]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_object.c
MFC r215471:
[FreeBSD/stable/8.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int msync_flush_flags = 0;
100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
101     "Does nothing; kept for backward compatibility");
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags);
109 static void     vm_object_qcollapse(vm_object_t object);
110 static void     vm_object_vndeallocate(vm_object_t object);
111
112 /*
113  *      Virtual memory objects maintain the actual data
114  *      associated with allocated virtual memory.  A given
115  *      page of memory exists within exactly one object.
116  *
117  *      An object is only deallocated when all "references"
118  *      are given up.  Only one "reference" to a given
119  *      region of an object should be writeable.
120  *
121  *      Associated with each object is a list of all resident
122  *      memory pages belonging to that object; this list is
123  *      maintained by the "vm_page" module, and locked by the object's
124  *      lock.
125  *
126  *      Each object also records a "pager" routine which is
127  *      used to retrieve (and store) pages to the proper backing
128  *      storage.  In addition, objects may be backed by other
129  *      objects from which they were virtual-copied.
130  *
131  *      The only items within the object structure which are
132  *      modified after time of creation are:
133  *              reference count         locked by object's lock
134  *              pager routine           locked by object's lock
135  *
136  */
137
138 struct object_q vm_object_list;
139 struct mtx vm_object_list_mtx;  /* lock for object list and count */
140
141 struct vm_object kernel_object_store;
142 struct vm_object kmem_object_store;
143
144 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(TAILQ_EMPTY(&object->memq),
168             ("object %p has resident pages",
169             object));
170 #if VM_NRESERVLEVEL > 0
171         KASSERT(LIST_EMPTY(&object->rvq),
172             ("object %p has reservations",
173             object));
174 #endif
175         KASSERT(object->cache == NULL,
176             ("object %p has cached pages",
177             object));
178         KASSERT(object->paging_in_progress == 0,
179             ("object %p paging_in_progress = %d",
180             object, object->paging_in_progress));
181         KASSERT(object->resident_page_count == 0,
182             ("object %p resident_page_count = %d",
183             object, object->resident_page_count));
184         KASSERT(object->shadow_count == 0,
185             ("object %p shadow_count = %d",
186             object, object->shadow_count));
187 }
188 #endif
189
190 static int
191 vm_object_zinit(void *mem, int size, int flags)
192 {
193         vm_object_t object;
194
195         object = (vm_object_t)mem;
196         bzero(&object->mtx, sizeof(object->mtx));
197         VM_OBJECT_LOCK_INIT(object, "standard object");
198
199         /* These are true for any object that has been freed */
200         object->paging_in_progress = 0;
201         object->resident_page_count = 0;
202         object->shadow_count = 0;
203         return (0);
204 }
205
206 void
207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
208 {
209
210         TAILQ_INIT(&object->memq);
211         LIST_INIT(&object->shadow_head);
212
213         object->root = NULL;
214         object->type = type;
215         object->size = size;
216         object->generation = 1;
217         object->ref_count = 1;
218         object->memattr = VM_MEMATTR_DEFAULT;
219         object->flags = 0;
220         object->uip = NULL;
221         object->charge = 0;
222         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
223                 object->flags = OBJ_ONEMAPPING;
224         object->pg_color = 0;
225         object->handle = NULL;
226         object->backing_object = NULL;
227         object->backing_object_offset = (vm_ooffset_t) 0;
228 #if VM_NRESERVLEVEL > 0
229         LIST_INIT(&object->rvq);
230 #endif
231         object->cache = NULL;
232
233         mtx_lock(&vm_object_list_mtx);
234         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
235         mtx_unlock(&vm_object_list_mtx);
236 }
237
238 /*
239  *      vm_object_init:
240  *
241  *      Initialize the VM objects module.
242  */
243 void
244 vm_object_init(void)
245 {
246         TAILQ_INIT(&vm_object_list);
247         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
248         
249         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
250         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251             kernel_object);
252 #if VM_NRESERVLEVEL > 0
253         kernel_object->flags |= OBJ_COLORED;
254         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
255 #endif
256
257         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
258         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
259             kmem_object);
260 #if VM_NRESERVLEVEL > 0
261         kmem_object->flags |= OBJ_COLORED;
262         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
263 #endif
264
265         /*
266          * The lock portion of struct vm_object must be type stable due
267          * to vm_pageout_fallback_object_lock locking a vm object
268          * without holding any references to it.
269          */
270         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
271 #ifdef INVARIANTS
272             vm_object_zdtor,
273 #else
274             NULL,
275 #endif
276             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
277 }
278
279 void
280 vm_object_clear_flag(vm_object_t object, u_short bits)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->flags &= ~bits;
285 }
286
287 /*
288  *      Sets the default memory attribute for the specified object.  Pages
289  *      that are allocated to this object are by default assigned this memory
290  *      attribute.
291  *
292  *      Presently, this function must be called before any pages are allocated
293  *      to the object.  In the future, this requirement may be relaxed for
294  *      "default" and "swap" objects.
295  */
296 int
297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
298 {
299
300         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301         switch (object->type) {
302         case OBJT_DEFAULT:
303         case OBJT_DEVICE:
304         case OBJT_PHYS:
305         case OBJT_SG:
306         case OBJT_SWAP:
307         case OBJT_VNODE:
308                 if (!TAILQ_EMPTY(&object->memq))
309                         return (KERN_FAILURE);
310                 break;
311         case OBJT_DEAD:
312                 return (KERN_INVALID_ARGUMENT);
313         }
314         object->memattr = memattr;
315         return (KERN_SUCCESS);
316 }
317
318 void
319 vm_object_pip_add(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         object->paging_in_progress += i;
324 }
325
326 void
327 vm_object_pip_subtract(vm_object_t object, short i)
328 {
329
330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
331         object->paging_in_progress -= i;
332 }
333
334 void
335 vm_object_pip_wakeup(vm_object_t object)
336 {
337
338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
339         object->paging_in_progress--;
340         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
341                 vm_object_clear_flag(object, OBJ_PIPWNT);
342                 wakeup(object);
343         }
344 }
345
346 void
347 vm_object_pip_wakeupn(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
351         if (i)
352                 object->paging_in_progress -= i;
353         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
354                 vm_object_clear_flag(object, OBJ_PIPWNT);
355                 wakeup(object);
356         }
357 }
358
359 void
360 vm_object_pip_wait(vm_object_t object, char *waitid)
361 {
362
363         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
364         while (object->paging_in_progress) {
365                 object->flags |= OBJ_PIPWNT;
366                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
367         }
368 }
369
370 /*
371  *      vm_object_allocate:
372  *
373  *      Returns a new object with the given size.
374  */
375 vm_object_t
376 vm_object_allocate(objtype_t type, vm_pindex_t size)
377 {
378         vm_object_t object;
379
380         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
381         _vm_object_allocate(type, size, object);
382         return (object);
383 }
384
385
386 /*
387  *      vm_object_reference:
388  *
389  *      Gets another reference to the given object.  Note: OBJ_DEAD
390  *      objects can be referenced during final cleaning.
391  */
392 void
393 vm_object_reference(vm_object_t object)
394 {
395         if (object == NULL)
396                 return;
397         VM_OBJECT_LOCK(object);
398         vm_object_reference_locked(object);
399         VM_OBJECT_UNLOCK(object);
400 }
401
402 /*
403  *      vm_object_reference_locked:
404  *
405  *      Gets another reference to the given object.
406  *
407  *      The object must be locked.
408  */
409 void
410 vm_object_reference_locked(vm_object_t object)
411 {
412         struct vnode *vp;
413
414         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
415         object->ref_count++;
416         if (object->type == OBJT_VNODE) {
417                 vp = object->handle;
418                 vref(vp);
419         }
420 }
421
422 /*
423  * Handle deallocating an object of type OBJT_VNODE.
