]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_object.c
MFC r209686,r209702:
[FreeBSD/stable/8.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int msync_flush_flags = 0;
100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
101     "Does nothing; kept for backward compatibility");
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags);
109 static void     vm_object_qcollapse(vm_object_t object);
110 static void     vm_object_vndeallocate(vm_object_t object);
111
112 /*
113  *      Virtual memory objects maintain the actual data
114  *      associated with allocated virtual memory.  A given
115  *      page of memory exists within exactly one object.
116  *
117  *      An object is only deallocated when all "references"
118  *      are given up.  Only one "reference" to a given
119  *      region of an object should be writeable.
120  *
121  *      Associated with each object is a list of all resident
122  *      memory pages belonging to that object; this list is
123  *      maintained by the "vm_page" module, and locked by the object's
124  *      lock.
125  *
126  *      Each object also records a "pager" routine which is
127  *      used to retrieve (and store) pages to the proper backing
128  *      storage.  In addition, objects may be backed by other
129  *      objects from which they were virtual-copied.
130  *
131  *      The only items within the object structure which are
132  *      modified after time of creation are:
133  *              reference count         locked by object's lock
134  *              pager routine           locked by object's lock
135  *
136  */
137
138 struct object_q vm_object_list;
139 struct mtx vm_object_list_mtx;  /* lock for object list and count */
140
141 struct vm_object kernel_object_store;
142 struct vm_object kmem_object_store;
143
144 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
145
146 static long object_collapses;
147 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
148     &object_collapses, 0, "VM object collapses");
149
150 static long object_bypasses;
151 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
152     &object_bypasses, 0, "VM object bypasses");
153
154 static uma_zone_t obj_zone;
155
156 static int vm_object_zinit(void *mem, int size, int flags);
157
158 #ifdef INVARIANTS
159 static void vm_object_zdtor(void *mem, int size, void *arg);
160
161 static void
162 vm_object_zdtor(void *mem, int size, void *arg)
163 {
164         vm_object_t object;
165
166         object = (vm_object_t)mem;
167         KASSERT(TAILQ_EMPTY(&object->memq),
168             ("object %p has resident pages",
169             object));
170 #if VM_NRESERVLEVEL > 0
171         KASSERT(LIST_EMPTY(&object->rvq),
172             ("object %p has reservations",
173             object));
174 #endif
175         KASSERT(object->cache == NULL,
176             ("object %p has cached pages",
177             object));
178         KASSERT(object->paging_in_progress == 0,
179             ("object %p paging_in_progress = %d",
180             object, object->paging_in_progress));
181         KASSERT(object->resident_page_count == 0,
182             ("object %p resident_page_count = %d",
183             object, object->resident_page_count));
184         KASSERT(object->shadow_count == 0,
185             ("object %p shadow_count = %d",
186             object, object->shadow_count));
187 }
188 #endif
189
190 static int
191 vm_object_zinit(void *mem, int size, int flags)
192 {
193         vm_object_t object;
194
195         object = (vm_object_t)mem;
196         bzero(&object->mtx, sizeof(object->mtx));
197         VM_OBJECT_LOCK_INIT(object, "standard object");
198
199         /* These are true for any object that has been freed */
200         object->paging_in_progress = 0;
201         object->resident_page_count = 0;
202         object->shadow_count = 0;
203         return (0);
204 }
205
206 void
207 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
208 {
209
210         TAILQ_INIT(&object->memq);
211         LIST_INIT(&object->shadow_head);
212
213         object->root = NULL;
214         object->type = type;
215         object->size = size;
216         object->generation = 1;
217         object->ref_count = 1;
218         object->memattr = VM_MEMATTR_DEFAULT;
219         object->flags = 0;
220         object->uip = NULL;
221         object->charge = 0;
222         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
223                 object->flags = OBJ_ONEMAPPING;
224         object->pg_color = 0;
225         object->handle = NULL;
226         object->backing_object = NULL;
227         object->backing_object_offset = (vm_ooffset_t) 0;
228 #if VM_NRESERVLEVEL > 0
229         LIST_INIT(&object->rvq);
230 #endif
231         object->cache = NULL;
232
233         mtx_lock(&vm_object_list_mtx);
234         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
235         mtx_unlock(&vm_object_list_mtx);
236 }
237
238 /*
239  *      vm_object_init:
240  *
241  *      Initialize the VM objects module.
