fidx, rcount, (long)pa);
2377                         if (nl > 18) {
2378                                 c = cngetc();
2379                                 if (c != ' ')
2380                                         return;
2381                                 nl = 0;
2382                         }
2383                         nl++;
2384                 }
2385         }
2386 }
2387 #endif /* DDB */