424  */
425 static void
426 vm_object_vndeallocate(vm_object_t object)
427 {
428         struct vnode *vp = (struct vnode *) object->handle;
429
430         VFS_ASSERT_GIANT(vp->v_mount);
431         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
432         KASSERT(object->type == OBJT_VNODE,
433             ("vm_object_vndeallocate: not a vnode object"));
434         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
435 #ifdef INVARIANTS
436         if (object->ref_count == 0) {
437                 vprint("vm_object_vndeallocate", vp);
438                 panic("vm_object_vndeallocate: bad object reference count");
439         }
440 #endif
441
442         object->ref_count--;
443         if (object->ref_count == 0) {
444                 mp_fixme("Unlocked vflag access.");
445                 vp->v_vflag &= ~VV_TEXT;
446         }
447         VM_OBJECT_UNLOCK(object);
448         /*
449          * vrele may need a vop lock
450          */
451         vrele(vp);
452 }
453
454 /*
455  *      vm_object_deallocate:
456  *
457  *      Release a reference to the specified object,
458  *      gained either through a vm_object_allocate
459  *      or a vm_object_reference call.  When all references
460  *      are gone, storage associated with this object
461  *      may be relinquished.
462  *
463  *      No object may be locked.
464  */
465 void
466 vm_object_deallocate(vm_object_t object)
467 {
468         vm_object_t temp;
469
470         while (object != NULL) {
471                 int vfslocked;
472
473                 vfslocked = 0;
474         restart:
475                 VM_OBJECT_LOCK(object);
476                 if (object->type == OBJT_VNODE) {
477                         struct vnode *vp = (struct vnode *) object->handle;
478
479                         /*
480                          * Conditionally acquire Giant for a vnode-backed
481                          * object.  We have to be careful since the type of
482                          * a vnode object can change while the object is
483                          * unlocked.
484                          */
485                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
486                                 vfslocked = 1;
487                                 if (!mtx_trylock(&Giant)) {
488                                         VM_OBJECT_UNLOCK(object);
489                                         mtx_lock(&Giant);
490                                         goto restart;
491                                 }
492                         }
493                         vm_object_vndeallocate(object);
494                         VFS_UNLOCK_GIANT(vfslocked);
495                         return;
496                 } else
497                         /*
498                          * This is to handle the case that the object
499                          * changed type while we dropped its lock to
500                          * obtain Giant.
501                          */
502                         VFS_UNLOCK_GIANT(vfslocked);
503
504                 KASSERT(object->ref_count != 0,
505                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
506
507                 /*
508                  * If the reference count goes to 0 we start calling
509                  * vm_object_terminate() on the object chain.
510                  * A ref count of 1 may be a special case depending on the
511                  * shadow count being 0 or 1.
512                  */
513                 object->ref_count--;
514                 if (object->ref_count > 1) {
515                         VM_OBJECT_UNLOCK(object);
516                         return;
517                 } else if (object->ref_count == 1) {
518                         if (object->shadow_count == 0 &&
519                             object->handle == NULL &&
520                             (object->type == OBJT_DEFAULT ||
521                              object->type == OBJT_SWAP)) {
522                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
523                         } else if ((object->shadow_count == 1) &&
524                             (object->handle == NULL) &&
525                             (object->type == OBJT_DEFAULT ||
526                              object->type == OBJT_SWAP)) {
527                                 vm_object_t robject;
528
529                                 robject = LIST_FIRST(&object->shadow_head);
530                                 KASSERT(robject != NULL,
531                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
532                                          object->ref_count,
533                                          object->shadow_count));
534                                 if (!VM_OBJECT_TRYLOCK(robject)) {
535                                         /*
536                                          * Avoid a potential deadlock.
537                                          */
538                                         object->ref_count++;
539                                         VM_OBJECT_UNLOCK(object);
540                                         /*
541                                          * More likely than not the thread
542                                          * holding robject's lock has lower
543                                          * priority than the current thread.
544                                          * Let the lower priority thread run.
545                                          */
546                                         pause("vmo_de", 1);
547                                         continue;
548                                 }
549                                 /*
550                                  * Collapse object into its shadow unless its
551                                  * shadow is dead.  In that case, object will
552                                  * be deallocated by the thread that is
553                                  * deallocating its shadow.
554                                  */
555                                 if ((robject->flags & OBJ_DEAD) == 0 &&
556                                     (robject->handle == NULL) &&
557                                     (robject->type == OBJT_DEFAULT ||
558                                      robject->type == OBJT_SWAP)) {
559
560                                         robject->ref_count++;
561 retry:
562                                         if (robject->paging_in_progress) {
563                                                 VM_OBJECT_UNLOCK(object);
564                                                 vm_object_pip_wait(robject,
565                                                     "objde1");
566                                                 temp = robject->backing_object;
567                                                 if (object == temp) {
568                                                         VM_OBJECT_LOCK(object);
569                                                         goto retry;
570                                                 }
571                                         } else if (object->paging_in_progress) {
572                                                 VM_OBJECT_UNLOCK(robject);
573                                                 object->flags |= OBJ_PIPWNT;
574                                                 msleep(object,
575                                                     VM_OBJECT_MTX(object),
576                                                     PDROP | PVM, "objde2", 0);
577                                                 VM_OBJECT_LOCK(robject);
578                                                 temp = robject->backing_object;
579                                                 if (object == temp) {
580                                                         VM_OBJECT_LOCK(object);
581                                                         goto retry;
582                                                 }
583                                         } else
584                                                 VM_OBJECT_UNLOCK(object);
585
586                                         if (robject->ref_count == 1) {
587                                                 robject->ref_count--;
588                                                 object = robject;
589                                                 goto doterm;
590                                         }
591                                         object = robject;
592                                         vm_object_collapse(object);
593                                         VM_OBJECT_UNLOCK(object);
594                                         continue;
595                                 }
596                                 VM_OBJECT_UNLOCK(robject);
597                         }
598                         VM_OBJECT_UNLOCK(object);
599                         return;
600                 }
601 doterm:
602                 temp = object->backing_object;
603                 if (temp != NULL) {
604                         VM_OBJECT_LOCK(temp);
605                         LIST_REMOVE(object, shadow_list);
606                         temp->shadow_count--;
607                         temp->generation++;
608                         VM_OBJECT_UNLOCK(temp);
609                         object->backing_object = NULL;
610                 }
611                 /*
612                  * Don't double-terminate, we could be in a termination
613                  * recursion due to the terminate having to sync data
614                  * to disk.
615                  */
616                 if ((object->flags & OBJ_DEAD) == 0)
617                         vm_object_terminate(object);
618                 else
619                         VM_OBJECT_UNLOCK(object);
620                 object = temp;
621         }
622 }
623
624 /*
625  *      vm_object_destroy removes the object from the global object list
626  *      and frees the space for the object.
627  */
628 void
629 vm_object_destroy(vm_object_t object)
630 {
631
632         /*
633          * Remove the object from the global object list.
634          */
635         mtx_lock(&vm_object_list_mtx);
636         TAILQ_REMOVE(&vm_object_list, object, object_list);
637         mtx_unlock(&vm_object_list_mtx);
638
639         /*
640          * Release the allocation charge.
641          */
642         if (object->uip != NULL) {
643                 KASSERT(object->type == OBJT_DEFAULT ||
644                     object->type == OBJT_SWAP,
645                     ("vm_object_terminate: non-swap obj %p has uip",
646                      object));
647                 swap_release_by_uid(object->charge, object->uip);
648                 object->charge = 0;
649                 uifree(object->uip);
650                 object->uip = NULL;
651         }
652
653         /*
654          * Free the space for the object.
655          */
656         uma_zfree(obj_zone, object);
657 }
658
659 /*
660  *      vm_object_terminate actually destroys the specified object, freeing
661  *      up all previously used resources.
662  *
663  *      The object must be locked.
664  *      This routine may block.
665  */
666 void
667 vm_object_terminate(vm_object_t object)
668 {
669         vm_page_t p;
670
671         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
672
673         /*
674          * Make sure no one uses us.
675          */
676         vm_object_set_flag(object, OBJ_DEAD);
677
678         /*
679          * wait for the pageout daemon to be done with the object
680          */
681         vm_object_pip_wait(object, "objtrm");
682
683         KASSERT(!object->paging_in_progress,
684                 ("vm_object_terminate: pageout in progress"));
685
686         /*
687          * Clean and free the pages, as appropriate. All references to the
688          * object are gone, so we don't need to lock it.
689          */
690         if (object->type == OBJT_VNODE) {
691                 struct vnode *vp = (struct vnode *)object->handle;
692
693                 /*
694                  * Clean pages and flush buffers.