242  */
243 void
244 vm_object_init(void)
245 {
246         TAILQ_INIT(&vm_object_list);
247         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
248         
249         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
250         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
251             kernel_object);
252 #if VM_NRESERVLEVEL > 0
253         kernel_object->flags |= OBJ_COLORED;
254         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
255 #endif
256
257         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
258         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
259             kmem_object);
260 #if VM_NRESERVLEVEL > 0
261         kmem_object->flags |= OBJ_COLORED;
262         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
263 #endif
264
265         /*
266          * The lock portion of struct vm_object must be type stable due
267          * to vm_pageout_fallback_object_lock locking a vm object
268          * without holding any references to it.
269          */
270         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
271 #ifdef INVARIANTS
272             vm_object_zdtor,
273 #else
274             NULL,
275 #endif
276             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
277 }
278
279 void
280 vm_object_clear_flag(vm_object_t object, u_short bits)
281 {
282
283         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
284         object->flags &= ~bits;
285 }
286
287 /*
288  *      Sets the default memory attribute for the specified object.  Pages
289  *      that are allocated to this object are by default assigned this memory
290  *      attribute.
291  *
292  *      Presently, this function must be called before any pages are allocated
293  *      to the object.  In the future, this requirement may be relaxed for
294  *      "default" and "swap" objects.
295  */
296 int
297 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
298 {
299
300         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
301         switch (object->type) {
302         case OBJT_DEFAULT:
303         case OBJT_DEVICE:
304         case OBJT_PHYS:
305         case OBJT_SG:
306         case OBJT_SWAP:
307         case OBJT_VNODE:
308                 if (!TAILQ_EMPTY(&object->memq))
309                         return (KERN_FAILURE);
310                 break;
311         case OBJT_DEAD:
312                 return (KERN_INVALID_ARGUMENT);
313         }
314         object->memattr = memattr;
315         return (KERN_SUCCESS);
316 }
317
318 void
319 vm_object_pip_add(vm_object_t object, short i)
320 {
321
322         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
323         object->paging_in_progress += i;
324 }
325
326 void
327 vm_object_pip_subtract(vm_object_t object, short i)
328 {
329
330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
331         object->paging_in_progress -= i;
332 }
333
334 void
335 vm_object_pip_wakeup(vm_object_t object)
336 {
337
338         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
339         object->paging_in_progress--;
340         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
341                 vm_object_clear_flag(object, OBJ_PIPWNT);
342                 wakeup(object);
343         }
344 }
345
346 void
347 vm_object_pip_wakeupn(vm_object_t object, short i)
348 {
349
350         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
351         if (i)
352                 object->paging_in_progress -= i;
353         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
354                 vm_object_clear_flag(object, OBJ_PIPWNT);
355                 wakeup(object);
356         }
357 }
358
359 void
360 vm_object_pip_wait(vm_object_t object, char *waitid)
361 {
362
363         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
364         while (object->paging_in_progress) {
365                 object->flags |= OBJ_PIPWNT;
366                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
367         }
368 }
369
370 /*
371  *      vm_object_allocate:
372  *
373  *      Returns a new object with the given size.
374  */
375 vm_object_t
376 vm_object_allocate(objtype_t type, vm_pindex_t size)
377 {
378         vm_object_t object;
379
380         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
381         _vm_object_allocate(type, size, object);
382         return (object);
383 }
384
385
386 /*
387  *      vm_object_reference:
388  *
389  *      Gets another reference to the given object.  Note: OBJ_DEAD
390  *      objects can be referenced during final cleaning.
391  */
392 void
393 vm_object_reference(vm_object_t object)
394 {
395         if (object == NULL)
396                 return;
397         VM_OBJECT_LOCK(object);
398         vm_object_reference_locked(object);
399         VM_OBJECT_UNLOCK(object);
400 }
401
402 /*
403  *      vm_object_reference_locked:
404  *
405  *      Gets another reference to the given object.
406  *
407  *      The object must be locked.
408  */
409 void
410 vm_object_reference_locked(vm_object_t object)
411 {
412         struct vnode *vp;
413
414         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
415         object->ref_count++;
416         if (object->type == OBJT_VNODE) {
417                 vp = object->handle;
418                 vref(vp);
419         }
420 }
421
422 /*
423  * Handle deallocating an object of type OBJT_VNODE.