695                  */
696                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
697                 VM_OBJECT_UNLOCK(object);
698
699                 vinvalbuf(vp, V_SAVE, 0, 0);
700
701                 VM_OBJECT_LOCK(object);
702         }
703
704         KASSERT(object->ref_count == 0, 
705                 ("vm_object_terminate: object with references, ref_count=%d",
706                 object->ref_count));
707
708         /*
709          * Now free any remaining pages. For internal objects, this also
710          * removes them from paging queues. Don't free wired pages, just
711          * remove them from the object. 
712          */
713         vm_page_lock_queues();
714         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
715                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
716                         ("vm_object_terminate: freeing busy page %p "
717                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
718                 if (p->wire_count == 0) {
719                         vm_page_free(p);
720                         cnt.v_pfree++;
721                 } else {
722                         vm_page_remove(p);
723                 }
724         }
725         vm_page_unlock_queues();
726
727 #if VM_NRESERVLEVEL > 0
728         if (__predict_false(!LIST_EMPTY(&object->rvq)))
729                 vm_reserv_break_all(object);
730 #endif
731         if (__predict_false(object->cache != NULL))
732                 vm_page_cache_free(object, 0, 0);
733
734         /*
735          * Let the pager know object is dead.
736          */
737         vm_pager_deallocate(object);
738         VM_OBJECT_UNLOCK(object);
739
740         vm_object_destroy(object);
741 }
742
743 /*
744  *      vm_object_page_clean
745  *
746  *      Clean all dirty pages in the specified range of object.  Leaves page 
747  *      on whatever queue it is currently on.   If NOSYNC is set then do not
748  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
749  *      leaving the object dirty.
750  *
751  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
752  *      synchronous clustering mode implementation.
753  *
754  *      Odd semantics: if start == end, we clean everything.
755  *
756  *      The object must be locked.
757  */
758 void
759 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
760     int flags)
761 {
762         vm_page_t np, p;
763         vm_pindex_t pi, tend;
764         int clearobjflags, curgeneration, n, pagerflags;
765
766         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
767         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
768         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
769             object->resident_page_count == 0)
770                 return;
771
772         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
773             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
774         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
775
776         tend = (end == 0) ? object->size : end;
777
778         vm_object_set_flag(object, OBJ_CLEANING);
779
780         vm_page_lock_queues();
781
782         /*
783          * Make the page read-only so we can then clear the object flags.
784          *
785          * However, if this is a nosync mmap then the object is likely to 
786          * stay dirty so do not mess with the page and do not clear the
787          * object flags.
788          */
789         clearobjflags = 1;
790         for (p = vm_page_find_least(object, start);
791             p != NULL && p->pindex < tend; p = TAILQ_NEXT(p, listq)) {
792                 if ((flags & OBJPC_NOSYNC) != 0 &&
793                     (p->oflags & VPO_NOSYNC) != 0)
794                         clearobjflags = 0;
795                 else
796                         pmap_remove_write(p);
797         }
798
799         if (clearobjflags && (start == 0) && (tend == object->size))
800                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
801
802 rescan:
803         curgeneration = object->generation;
804
805         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
806                 pi = p->pindex;
807                 if (pi >= tend)
808                         break;
809                 np = TAILQ_NEXT(p, listq);
810                 if (p->valid == 0)
811                         continue;
812                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
813                         vm_page_lock_queues();
814                         if (object->generation != curgeneration)
815                                 goto rescan;
816                         np = vm_page_find_least(object, pi);
817                         continue;
818                 }
819                 vm_page_test_dirty(p);
820                 if (p->dirty == 0)
821                         continue;
822
823                 /*
824                  * If we have been asked to skip nosync pages and this is a
825                  * nosync page, skip it.  Note that the object flags were
826                  * not cleared in this case so we do not have to set them.
827                  */
828                 if ((flags & OBJPC_NOSYNC) != 0 &&
829                     (p->oflags & VPO_NOSYNC) != 0)
830                         continue;
831
832                 n = vm_object_page_collect_flush(object, p, pagerflags);
833                 if (object->generation != curgeneration)
834                         goto rescan;
835                 np = vm_page_find_least(object, pi + n);
836         }
837         vm_page_unlock_queues();
838 #if 0
839         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
840 #endif
841
842         vm_object_clear_flag(object, OBJ_CLEANING);
843 }
844
845 static int
846 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
847 {
848         vm_page_t ma[vm_pageout_page_count], p_first, tp;
849         int count, i, mreq, runlen;
850
851         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
852
853         count = 1;
854         mreq = 0;
855
856         for (tp = p; count < vm_pageout_page_count; count++) {
857                 tp = vm_page_next(tp);
858                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
859                         break;
860                 vm_page_test_dirty(tp);
861                 if (tp->dirty == 0)
862                         break;
863         }
864
865         for (p_first = p; count < vm_pageout_page_count; count++) {
866                 tp = vm_page_prev(p_first);
867                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
868                         break;
869                 vm_page_test_dirty(tp);
870                 if (tp->dirty == 0)
871                         break;
872                 p_first = tp;
873                 mreq++;
874         }
875
876         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
877                 ma[i] = tp;
878
879         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
880         return (runlen);
881 }
882
883 /*
884  * Note that there is absolutely no sense in writing out
885  * anonymous objects, so we track down the vnode object
886  * to write out.
887  * We invalidate (remove) all pages from the address space
888  * for semantic correctness.
889  *
890  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
891  * may start out with a NULL object.
892  */
893 void
894 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
895     boolean_t syncio, boolean_t invalidate)
896 {
897         vm_object_t backing_object;
898         struct vnode *vp;
899         struct mount *mp;
900         int flags;
901
902         if (object == NULL)
903                 return;
904         VM_OBJECT_LOCK(object);
905         while ((backing_object = object->backing_object) != NULL) {
906                 VM_OBJECT_LOCK(backing_object);
907                 offset += object->backing_object_offset;
908                 VM_OBJECT_UNLOCK(object);
909                 object = backing_object;
910                 if (object->size < OFF_TO_IDX(offset + size))
911                         size = IDX_TO_OFF(object->size) - offset;
912         }
913         /*
914          * Flush pages if writing is allowed, invalidate them
915          * if invalidation requested.  Pages undergoing I/O
916          * will be ignored by vm_object_page_remove().
917          *
918          * We cannot lock the vnode and then wait for paging
919          * to complete without deadlocking against vm_fault.
920          * Instead we simply call vm_object_page_remove() and
921          * allow it to block internally on a page-by-page
922          * basis when it encounters pages undergoing async
923          * I/O.
924          */
925         if (object->type == OBJT_VNODE &&
926             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
927                 int vfslocked;
928                 vp = object->handle;
929                 VM_OBJECT_UNLOCK(object);
930                 (void) vn_start_write(vp, &mp, V_WAIT);
931                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
932                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
933                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
934                 flags |= invalidate ? OBJPC_INVAL : 0;
935                 VM_OBJECT_LOCK(object);
936                 vm_object_page_clean(object,
937                     OFF_TO_IDX(offset),
938                     OFF_TO_IDX(offset + size + PAGE_MASK),
939                     flags);
940                 VM_OBJECT_UNLOCK(object);
941                 VOP_UNLOCK(vp, 0);
942                 VFS_UNLOCK_GIANT(vfslocked);
943                 vn_finished_write(mp);
944                 VM_OBJECT_LOCK(object);
945         }
946         if ((object->type == OBJT_VNODE ||
947              object->type == OBJT_DEVICE) && invalidate) {
948                 boolean_t purge;
949                 purge = old_msync || (object->type == OBJT_DEVICE);
950                 vm_object_page_remove(object,
951                     OFF_TO_IDX(offset),
952                     OFF_TO_IDX(offset + size + PAGE_MASK),
953                     purge ? FALSE : TRUE);
954         }
955         VM_OBJECT_UNLOCK(object);
956 }
957
958 /*
959  *      vm_object_madvise:
960  *
961  *      Implements the madvise function at the object/page level.
962  *
963  *      MADV_WILLNEED   (any object)
964  *
965  *          Activate the specified pages if they are resident.
966  *
967  *      MADV_DONTNEED   (any object)
968  *
969  *          Deactivate the specified pages if they are resident.