424  */
425 static void
426 vm_object_vndeallocate(vm_object_t object)
427 {
428         struct vnode *vp = (struct vnode *) object->handle;
429
430         VFS_ASSERT_GIANT(vp->v_mount);
431         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
432         KASSERT(object->type == OBJT_VNODE,
433             ("vm_object_vndeallocate: not a vnode object"));
434         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
435 #ifdef INVARIANTS
436         if (object->ref_count == 0) {
437                 vprint("vm_object_vndeallocate", vp);
438                 panic("vm_object_vndeallocate: bad object reference count");
439         }
440 #endif
441
442         object->ref_count--;
443         if (object->ref_count == 0) {
444                 mp_fixme("Unlocked vflag access.");
445                 vp->v_vflag &= ~VV_TEXT;
446         }
447         VM_OBJECT_UNLOCK(object);
448         /*
449          * vrele may need a vop lock
450          */
451         vrele(vp);
452 }
453
454 /*
455  *      vm_object_deallocate:
456  *
457  *      Release a reference to the specified object,
458  *      gained either through a vm_object_allocate
459  *      or a vm_object_reference call.  When all references
460  *      are gone, storage associated with this object
461  *      may be relinquished.
462  *
463  *      No object may be locked.
464  */
465 void
466 vm_object_deallocate(vm_object_t object)
467 {
468         vm_object_t temp;
469
470         while (object != NULL) {
471                 int vfslocked;
472
473                 vfslocked = 0;
474         restart:
475                 VM_OBJECT_LOCK(object);
476                 if (object->type == OBJT_VNODE) {
477                         struct vnode *vp = (struct vnode *) object->handle;
478
479                         /*
480                          * Conditionally acquire Giant for a vnode-backed
481                          * object.  We have to be careful since the type of
482                          * a vnode object can change while the object is
483                          * unlocked.
484                          */
485                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
486                                 vfslocked = 1;
487                                 if (!mtx_trylock(&Giant)) {
488                                         VM_OBJECT_UNLOCK(object);
489                                         mtx_lock(&Giant);
490                                         goto restart;
491                                 }
492                         }
493                         vm_object_vndeallocate(object);
494                         VFS_UNLOCK_GIANT(vfslocked);
495                         return;
496                 } else
497                         /*
498                          * This is to handle the case that the object
499                          * changed type while we dropped its lock to
500                          * obtain Giant.
501                          */
502                         VFS_UNLOCK_GIANT(vfslocked);
503
504                 KASSERT(object->ref_count != 0,
505                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
506
507                 /*
508                  * If the reference count goes to 0 we start calling
509                  * vm_object_terminate() on the object chain.
510                  * A ref count of 1 may be a special case depending on the
511                  * shadow count being 0 or 1.
512                  */
513                 object->ref_count--;
514                 if (object->ref_count > 1) {
515                         VM_OBJECT_UNLOCK(object);
516                         return;
517                 } else if (object->ref_count == 1) {
518                         if (object->shadow_count == 0 &&
519                             object->handle == NULL &&
520                             (object->type == OBJT_DEFAULT ||
521                              object->type == OBJT_SWAP)) {
522                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
523                         } else if ((object->shadow_count == 1) &&
524                             (object->handle == NULL) &&
525                             (object->type == OBJT_DEFAULT ||
526                              object->type == OBJT_SWAP)) {
527                                 vm_object_t robject;
528
529                                 robject = LIST_FIRST(&object->shadow_head);
530                                 KASSERT(robject != NULL,
531                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
532                                          object->ref_count,
533                                          object->shadow_count));
534                                 if (!VM_OBJECT_TRYLOCK(robject)) {
535                                         /*
536                                          * Avoid a potential deadlock.
537                                          */
538                                         object->ref_count++;
539                                         VM_OBJECT_UNLOCK(object);
540                                         /*
541                                          * More likely than not the thread
542                                          * holding robject's lock has lower
543                                          * priority than the current thread.
544                                          * Let the lower priority thread run.
545                                          */
546                                         pause("vmo_de", 1);
547                                         continue;
548                                 }
549                                 /*
550                                  * Collapse object into its shadow unless its
551                                  * shadow is dead.  In that case, object will
552                                  * be deallocated by the thread that is
553                                  * deallocating its shadow.
554                                  */
555                                 if ((robject->flags & OBJ_DEAD) == 0 &&
556                                     (robject->handle == NULL) &&
557                                     (robject->type == OBJT_DEFAULT ||
558                                      robject->type == OBJT_SWAP)) {
559
560                                         robject->ref_count++;
561 retry:
562                                         if (robject->paging_in_progress) {
563                                                 VM_OBJECT_UNLOCK(object);
564                                                 vm_object_pip_wait(robject,
565                                                     "objde1");
566                                                 temp = robject->backing_object;
567                                                 if (object == temp) {
568                                                         VM_OBJECT_LOCK(object);
569                                                         goto retry;
570                                                 }
571                                         } else if (object->paging_in_progress) {
572                                                 VM_OBJECT_UNLOCK(robject);
573                                                 object->flags |= OBJ_PIPWNT;
574                                                 msleep(object,
575                                                     VM_OBJECT_MTX(object),
576                                                     PDROP | PVM, "objde2", 0);
577                                                 VM_OBJECT_LOCK(robject);
578                                                 temp = robject->backing_object;
579                                                 if (object == temp) {
580                                                         VM_OBJECT_LOCK(object);
581                                                         goto retry;
582                                                 }
583                                         } else
584                                                 VM_OBJECT_UNLOCK(object);
585
586                                         if (robject->ref_count == 1) {
587                                                 robject->ref_count--;
588                                                 object = robject;
589                                                 goto doterm;
590                                         }
591                                         object = robject;
592                                         vm_object_collapse(object);
593                                         VM_OBJECT_UNLOCK(object);
594                                         continue;
595                                 }
596                                 VM_OBJECT_UNLOCK(robject);
597                         }
598                         VM_OBJECT_UNLOCK(object);
599                         return;
600                 }
601 doterm:
602                 temp = object->backing_object;
603                 if (temp != NULL) {
604                         VM_OBJECT_LOCK(temp);
605                         LIST_REMOVE(object, shadow_list);
606                         temp->shadow_count--;
607                         temp->generation++;
608                         VM_OBJECT_UNLOCK(temp);
609                         object->backing_object = NULL;
610                 }
611                 /*
612                  * Don't double-terminate, we could be in a termination
613                  * recursion due to the terminate having to sync data
614                  * to disk.
615                  */
616                 if ((object->flags & OBJ_DEAD) == 0)
617                         vm_object_terminate(object);
618                 else
619                         VM_OBJECT_UNLOCK(object);
620                 object = temp;
621         }
622 }
623
624 /*
625  *      vm_object_destroy removes the object from the global object list
626  *      and frees the space for the object.
627  */
628 void
629 vm_object_destroy(vm_object_t object)
630 {
631
632         /*
633          * Remove the object from the global object list.
634          */
635         mtx_lock(&vm_object_list_mtx);
636         TAILQ_REMOVE(&vm_object_list, object, object_list);
637         mtx_unlock(&vm_object_list_mtx);
638
639         /*
640          * Release the allocation charge.
641          */
642         if (object->uip != NULL) {
643                 KASSERT(object->type == OBJT_DEFAULT ||
644                     object->type == OBJT_SWAP,
645                     ("vm_object_terminate: non-swap obj %p has uip",
646                      object));
647                 swap_release_by_uid(object->charge, object->uip);
648                 object->charge = 0;
649                 uifree(object->uip);
650                 object->uip = NULL;
651         }
652
653         /*
654          * Free the space for the object.
655          */
656         uma_zfree(obj_zone, object);
657 }
658
659 /*
660  *      vm_object_terminate actually destroys the specified object, freeing
661  *      up all previously used resources.
662  *
663  *      The object must be locked.
664  *      This routine may block.
665  */
666 void
667 vm_object_terminate(vm_object_t object)
668 {
669         vm_page_t p;
670
671         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
672
673         /*
674          * Make sure no one uses us.
675          */
676         vm_object_set_flag(object, OBJ_DEAD);
677
678         /*
679          * wait for the pageout daemon to be done with the object
680          */
681         vm_object_pip_wait(object, "objtrm");
682
683         KASSERT(!object->paging_in_progress,
684                 ("vm_object_terminate: pageout in progress"));
685
686         /*
687          * Clean and free the pages, as appropriate. All references to the
688          * object are gone, so we don't need to lock it.
689          */
690         if (object->type == OBJT_VNODE) {
691                 struct vnode *vp = (struct vnode *)object->handle;
692
693                 /*
694                  * Clean pages and flush buffers.
695                  */
696                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
697                 VM_OBJECT_UNLOCK(object);
698
699                 vinvalbuf(vp, V_SAVE, 0, 0);
700
701                 VM_OBJECT_LOCK(object);
702         }
703
704         KASSERT(object->ref_count == 0, 
705                 ("vm_object_terminate: object with references, ref_count=%d",
706                 object->ref_count));
707
708         /*
709          * Now free any remaining pages. For internal objects, this also
710          * removes them from paging queues. Don't free wired pages, just
711          * remove them from the object. 
712          */
713         vm_page_lock_queues();
714         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
715                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
716                         ("vm_object_terminate: freeing busy page %p "
717                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
718                 if (p->wire_count == 0) {
719                         vm_page_free(p);
720                         cnt.v_pfree++;
721                 } else {
722                         vm_page_remove(p);
723                 }
724         }
725         vm_page_unlock_queues();
726
727 #if VM_NRESERVLEVEL > 0
728         if (__predict_false(!LIST_EMPTY(&object->rvq)))
729                 vm_reserv_break_all(object);
730 #endif
731         if (__predict_false(object->cache != NULL))
732                 vm_page_cache_free(object, 0, 0);
733
734         /*
735          * Let the pager know object is dead.