970  *
971  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
972  *                       OBJ_ONEMAPPING only)
973  *
974  *          Deactivate and clean the specified pages if they are
975  *          resident.  This permits the process to reuse the pages
976  *          without faulting or the kernel to reclaim the pages
977  *          without I/O.
978  */
979 void
980 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
981 {
982         vm_pindex_t end, tpindex;
983         vm_object_t backing_object, tobject;
984         vm_page_t m;
985
986         if (object == NULL)
987                 return;
988         VM_OBJECT_LOCK(object);
989         end = pindex + count;
990         /*
991          * Locate and adjust resident pages
992          */
993         for (; pindex < end; pindex += 1) {
994 relookup:
995                 tobject = object;
996                 tpindex = pindex;
997 shadowlookup:
998                 /*
999                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1000                  * and those pages must be OBJ_ONEMAPPING.
1001                  */
1002                 if (advise == MADV_FREE) {
1003                         if ((tobject->type != OBJT_DEFAULT &&
1004                              tobject->type != OBJT_SWAP) ||
1005                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1006                                 goto unlock_tobject;
1007                         }
1008                 } else if (tobject->type == OBJT_PHYS)
1009                         goto unlock_tobject;
1010                 m = vm_page_lookup(tobject, tpindex);
1011                 if (m == NULL && advise == MADV_WILLNEED) {
1012                         /*
1013                          * If the page is cached, reactivate it.
1014                          */
1015                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1016                             VM_ALLOC_NOBUSY);
1017                 }
1018                 if (m == NULL) {
1019                         /*
1020                          * There may be swap even if there is no backing page
1021                          */
1022                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1023                                 swap_pager_freespace(tobject, tpindex, 1);
1024                         /*
1025                          * next object
1026                          */
1027                         backing_object = tobject->backing_object;
1028                         if (backing_object == NULL)
1029                                 goto unlock_tobject;
1030                         VM_OBJECT_LOCK(backing_object);
1031                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1032                         if (tobject != object)
1033                                 VM_OBJECT_UNLOCK(tobject);
1034                         tobject = backing_object;
1035                         goto shadowlookup;
1036                 } else if (m->valid != VM_PAGE_BITS_ALL)
1037                         goto unlock_tobject;
1038                 /*
1039                  * If the page is not in a normal state, skip it.
1040                  */
1041                 vm_page_lock_queues();
1042                 if (m->hold_count != 0 || m->wire_count != 0) {
1043                         vm_page_unlock_queues();
1044                         goto unlock_tobject;
1045                 }
1046                 if ((m->oflags & VPO_BUSY) || m->busy) {
1047                         if (advise == MADV_WILLNEED)
1048                                 /*
1049                                  * Reference the page before unlocking and
1050                                  * sleeping so that the page daemon is less
1051                                  * likely to reclaim it. 
1052                                  */
1053                                 vm_page_flag_set(m, PG_REFERENCED);
1054                         vm_page_unlock_queues();
1055                         if (object != tobject)
1056                                 VM_OBJECT_UNLOCK(object);
1057                         m->oflags |= VPO_WANTED;
1058                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1059                             0);
1060                         VM_OBJECT_LOCK(object);
1061                         goto relookup;
1062                 }
1063                 if (advise == MADV_WILLNEED) {
1064                         vm_page_activate(m);
1065                 } else if (advise == MADV_DONTNEED) {
1066                         vm_page_dontneed(m);
1067                 } else if (advise == MADV_FREE) {
1068                         /*
1069                          * Mark the page clean.  This will allow the page
1070                          * to be freed up by the system.  However, such pages
1071                          * are often reused quickly by malloc()/free()
1072                          * so we do not do anything that would cause
1073                          * a page fault if we can help it.
1074                          *
1075                          * Specifically, we do not try to actually free
1076                          * the page now nor do we try to put it in the
1077                          * cache (which would cause a page fault on reuse).
1078                          *
1079                          * But we do make the page is freeable as we
1080                          * can without actually taking the step of unmapping
1081                          * it.
1082                          */
1083                         pmap_clear_modify(m);
1084                         m->dirty = 0;
1085                         m->act_count = 0;
1086                         vm_page_dontneed(m);
1087                 }
1088                 vm_page_unlock_queues();
1089                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1090                         swap_pager_freespace(tobject, tpindex, 1);
1091 unlock_tobject:
1092                 if (tobject != object)
1093                         VM_OBJECT_UNLOCK(tobject);
1094         }       
1095         VM_OBJECT_UNLOCK(object);
1096 }
1097
1098 /*
1099  *      vm_object_shadow:
1100  *
1101  *      Create a new object which is backed by the
1102  *      specified existing object range.  The source
1103  *      object reference is deallocated.
1104  *
1105  *      The new object and offset into that object
1106  *      are returned in the source parameters.
1107  */
1108 void
1109 vm_object_shadow(
1110         vm_object_t *object,    /* IN/OUT */
1111         vm_ooffset_t *offset,   /* IN/OUT */
1112         vm_size_t length)
1113 {
1114         vm_object_t source;
1115         vm_object_t result;
1116
1117         source = *object;
1118
1119         /*
1120          * Don't create the new object if the old object isn't shared.
1121          */
1122         if (source != NULL) {
1123                 VM_OBJECT_LOCK(source);
1124                 if (source->ref_count == 1 &&
1125                     source->handle == NULL &&
1126                     (source->type == OBJT_DEFAULT ||
1127                      source->type == OBJT_SWAP)) {
1128                         VM_OBJECT_UNLOCK(source);
1129                         return;
1130                 }
1131                 VM_OBJECT_UNLOCK(source);
1132         }
1133
1134         /*
1135          * Allocate a new object with the given length.
1136          */
1137         result = vm_object_allocate(OBJT_DEFAULT, length);
1138
1139         /*
1140          * The new object shadows the source object, adding a reference to it.
1141          * Our caller changes his reference to point to the new object,
1142          * removing a reference to the source object.  Net result: no change
1143          * of reference count.
1144          *
1145          * Try to optimize the result object's page color when shadowing
1146          * in order to maintain page coloring consistency in the combined 
1147          * shadowed object.
1148          */
1149         result->backing_object = source;
1150         /*
1151          * Store the offset into the source object, and fix up the offset into
1152          * the new object.
1153          */
1154         result->backing_object_offset = *offset;
1155         if (source != NULL) {
1156                 VM_OBJECT_LOCK(source);
1157                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1158                 source->shadow_count++;
1159                 source->generation++;
1160 #if VM_NRESERVLEVEL > 0
1161                 result->flags |= source->flags & OBJ_COLORED;
1162                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1163                     ((1 << (VM_NFREEORDER - 1)) - 1);
1164 #endif
1165                 VM_OBJECT_UNLOCK(source);
1166         }
1167
1168
1169         /*
1170          * Return the new things
1171          */
1172         *offset = 0;
1173         *object = result;
1174 }
1175
1176 /*
1177  *      vm_object_split:
1178  *
1179  * Split the pages in a map entry into a new object.  This affords
1180  * easier removal of unused pages, and keeps object inheritance from
1181  * being a negative impact on memory usage.
1182  */
1183 void
1184 vm_object_split(vm_map_entry_t entry)
1185 {
1186         vm_page_t m, m_next;
1187         vm_object_t orig_object, new_object, source;
1188         vm_pindex_t idx, offidxstart;
1189         vm_size_t size;
1190
1191         orig_object = entry->object.vm_object;
1192         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1193                 return;
1194         if (orig_object->ref_count <= 1)
1195                 return;
1196         VM_OBJECT_UNLOCK(orig_object);
1197
1198         offidxstart = OFF_TO_IDX(entry->offset);
1199         size = atop(entry->end - entry->start);
1200
1201         /*
1202          * If swap_pager_copy() is later called, it will convert new_object
1203          * into a swap object.
1204          */
1205         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1206
1207         /*
1208          * At this point, the new object is still private, so the order in
1209          * which the original and new objects are locked does not matter.