736          */
737         vm_pager_deallocate(object);
738         VM_OBJECT_UNLOCK(object);
739
740         vm_object_destroy(object);
741 }
742
743 /*
744  *      vm_object_page_clean
745  *
746  *      Clean all dirty pages in the specified range of object.  Leaves page 
747  *      on whatever queue it is currently on.   If NOSYNC is set then do not
748  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
749  *      leaving the object dirty.
750  *
751  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
752  *      synchronous clustering mode implementation.
753  *
754  *      Odd semantics: if start == end, we clean everything.
755  *
756  *      The object must be locked.
757  */
758 void
759 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
760     int flags)
761 {
762         vm_page_t np, p;
763         vm_pindex_t pi, tend;
764         int clearobjflags, curgeneration, n, pagerflags;
765
766         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
767         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
768         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
769             object->resident_page_count == 0)
770                 return;
771
772         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
773             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
774         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
775
776         tend = (end == 0) ? object->size : end;
777
778         vm_object_set_flag(object, OBJ_CLEANING);
779
780         vm_page_lock_queues();
781
782         /*
783          * Make the page read-only so we can then clear the object flags.
784          *
785          * However, if this is a nosync mmap then the object is likely to 
786          * stay dirty so do not mess with the page and do not clear the
787          * object flags.
788          */
789         clearobjflags = 1;
790         for (p = vm_page_find_least(object, start);
791             p != NULL && p->pindex < tend; p = TAILQ_NEXT(p, listq)) {
792                 if ((flags & OBJPC_NOSYNC) != 0 &&
793                     (p->oflags & VPO_NOSYNC) != 0)
794                         clearobjflags = 0;
795                 else
796                         pmap_remove_write(p);
797         }
798
799         if (clearobjflags && (start == 0) && (tend == object->size))
800                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
801
802 rescan:
803         curgeneration = object->generation;
804
805         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
806                 pi = p->pindex;
807                 if (pi >= tend)
808                         break;
809                 np = TAILQ_NEXT(p, listq);
810                 if (p->valid == 0)
811                         continue;
812                 while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
813                         vm_page_lock_queues();
814                         if (object->generation != curgeneration)
815                                 goto rescan;
816                 }
817                 vm_page_test_dirty(p);
818                 if (p->dirty == 0)
819                         continue;
820
821                 /*
822                  * If we have been asked to skip nosync pages and this is a
823                  * nosync page, skip it.  Note that the object flags were
824                  * not cleared in this case so we do not have to set them.
825                  */
826                 if ((flags & OBJPC_NOSYNC) != 0 &&
827                     (p->oflags & VPO_NOSYNC) != 0)
828                         continue;
829
830                 n = vm_object_page_collect_flush(object, p, pagerflags);
831                 KASSERT(n > 0, ("vm_object_page_collect_flush failed"));
832                 if (object->generation != curgeneration)
833                         goto rescan;
834                 np = vm_page_find_least(object, pi + n);
835         }
836         vm_page_unlock_queues();
837 #if 0
838         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
839 #endif
840
841         vm_object_clear_flag(object, OBJ_CLEANING);
842 }
843
844 static int
845 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
846 {
847         int runlen;
848         int maxf;
849         int chkb;
850         int maxb;
851         int i, index;
852         vm_pindex_t pi;
853         vm_page_t maf[vm_pageout_page_count];
854         vm_page_t mab[vm_pageout_page_count];
855         vm_page_t ma[vm_pageout_page_count];
856         vm_page_t tp, p1;
857
858         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
859         pi = p->pindex;
860         maxf = 0;
861         for (i = 1, p1 = p; i < vm_pageout_page_count; i++) {
862                 tp = vm_page_next(p1);
863                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
864                         break;
865                 vm_page_test_dirty(tp);
866                 if (tp->dirty == 0)
867                         break;
868                 maf[i - 1] = p1 = tp;
869                 maxf++;
870         }
871
872         maxb = 0;
873         chkb = vm_pageout_page_count -  maxf;
874         for (i = 1, p1 = p; i < chkb; i++) {
875                 tp = vm_page_prev(p1);
876                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
877                         break;
878                 vm_page_test_dirty(tp);
879                 if (tp->dirty == 0)
880                         break;
881                 mab[i - 1] = p1 = tp;
882                 maxb++;
883         }
884
885         for (i = 0; i < maxb; i++) {
886                 index = (maxb - i) - 1;
887                 ma[index] = mab[i];
888         }
889         ma[maxb] = p;
890         for (i = 0; i < maxf; i++) {
891                 index = (maxb + i) + 1;
892                 ma[index] = maf[i];
893         }
894         runlen = maxb + maxf + 1;
895
896         vm_pageout_flush(ma, runlen, pagerflags);
897         for (i = 0; i < runlen; i++) {
898                 if (ma[i]->dirty != 0) {
899                         KASSERT((ma[i]->flags & PG_WRITEABLE) == 0,
900         ("vm_object_page_collect_flush: page %p is not write protected",
901                             ma[i]));
902                 }
903         }
904         for (i = 0; i < maxf; i++) {
905                 if (ma[i + maxb + 1]->dirty != 0) {
906                         /*
907                          * maxf will end up being the actual number of pages
908                          * we wrote out contiguously, non-inclusive of the
909                          * first page.  We do not count look-behind pages.
910                          */
911                         if (maxf > i) {
912                                 maxf = i;
913                                 break;
914                         }
915                 }
916         }
917         return (maxf + 1);
918 }
919
920 /*
921  * Note that there is absolutely no sense in writing out
922  * anonymous objects, so we track down the vnode object
923  * to write out.
924  * We invalidate (remove) all pages from the address space
925  * for semantic correctness.
926  *
927  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
928  * may start out with a NULL object.
929  */
930 void
931 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
932     boolean_t syncio, boolean_t invalidate)
933 {
934         vm_object_t backing_object;
935         struct vnode *vp;
936         struct mount *mp;
937         int flags;
938
939         if (object == NULL)
940                 return;
941         VM_OBJECT_LOCK(object);
942         while ((backing_object = object->backing_object) != NULL) {
943                 VM_OBJECT_LOCK(backing_object);
944                 offset += object->backing_object_offset;
945                 VM_OBJECT_UNLOCK(object);
946                 object = backing_object;
947                 if (object->size < OFF_TO_IDX(offset + size))
948                         size = IDX_TO_OFF(object->size) - offset;
949         }
950         /*
951          * Flush pages if writing is allowed, invalidate them
952          * if invalidation requested.  Pages undergoing I/O
953          * will be ignored by vm_object_page_remove().
954          *
955          * We cannot lock the vnode and then wait for paging
956          * to complete without deadlocking against vm_fault.
957          * Instead we simply call vm_object_page_remove() and
958          * allow it to block internally on a page-by-page
959          * basis when it encounters pages undergoing async
960          * I/O.
961          */
962         if (object->type == OBJT_VNODE &&
963             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
964                 int vfslocked;
965                 vp = object->handle;
966                 VM_OBJECT_UNLOCK(object);
967                 (void) vn_start_write(vp, &mp, V_WAIT);
968                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
969                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
970                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
971                 flags |= invalidate ? OBJPC_INVAL : 0;
972                 VM_OBJECT_LOCK(object);
973                 vm_object_page_clean(object,
974                     OFF_TO_IDX(offset),
975                     OFF_TO_IDX(offset + size + PAGE_MASK),
976                     flags);
977                 VM_OBJECT_UNLOCK(object);
978                 VOP_UNLOCK(vp, 0);
979                 VFS_UNLOCK_GIANT(vfslocked);
980                 vn_finished_write(mp);
981                 VM_OBJECT_LOCK(object);
982         }
983         if ((object->type == OBJT_VNODE ||
984              object->type == OBJT_DEVICE) && invalidate) {
985                 boolean_t purge;
986                 purge = old_msync || (object->type == OBJT_DEVICE);
987                 vm_object_page_remove(object,
988                     OFF_TO_IDX(offset),
989                     OFF_TO_IDX(offset + size + PAGE_MASK),
990                     purge ? FALSE : TRUE);
991         }
992         VM_OBJECT_UNLOCK(object);
993 }
994
995 /*
996  *      vm_object_madvise:
997  *
998  *      Implements the madvise function at the object/page level.
999  *
1000  *      MADV_WILLNEED   (any object)
1001  *
1002  *          Activate the specified pages if they are resident.
1003  *
1004  *      MADV_DONTNEED   (any object)
1005  *
1006  *          Deactivate the specified pages if they are resident.
1007  *
1008  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1009  *                       OBJ_ONEMAPPING only)
1010  *
1011  *          Deactivate and clean the specified pages if they are
1012  *          resident.  This permits the process to reuse the pages
1013  *          without faulting or the kernel to reclaim the pages
1014  *          without I/O.