1210          */
1211         VM_OBJECT_LOCK(new_object);
1212         VM_OBJECT_LOCK(orig_object);
1213         source = orig_object->backing_object;
1214         if (source != NULL) {
1215                 VM_OBJECT_LOCK(source);
1216                 if ((source->flags & OBJ_DEAD) != 0) {
1217                         VM_OBJECT_UNLOCK(source);
1218                         VM_OBJECT_UNLOCK(orig_object);
1219                         VM_OBJECT_UNLOCK(new_object);
1220                         vm_object_deallocate(new_object);
1221                         VM_OBJECT_LOCK(orig_object);
1222                         return;
1223                 }
1224                 LIST_INSERT_HEAD(&source->shadow_head,
1225                                   new_object, shadow_list);
1226                 source->shadow_count++;
1227                 source->generation++;
1228                 vm_object_reference_locked(source);     /* for new_object */
1229                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1230                 VM_OBJECT_UNLOCK(source);
1231                 new_object->backing_object_offset = 
1232                         orig_object->backing_object_offset + entry->offset;
1233                 new_object->backing_object = source;
1234         }
1235         if (orig_object->uip != NULL) {
1236                 new_object->uip = orig_object->uip;
1237                 uihold(orig_object->uip);
1238                 new_object->charge = ptoa(size);
1239                 KASSERT(orig_object->charge >= ptoa(size),
1240                     ("orig_object->charge < 0"));
1241                 orig_object->charge -= ptoa(size);
1242         }
1243 retry:
1244         m = vm_page_find_least(orig_object, offidxstart);
1245         vm_page_lock_queues();
1246         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1247             m = m_next) {
1248                 m_next = TAILQ_NEXT(m, listq);
1249
1250                 /*
1251                  * We must wait for pending I/O to complete before we can
1252                  * rename the page.
1253                  *
1254                  * We do not have to VM_PROT_NONE the page as mappings should
1255                  * not be changed by this operation.
1256                  */
1257                 if ((m->oflags & VPO_BUSY) || m->busy) {
1258                         vm_page_unlock_queues();
1259                         VM_OBJECT_UNLOCK(new_object);
1260                         m->oflags |= VPO_WANTED;
1261                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1262                         VM_OBJECT_LOCK(new_object);
1263                         goto retry;
1264                 }
1265                 vm_page_rename(m, new_object, idx);
1266                 /* page automatically made dirty by rename and cache handled */
1267                 vm_page_busy(m);
1268         }
1269         vm_page_unlock_queues();
1270         if (orig_object->type == OBJT_SWAP) {
1271                 /*
1272                  * swap_pager_copy() can sleep, in which case the orig_object's
1273                  * and new_object's locks are released and reacquired. 
1274                  */
1275                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1276
1277                 /*
1278                  * Transfer any cached pages from orig_object to new_object.
1279                  */
1280                 if (__predict_false(orig_object->cache != NULL))
1281                         vm_page_cache_transfer(orig_object, offidxstart,
1282                             new_object);
1283         }
1284         VM_OBJECT_UNLOCK(orig_object);
1285         TAILQ_FOREACH(m, &new_object->memq, listq)
1286                 vm_page_wakeup(m);
1287         VM_OBJECT_UNLOCK(new_object);
1288         entry->object.vm_object = new_object;
1289         entry->offset = 0LL;
1290         vm_object_deallocate(orig_object);
1291         VM_OBJECT_LOCK(new_object);
1292 }
1293
1294 #define OBSC_TEST_ALL_SHADOWED  0x0001
1295 #define OBSC_COLLAPSE_NOWAIT    0x0002
1296 #define OBSC_COLLAPSE_WAIT      0x0004
1297
1298 static int
1299 vm_object_backing_scan(vm_object_t object, int op)
1300 {
1301         int r = 1;
1302         vm_page_t p;
1303         vm_object_t backing_object;
1304         vm_pindex_t backing_offset_index;
1305
1306         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1307         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1308
1309         backing_object = object->backing_object;
1310         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1311
1312         /*
1313          * Initial conditions
1314          */
1315         if (op & OBSC_TEST_ALL_SHADOWED) {
1316                 /*
1317                  * We do not want to have to test for the existence of cache
1318                  * or swap pages in the backing object.  XXX but with the
1319                  * new swapper this would be pretty easy to do.
1320                  *
1321                  * XXX what about anonymous MAP_SHARED memory that hasn't
1322                  * been ZFOD faulted yet?  If we do not test for this, the
1323                  * shadow test may succeed! XXX
1324                  */
1325                 if (backing_object->type != OBJT_DEFAULT) {
1326                         return (0);
1327                 }
1328         }
1329         if (op & OBSC_COLLAPSE_WAIT) {
1330                 vm_object_set_flag(backing_object, OBJ_DEAD);
1331         }
1332
1333         /*
1334          * Our scan
1335          */
1336         p = TAILQ_FIRST(&backing_object->memq);
1337         while (p) {
1338                 vm_page_t next = TAILQ_NEXT(p, listq);
1339                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1340
1341                 if (op & OBSC_TEST_ALL_SHADOWED) {
1342                         vm_page_t pp;
1343
1344                         /*
1345                          * Ignore pages outside the parent object's range
1346                          * and outside the parent object's mapping of the 
1347                          * backing object.
1348                          *
1349                          * note that we do not busy the backing object's
1350                          * page.
1351                          */
1352                         if (
1353                             p->pindex < backing_offset_index ||
1354                             new_pindex >= object->size
1355                         ) {
1356                                 p = next;
1357                                 continue;
1358                         }
1359
1360                         /*
1361                          * See if the parent has the page or if the parent's
1362                          * object pager has the page.  If the parent has the
1363                          * page but the page is not valid, the parent's
1364                          * object pager must have the page.
1365                          *
1366                          * If this fails, the parent does not completely shadow
1367                          * the object and we might as well give up now.
1368                          */
1369
1370                         pp = vm_page_lookup(object, new_pindex);
1371                         if (
1372                             (pp == NULL || pp->valid == 0) &&
1373                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1374                         ) {
1375                                 r = 0;
1376                                 break;
1377                         }
1378                 }
1379
1380                 /*
1381                  * Check for busy page
1382                  */
1383                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1384                         vm_page_t pp;
1385
1386                         if (op & OBSC_COLLAPSE_NOWAIT) {
1387                                 if ((p->oflags & VPO_BUSY) ||
1388                                     !p->valid || 
1389                                     p->busy) {
1390                                         p = next;
1391                                         continue;
1392                                 }
1393                         } else if (op & OBSC_COLLAPSE_WAIT) {
1394                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1395                                         VM_OBJECT_UNLOCK(object);
1396                                         p->oflags |= VPO_WANTED;
1397                                         msleep(p, VM_OBJECT_MTX(backing_object),
1398                                             PDROP | PVM, "vmocol", 0);
1399                                         VM_OBJECT_LOCK(object);
1400                                         VM_OBJECT_LOCK(backing_object);
1401                                         /*
1402                                          * If we slept, anything could have
1403                                          * happened.  Since the object is
1404                                          * marked dead, the backing offset
1405                                          * should not have changed so we
1406                                          * just restart our scan.
1407                                          */
1408                                         p = TAILQ_FIRST(&backing_object->memq);
1409                                         continue;
1410                                 }
1411                         }
1412
1413                         KASSERT(
1414                             p->object == backing_object,
1415                             ("vm_object_backing_scan: object mismatch")
1416                         );
1417
1418                         /*
1419                          * Destroy any associated swap
1420                          */
1421                         if (backing_object->type == OBJT_SWAP) {
1422                                 swap_pager_freespace(
1423                                     backing_object, 
1424                                     p->pindex,
1425                                     1
1426                                 );
1427                         }
1428
1429                         if (
1430                             p->pindex < backing_offset_index ||
1431                             new_pindex >= object->size
1432                         ) {
1433                                 /*
1434                                  * Page is out of the parent object's range, we 
1435                                  * can simply destroy it. 
1436                                  */
1437                                 vm_page_lock_queues();
1438                                 KASSERT(!pmap_page_is_mapped(p),
1439                                     ("freeing mapped page %p", p));
1440                                 if (p->wire_count == 0)
1441                                         vm_page_free(p);
1442                                 else
1443                                         vm_page_remove(p);
1444                                 vm_page_unlock_queues();
1445                                 p = next;
1446                                 continue;
1447                         }
1448
1449                         pp = vm_page_lookup(object, new_pindex);
1450                         if (
1451                             pp != NULL ||
1452                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1453                         ) {
1454                                 /*
1455                                  * page already exists in parent OR swap exists
1456                                  * for this location in the parent.  Destroy 
1457                                  * the original page from the backing object.