1015  */
1016 void
1017 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1018 {
1019         vm_pindex_t end, tpindex;
1020         vm_object_t backing_object, tobject;
1021         vm_page_t m;
1022
1023         if (object == NULL)
1024                 return;
1025         VM_OBJECT_LOCK(object);
1026         end = pindex + count;
1027         /*
1028          * Locate and adjust resident pages
1029          */
1030         for (; pindex < end; pindex += 1) {
1031 relookup:
1032                 tobject = object;
1033                 tpindex = pindex;
1034 shadowlookup:
1035                 /*
1036                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1037                  * and those pages must be OBJ_ONEMAPPING.
1038                  */
1039                 if (advise == MADV_FREE) {
1040                         if ((tobject->type != OBJT_DEFAULT &&
1041                              tobject->type != OBJT_SWAP) ||
1042                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1043                                 goto unlock_tobject;
1044                         }
1045                 } else if (tobject->type == OBJT_PHYS)
1046                         goto unlock_tobject;
1047                 m = vm_page_lookup(tobject, tpindex);
1048                 if (m == NULL && advise == MADV_WILLNEED) {
1049                         /*
1050                          * If the page is cached, reactivate it.
1051                          */
1052                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1053                             VM_ALLOC_NOBUSY);
1054                 }
1055                 if (m == NULL) {
1056                         /*
1057                          * There may be swap even if there is no backing page
1058                          */
1059                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1060                                 swap_pager_freespace(tobject, tpindex, 1);
1061                         /*
1062                          * next object
1063                          */
1064                         backing_object = tobject->backing_object;
1065                         if (backing_object == NULL)
1066                                 goto unlock_tobject;
1067                         VM_OBJECT_LOCK(backing_object);
1068                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1069                         if (tobject != object)
1070                                 VM_OBJECT_UNLOCK(tobject);
1071                         tobject = backing_object;
1072                         goto shadowlookup;
1073                 } else if (m->valid != VM_PAGE_BITS_ALL)
1074                         goto unlock_tobject;
1075                 /*
1076                  * If the page is not in a normal state, skip it.
1077                  */
1078                 vm_page_lock_queues();
1079                 if (m->hold_count != 0 || m->wire_count != 0) {
1080                         vm_page_unlock_queues();
1081                         goto unlock_tobject;
1082                 }
1083                 if ((m->oflags & VPO_BUSY) || m->busy) {
1084                         if (advise == MADV_WILLNEED)
1085                                 /*
1086                                  * Reference the page before unlocking and
1087                                  * sleeping so that the page daemon is less
1088                                  * likely to reclaim it. 
1089                                  */
1090                                 vm_page_flag_set(m, PG_REFERENCED);
1091                         vm_page_unlock_queues();
1092                         if (object != tobject)
1093                                 VM_OBJECT_UNLOCK(object);
1094                         m->oflags |= VPO_WANTED;
1095                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1096                             0);
1097                         VM_OBJECT_LOCK(object);
1098                         goto relookup;
1099                 }
1100                 if (advise == MADV_WILLNEED) {
1101                         vm_page_activate(m);
1102                 } else if (advise == MADV_DONTNEED) {
1103                         vm_page_dontneed(m);
1104                 } else if (advise == MADV_FREE) {
1105                         /*
1106                          * Mark the page clean.  This will allow the page
1107                          * to be freed up by the system.  However, such pages
1108                          * are often reused quickly by malloc()/free()
1109                          * so we do not do anything that would cause
1110                          * a page fault if we can help it.
1111                          *
1112                          * Specifically, we do not try to actually free
1113                          * the page now nor do we try to put it in the
1114                          * cache (which would cause a page fault on reuse).
1115                          *
1116                          * But we do make the page is freeable as we
1117                          * can without actually taking the step of unmapping
1118                          * it.
1119                          */
1120                         pmap_clear_modify(m);
1121                         m->dirty = 0;
1122                         m->act_count = 0;
1123                         vm_page_dontneed(m);
1124                 }
1125                 vm_page_unlock_queues();
1126                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1127                         swap_pager_freespace(tobject, tpindex, 1);
1128 unlock_tobject:
1129                 if (tobject != object)
1130                         VM_OBJECT_UNLOCK(tobject);
1131         }       
1132         VM_OBJECT_UNLOCK(object);
1133 }
1134
1135 /*
1136  *      vm_object_shadow:
1137  *
1138  *      Create a new object which is backed by the
1139  *      specified existing object range.  The source
1140  *      object reference is deallocated.
1141  *
1142  *      The new object and offset into that object
1143  *      are returned in the source parameters.