1458                                  *
1459                                  * Leave the parent's page alone
1460                                  */
1461                                 vm_page_lock_queues();
1462                                 KASSERT(!pmap_page_is_mapped(p),
1463                                     ("freeing mapped page %p", p));
1464                                 if (p->wire_count == 0)
1465                                         vm_page_free(p);
1466                                 else
1467                                         vm_page_remove(p);
1468                                 vm_page_unlock_queues();
1469                                 p = next;
1470                                 continue;
1471                         }
1472
1473 #if VM_NRESERVLEVEL > 0
1474                         /*
1475                          * Rename the reservation.
1476                          */
1477                         vm_reserv_rename(p, object, backing_object,
1478                             backing_offset_index);
1479 #endif
1480
1481                         /*
1482                          * Page does not exist in parent, rename the
1483                          * page from the backing object to the main object. 
1484                          *
1485                          * If the page was mapped to a process, it can remain 
1486                          * mapped through the rename.
1487                          */
1488                         vm_page_lock_queues();
1489                         vm_page_rename(p, object, new_pindex);
1490                         vm_page_unlock_queues();
1491                         /* page automatically made dirty by rename */
1492                 }
1493                 p = next;
1494         }
1495         return (r);
1496 }
1497
1498
1499 /*
1500  * this version of collapse allows the operation to occur earlier and
1501  * when paging_in_progress is true for an object...  This is not a complete
1502  * operation, but should plug 99.9% of the rest of the leaks.
1503  */
1504 static void
1505 vm_object_qcollapse(vm_object_t object)
1506 {
1507         vm_object_t backing_object = object->backing_object;
1508
1509         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1510         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1511
1512         if (backing_object->ref_count != 1)
1513                 return;
1514
1515         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1516 }
1517
1518 /*
1519  *      vm_object_collapse:
1520  *
1521  *      Collapse an object with the object backing it.
1522  *      Pages in the backing object are moved into the
1523  *      parent, and the backing object is deallocated.
1524  */
1525 void
1526 vm_object_collapse(vm_object_t object)
1527 {
1528         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1529         
1530         while (TRUE) {
1531                 vm_object_t backing_object;
1532
1533                 /*
1534                  * Verify that the conditions are right for collapse:
1535                  *
1536                  * The object exists and the backing object exists.
1537                  */
1538                 if ((backing_object = object->backing_object) == NULL)
1539                         break;
1540
1541                 /*
1542                  * we check the backing object first, because it is most likely
1543                  * not collapsable.
1544                  */
1545                 VM_OBJECT_LOCK(backing_object);
1546                 if (backing_object->handle != NULL ||
1547                     (backing_object->type != OBJT_DEFAULT &&
1548                      backing_object->type != OBJT_SWAP) ||
1549                     (backing_object->flags & OBJ_DEAD) ||
1550                     object->handle != NULL ||
1551                     (object->type != OBJT_DEFAULT &&
1552                      object->type != OBJT_SWAP) ||
1553                     (object->flags & OBJ_DEAD)) {
1554                         VM_OBJECT_UNLOCK(backing_object);
1555                         break;
1556                 }
1557
1558                 if (
1559                     object->paging_in_progress != 0 ||
1560                     backing_object->paging_in_progress != 0
1561                 ) {
1562                         vm_object_qcollapse(object);
1563                         VM_OBJECT_UNLOCK(backing_object);
1564                         break;
1565                 }
1566                 /*
1567                  * We know that we can either collapse the backing object (if
1568                  * the parent is the only reference to it) or (perhaps) have
1569                  * the parent bypass the object if the parent happens to shadow
1570                  * all the resident pages in the entire backing object.
1571                  *
1572                  * This is ignoring pager-backed pages such as swap pages.
1573                  * vm_object_backing_scan fails the shadowing test in this
1574                  * case.
1575                  */
1576                 if (backing_object->ref_count == 1) {
1577                         /*
1578                          * If there is exactly one reference to the backing
1579                          * object, we can collapse it into the parent.  
1580                          */
1581                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1582
1583 #if VM_NRESERVLEVEL > 0
1584                         /*
1585                          * Break any reservations from backing_object.
1586                          */
1587                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1588                                 vm_reserv_break_all(backing_object);
1589 #endif
1590
1591                         /*
1592                          * Move the pager from backing_object to object.
1593                          */
1594                         if (backing_object->type == OBJT_SWAP) {
1595                                 /*
1596                                  * swap_pager_copy() can sleep, in which case
1597                                  * the backing_object's and object's locks are
1598                                  * released and reacquired.
1599                                  */
1600                                 swap_pager_copy(
1601                                     backing_object,
1602                                     object,
1603                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1604
1605                                 /*
1606                                  * Free any cached pages from backing_object.
1607                                  */
1608                                 if (__predict_false(backing_object->cache != NULL))
1609                                         vm_page_cache_free(backing_object, 0, 0);
1610                         }
1611                         /*
1612                          * Object now shadows whatever backing_object did.
1613                          * Note that the reference to 
1614                          * backing_object->backing_object moves from within 
1615                          * backing_object to within object.
1616                          */
1617                         LIST_REMOVE(object, shadow_list);
1618                         backing_object->shadow_count--;
1619                         backing_object->generation++;
1620                         if (backing_object->backing_object) {
1621                                 VM_OBJECT_LOCK(backing_object->backing_object);
1622                                 LIST_REMOVE(backing_object, shadow_list);
1623                                 LIST_INSERT_HEAD(
1624                                     &backing_object->backing_object->shadow_head,
1625                                     object, shadow_list);
1626                                 /*
1627                                  * The shadow_count has not changed.
1628                                  */
1629                                 backing_object->backing_object->generation++;
1630                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1631                         }
1632                         object->backing_object = backing_object->backing_object;
1633                         object->backing_object_offset +=
1634                             backing_object->backing_object_offset;
1635
1636                         /*
1637                          * Discard backing_object.
1638                          *
1639                          * Since the backing object has no pages, no pager left,
1640                          * and no object references within it, all that is
1641                          * necessary is to dispose of it.
1642                          */
1643                         KASSERT(backing_object->ref_count == 1, (
1644 "backing_object %p was somehow re-referenced during collapse!",
1645                             backing_object));
1646                         VM_OBJECT_UNLOCK(backing_object);
1647                         vm_object_destroy(backing_object);
1648
1649                         object_collapses++;
1650                 } else {
1651                         vm_object_t new_backing_object;
1652
1653                         /*
1654                          * If we do not entirely shadow the backing object,
1655                          * there is nothing we can do so we give up.
1656                          */
1657                         if (object->resident_page_count != object->size &&
1658                             vm_object_backing_scan(object,
1659                             OBSC_TEST_ALL_SHADOWED) == 0) {
1660                                 VM_OBJECT_UNLOCK(backing_object);
1661                                 break;
1662                         }
1663
1664                         /*
1665                          * Make the parent shadow the next object in the
1666                          * chain.  Deallocating backing_object will not remove
1667                          * it, since its reference count is at least 2.
1668                          */
1669                         LIST_REMOVE(object, shadow_list);
1670                         backing_object->shadow_count--;
1671                         backing_object->generation++;
1672
1673                         new_backing_object = backing_object->backing_object;
1674                         if ((object->backing_object = new_backing_object) != NULL) {
1675                                 VM_OBJECT_LOCK(new_backing_object);
1676                                 LIST_INSERT_HEAD(
1677                                     &new_backing_object->shadow_head,
1678                                     object,
1679                                     shadow_list
1680                                 );
1681                                 new_backing_object->shadow_count++;
1682                                 new_backing_object->generation++;
1683                                 vm_object_reference_locked(new_backing_object);
1684                                 VM_OBJECT_UNLOCK(new_backing_object);
1685                                 object->backing_object_offset +=
1686                                         backing_object->backing_object_offset;
1687                         }
1688
1689                         /*
1690                          * Drop the reference count on backing_object. Since
1691                          * its ref_count was at least 2, it will not vanish.
1692                          */
1693                         backing_object->ref_count--;
1694                         VM_OBJECT_UNLOCK(backing_object);
1695                         object_bypasses++;
1696                 }
1697
1698                 /*
1699                  * Try again with this object's new backing object.
1700                  */
1701         }
1702 }
1703
1704 /*
1705  *      vm_object_page_remove:
1706  *
1707  *      For the given object, either frees or invalidates each of the
1708  *      specified pages.  In general, a page is freed.  However, if a
1709  *      page is wired for any reason other than the existence of a
1710  *      managed, wired mapping, then it may be invalidated but not
1711  *      removed from the object.  Pages are specified by the given
1712  *      range ["start", "end") and Boolean "clean_only".  As a
1713  *      special case, if "end" is zero, then the range extends from
1714  *      "start" to the end of the object.  If "clean_only" is TRUE,
1715  *      then only the non-dirty pages within the specified range are
1716  *      affected.
1717  *
1718  *      In general, this operation should only be performed on objects
1719  *      that contain managed pages.  There are two exceptions.  First,
1720  *      it may be performed on the kernel and kmem objects.  Second,
1721  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1722  *      device-backed pages.  In both of these cases, "clean_only"
1723  *      must be FALSE.
1724  *
1725  *      The object must be locked.
1726  */
1727 void
1728 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1729     boolean_t clean_only)
1730 {
1731         vm_page_t p, next;
1732         int wirings;
1733
1734         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1735         if (object->resident_page_count == 0)
1736                 goto skipmemq;
1737
1738         /*
1739          * Since physically-backed objects do not use managed pages, we can't
1740          * remove pages from the object (we must instead remove the page
1741          * references, and then destroy the object).
1742          */
1743         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1744             object == kmem_object,
1745             ("attempt to remove pages from a physical object"));
1746
1747         vm_object_pip_add(object, 1);
1748 again:
1749         p = vm_page_find_least(object, start);
1750         vm_page_lock_queues();
1751         /*
1752          * Assert: the variable p is either (1) the page with the
1753          * least pindex greater than or equal to the parameter pindex
1754          * or (2) NULL.
1755          */
1756         for (;
1757              p != NULL && (p->pindex < end || end == 0);
1758              p = next) {
1759                 next = TAILQ_NEXT(p, listq);
1760
1761                 /*
1762                  * If the page is wired for any reason besides the
1763                  * existence of managed, wired mappings, then it cannot
1764                  * be freed.  For example, fictitious pages, which
1765                  * represent device memory, are inherently wired and
1766                  * cannot be freed.  They can, however, be invalidated
1767                  * if "clean_only" is FALSE.
1768                  */
1769                 if ((wirings = p->wire_count) != 0 &&
1770                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1771                         /* Fictitious pages do not have managed mappings. */
1772                         if ((p->flags & PG_FICTITIOUS) == 0)
1773                                 pmap_remove_all(p);
1774                         /* Account for removal of managed, wired mappings. */
1775                         p->wire_count -= wirings;
1776                         if (!clean_only) {
1777                                 p->valid = 0;
1778                                 vm_page_undirty(p);
1779                         }
1780                         continue;
1781                 }
1782                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1783                         goto again;
1784                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1785                     ("vm_object_page_remove: page %p is fictitious", p));
1786                 if (clean_only && p->valid) {
1787                         pmap_remove_write(p);
1788                         if (p->dirty)
1789                                 continue;
1790                 }
1791                 pmap_remove_all(p);
1792                 /* Account for removal of managed, wired mappings. */
1793                 if (wirings != 0)
1794                         p->wire_count -= wirings;
1795                 vm_page_free(p);
1796         }
1797         vm_page_unlock_queues();
1798         vm_object_pip_wakeup(object);
1799 skipmemq:
1800         if (__predict_false(object->cache != NULL))
1801                 vm_page_cache_free(object, start, end);
1802 }
1803
1804 /*
1805  *      Populate the specified range of the object with valid pages.  Returns
1806  *      TRUE if the range is successfully populated and FALSE otherwise.
1807  *
1808  *      Note: This function should be optimized to pass a larger array of
1809  *      pages to vm_pager_get_pages() before it is applied to a non-
1810  *      OBJT_DEVICE object.
1811  *
1812  *      The object must be locked.
1813  */
1814 boolean_t
1815 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1816 {
1817         vm_page_t m, ma[1];
1818         vm_pindex_t pindex;
1819         int rv;
1820
1821         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1822         for (pindex = start; pindex < end; pindex++) {
1823                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1824                     VM_ALLOC_RETRY);
1825                 if (m->valid != VM_PAGE_BITS_ALL) {
1826                         ma[0] = m;
1827                         rv = vm_pager_get_pages(object, ma, 1, 0);
1828                         m = vm_page_lookup(object, pindex);
1829                         if (m == NULL)
1830                                 break;
1831                         if (rv != VM_PAGER_OK) {
1832                                 vm_page_lock_queues();
1833                                 vm_page_free(m);
1834                                 vm_page_unlock_queues();
1835                                 break;
1836                         }
1837                 }
1838                 /*
1839                  * Keep "m" busy because a subsequent iteration may unlock
1840                  * the object.
1841                  */
1842         }
1843         if (pindex > start) {
1844                 m = vm_page_lookup(object, start);
1845                 while (m != NULL && m->pindex < pindex) {
1846                         vm_page_wakeup(m);
1847                         m = TAILQ_NEXT(m, listq);
1848                 }
1849         }
1850         return (pindex == end);
1851 }
1852
1853 /*
1854  *      Routine:        vm_object_coalesce
1855  *      Function:       Coalesces two objects backing up adjoining
1856  *                      regions of memory into a single object.
1857  *
1858  *      returns TRUE if objects were combined.
1859  *
1860  *      NOTE:   Only works at the moment if the second object is NULL -
1861  *              if it's not, which object do we lock first?
1862  *
1863  *      Parameters:
1864  *              prev_object     First object to coalesce
1865  *              prev_offset     Offset into prev_object
1866  *              prev_size       Size of reference to prev_object
1867  *              next_size       Size of reference to the second object
1868  *              reserved        Indicator that extension region has
1869  *                              swap accounted for
1870  *
1871  *      Conditions:
1872  *      The object must *not* be locked.
1873  */
1874 boolean_t
1875 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1876     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1877 {
1878         vm_pindex_t next_pindex;
1879
1880         if (prev_object == NULL)
1881                 return (TRUE);
1882         VM_OBJECT_LOCK(prev_object);
1883         if (prev_object->type != OBJT_DEFAULT &&
1884             prev_object->type != OBJT_SWAP) {
1885                 VM_OBJECT_UNLOCK(prev_object);
1886                 return (FALSE);
1887         }
1888
1889         /*
1890          * Try to collapse the object first
1891          */
1892         vm_object_collapse(prev_object);
1893
1894         /*
1895          * Can't coalesce if: . more than one reference . paged out . shadows
1896          * another object . has a copy elsewhere (any of which mean that the
1897          * pages not mapped to prev_entry may be in use anyway)
1898          */
1899         if (prev_object->backing_object != NULL) {
1900                 VM_OBJECT_UNLOCK(prev_object);
1901                 return (FALSE);
1902         }
1903
1904         prev_size >>= PAGE_SHIFT;
1905         next_size >>= PAGE_SHIFT;
1906         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1907
1908         if ((prev_object->ref_count > 1) &&
1909             (prev_object->size != next_pindex)) {
1910                 VM_OBJECT_UNLOCK(prev_object);
1911                 return (FALSE);
1912         }
1913
1914         /*
1915          * Account for the charge.
1916          */
1917         if (prev_object->uip != NULL) {
1918
1919                 /*
1920                  * If prev_object was charged, then this mapping,
1921                  * althought not charged now, may become writable
1922                  * later. Non-NULL uip in the object would prevent
1923                  * swap reservation during enabling of the write
1924                  * access, so reserve swap now. Failed reservation
1925                  * cause allocation of the separate object for the map
1926                  * entry, and swap reservation for this entry is
1927                  * managed in appropriate time.
1928                  */
1929                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
1930                     prev_object->uip)) {
1931                         return (FALSE);
1932                 }
1933                 prev_object->charge += ptoa(next_size);
1934         }
1935
1936         /*
1937          * Remove any pages that may still be in the object from a previous
1938          * deallocation.
1939          */
1940         if (next_pindex < prev_object->size) {
1941                 vm_object_page_remove(prev_object,
1942                                       next_pindex,
1943                                       next_pindex + next_size, FALSE);
1944                 if (prev_object->type == OBJT_SWAP)
1945                         swap_pager_freespace(prev_object,
1946                                              next_pindex, next_size);
1947 #if 0
1948                 if (prev_object->uip != NULL) {
1949                         KASSERT(prev_object->charge >=
1950                             ptoa(prev_object->size - next_pindex),
1951                             ("object %p overcharged 1 %jx %jx", prev_object,
1952                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
1953                         prev_object->charge -= ptoa(prev_object->size -
1954                             next_pindex);
1955                 }
1956 #endif
1957         }
1958
1959         /*
1960          * Extend the object if necessary.
1961          */
1962         if (next_pindex + next_size > prev_object->size)
1963                 prev_object->size = next_pindex + next_size;
1964
1965         VM_OBJECT_UNLOCK(prev_object);
1966         return (TRUE);
1967 }
1968
1969 void
1970 vm_object_set_writeable_dirty(vm_object_t object)
1971 {
1972
1973         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1974         if (object->type != OBJT_VNODE ||
1975             (object->flags & OBJ_MIGHTBEDIRTY) != 0)
1976                 return;
1977         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
1978 }
1979
1980 #include "opt_ddb.h"
1981 #ifdef DDB
1982 #include <sys/kernel.h>
1983
1984 #include <sys/cons.h>
1985
1986 #include <ddb/ddb.h>
1987
1988 static int
1989 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1990 {
1991         vm_map_t tmpm;
1992         vm_map_entry_t tmpe;
1993         vm_object_t obj;
1994         int entcount;
1995
1996         if (map == 0)
1997                 return 0;
1998
1999         if (entry == 0) {
2000                 tmpe = map->header.next;
2001                 entcount = map->nentries;
2002                 while (entcount-- && (tmpe != &map->header)) {
2003                         if (_vm_object_in_map(map, object, tmpe)) {
2004                                 return 1;
2005                         }
2006                         tmpe = tmpe->next;
2007                 }
2008         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2009                 tmpm = entry->object.sub_map;
2010                 tmpe = tmpm->header.next;
2011                 entcount = tmpm->nentries;
2012                 while (entcount-- && tmpe != &tmpm->header) {
2013                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2014                                 return 1;
2015                         }
2016                         tmpe = tmpe->next;
2017                 }
2018         } else if ((obj = entry->object.vm_object) != NULL) {
2019                 for (; obj; obj = obj->backing_object)
2020                         if (obj == object) {
2021                                 return 1;
2022                         }
2023         }
2024         return 0;
2025 }
2026
2027 static int
2028 vm_object_in_map(vm_object_t object)
2029 {
2030         struct proc *p;
2031
2032         /* sx_slock(&allproc_lock); */
2033         FOREACH_PROC_IN_SYSTEM(p) {
2034                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2035                         continue;
2036                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2037                         /* sx_sunlock(&allproc_lock); */
2038                         return 1;
2039                 }
2040         }
2041         /* sx_sunlock(&allproc_lock); */
2042         if (_vm_object_in_map(kernel_map, object, 0))
2043                 return 1;
2044         if (_vm_object_in_map(kmem_map, object, 0))
2045                 return 1;
2046         if (_vm_object_in_map(pager_map, object, 0))
2047                 return 1;
2048         if (_vm_object_in_map(buffer_map, object, 0))
2049                 return 1;
2050         return 0;
2051 }
2052
2053 DB_SHOW_COMMAND(vmochk, vm_object_check)
2054 {
2055         vm_object_t object;
2056
2057         /*
2058          * make sure that internal objs are in a map somewhere
2059          * and none have zero ref counts.
2060          */
2061         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2062                 if (object->handle == NULL &&
2063                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2064                         if (object->ref_count == 0) {
2065                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2066                                         (long)object->size);
2067                         }
2068                         if (!vm_object_in_map(object)) {
2069                                 db_printf(
2070                         "vmochk: internal obj is not in a map: "
2071                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2072                                     object->ref_count, (u_long)object->size, 
2073                                     (u_long)object->size,
2074                                     (void *)object->backing_object);
2075                         }
2076                 }
2077         }
2078 }
2079
2080 /*
2081  *      vm_object_print:        [ debug ]
2082  */
2083 DB_SHOW_COMMAND(object, vm_object_print_static)
2084 {
2085         /* XXX convert args. */
2086         vm_object_t object = (vm_object_t)addr;
2087         boolean_t full = have_addr;
2088
2089         vm_page_t p;
2090
2091         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2092 #define count   was_count
2093
2094         int count;
2095
2096         if (object == NULL)
2097                 return;
2098
2099         db_iprintf(
2100             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2101             object, (int)object->type, (uintmax_t)object->size,
2102             object->resident_page_count, object->ref_count, object->flags,
2103             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2104         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2105             object->shadow_count, 
2106             object->backing_object ? object->backing_object->ref_count : 0,
2107             object->backing_object, (uintmax_t)object->backing_object_offset);
2108
2109         if (!full)
2110                 return;
2111
2112         db_indent += 2;
2113         count = 0;
2114         TAILQ_FOREACH(p, &object->memq, listq) {
2115                 if (count == 0)
2116                         db_iprintf("memory:=");
2117                 else if (count == 6) {
2118                         db_printf("\n");
2119                         db_iprintf(" ...");
2120                         count = 0;
2121                 } else
2122                         db_printf(",");
2123                 count++;
2124
2125                 db_printf("(off=0x%jx,page=0x%jx)",
2126                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2127         }
2128         if (count != 0)
2129                 db_printf("\n");
2130         db_indent -= 2;
2131 }
2132
2133 /* XXX. */
2134 #undef count
2135
2136 /* XXX need this non-static entry for calling from vm_map_print. */
2137 void
2138 vm_object_print(
2139         /* db_expr_t */ long addr,
2140         boolean_t have_addr,
2141         /* db_expr_t */ long count,
2142         char *modif)
2143 {
2144         vm_object_print_static(addr, have_addr, count, modif);
2145 }
2146
2147 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2148 {
2149         vm_object_t object;
2150         vm_pindex_t fidx;
2151         vm_paddr_t pa;
2152         vm_page_t m, prev_m;
2153         int rcount, nl, c;
2154
2155         nl = 0;
2156         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2157                 db_printf("new object: %p\n", (void *)object);
2158                 if (nl > 18) {
2159                         c = cngetc();
2160                         if (c != ' ')
2161                                 return;
2162                         nl = 0;
2163                 }
2164                 nl++;
2165                 rcount = 0;
2166                 fidx = 0;
2167                 pa = -1;
2168                 TAILQ_FOREACH(m, &object->memq, listq) {
2169                         if (m->pindex > 128)
2170                                 break;
2171                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2172                             prev_m->pindex + 1 != m->pindex) {
2173                                 if (rcount) {
2174                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2175                                                 (long)fidx, rcount, (long)pa);
2176                                         if (nl > 18) {
2177                                                 c = cngetc();
2178                                                 if (c != ' ')
2179                                                         return;
2180                                                 nl = 0;
2181                                         }
2182                                         nl++;
2183                                         rcount = 0;
2184                                 }
2185                         }                               
2186                         if (rcount &&
2187                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2188                                 ++rcount;
2189                                 continue;
2190                         }
2191                         if (rcount) {
2192                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2193                                         (long)fidx, rcount, (long)pa);
2194                                 if (nl > 18) {
2195                                         c = cngetc();
2196                                         if (c != ' ')
2197                                                 return;
2198                                         nl = 0;
2199                                 }
2200                                 nl++;
2201                         }
2202                         fidx = m->pindex;
2203                         pa = VM_PAGE_TO_PHYS(m);
2204                         rcount = 1;
2205                 }
2206                 if (rcount) {
2207                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2208                                 (long)fidx, rcount, (long)pa);
2209                         if (nl > 18) {
2210                                 c = cngetc();
2211                                 if (c != ' ')
2212                                         return;
2213                                 nl = 0;
2214                         }
2215                         nl++;
2216                 }
2217         }
2218 }
2219 #endif /* DDB */