1144  */
1145 void
1146 vm_object_shadow(
1147         vm_object_t *object,    /* IN/OUT */
1148         vm_ooffset_t *offset,   /* IN/OUT */
1149         vm_size_t length)
1150 {
1151         vm_object_t source;
1152         vm_object_t result;
1153
1154         source = *object;
1155
1156         /*
1157          * Don't create the new object if the old object isn't shared.
1158          */
1159         if (source != NULL) {
1160                 VM_OBJECT_LOCK(source);
1161                 if (source->ref_count == 1 &&
1162                     source->handle == NULL &&
1163                     (source->type == OBJT_DEFAULT ||
1164                      source->type == OBJT_SWAP)) {
1165                         VM_OBJECT_UNLOCK(source);
1166                         return;
1167                 }
1168                 VM_OBJECT_UNLOCK(source);
1169         }
1170
1171         /*
1172          * Allocate a new object with the given length.
1173          */
1174         result = vm_object_allocate(OBJT_DEFAULT, length);
1175
1176         /*
1177          * The new object shadows the source object, adding a reference to it.
1178          * Our caller changes his reference to point to the new object,
1179          * removing a reference to the source object.  Net result: no change
1180          * of reference count.
1181          *
1182          * Try to optimize the result object's page color when shadowing
1183          * in order to maintain page coloring consistency in the combined 
1184          * shadowed object.
1185          */
1186         result->backing_object = source;
1187         /*
1188          * Store the offset into the source object, and fix up the offset into
1189          * the new object.
1190          */
1191         result->backing_object_offset = *offset;
1192         if (source != NULL) {
1193                 VM_OBJECT_LOCK(source);
1194                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1195                 source->shadow_count++;
1196                 source->generation++;
1197 #if VM_NRESERVLEVEL > 0
1198                 result->flags |= source->flags & OBJ_COLORED;
1199                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1200                     ((1 << (VM_NFREEORDER - 1)) - 1);
1201 #endif
1202                 VM_OBJECT_UNLOCK(source);
1203         }
1204
1205
1206         /*
1207          * Return the new things
1208          */
1209         *offset = 0;
1210         *object = result;
1211 }
1212
1213 /*
1214  *      vm_object_split:
1215  *
1216  * Split the pages in a map entry into a new object.  This affords
1217  * easier removal of unused pages, and keeps object inheritance from
1218  * being a negative impact on memory usage.
1219  */
1220 void
1221 vm_object_split(vm_map_entry_t entry)
1222 {
1223         vm_page_t m, m_next;
1224         vm_object_t orig_object, new_object, source;
1225         vm_pindex_t idx, offidxstart;
1226         vm_size_t size;
1227
1228         orig_object = entry->object.vm_object;
1229         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1230                 return;
1231         if (orig_object->ref_count <= 1)
1232                 return;
1233         VM_OBJECT_UNLOCK(orig_object);
1234
1235         offidxstart = OFF_TO_IDX(entry->offset);
1236         size = atop(entry->end - entry->start);
1237
1238         /*
1239          * If swap_pager_copy() is later called, it will convert new_object
1240          * into a swap object.
1241          */
1242         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1243
1244         /*
1245          * At this point, the new object is still private, so the order in
1246          * which the original and new objects are locked does not matter.
1247          */
1248         VM_OBJECT_LOCK(new_object);
1249         VM_OBJECT_LOCK(orig_object);
1250         source = orig_object->backing_object;
1251         if (source != NULL) {
1252                 VM_OBJECT_LOCK(source);
1253                 if ((source->flags & OBJ_DEAD) != 0) {
1254                         VM_OBJECT_UNLOCK(source);
1255                         VM_OBJECT_UNLOCK(orig_object);
1256                         VM_OBJECT_UNLOCK(new_object);
1257                         vm_object_deallocate(new_object);
1258                         VM_OBJECT_LOCK(orig_object);
1259                         return;
1260                 }
1261                 LIST_INSERT_HEAD(&source->shadow_head,
1262                                   new_object, shadow_list);
1263                 source->shadow_count++;
1264                 source->generation++;
1265                 vm_object_reference_locked(source);     /* for new_object */
1266                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1267                 VM_OBJECT_UNLOCK(source);
1268                 new_object->backing_object_offset = 
1269                         orig_object->backing_object_offset + entry->offset;
1270                 new_object->backing_object = source;
1271         }
1272         if (orig_object->uip != NULL) {
1273                 new_object->uip = orig_object->uip;
1274                 uihold(orig_object->uip);
1275                 new_object->charge = ptoa(size);
1276                 KASSERT(orig_object->charge >= ptoa(size),
1277                     ("orig_object->charge < 0"));
1278                 orig_object->charge -= ptoa(size);
1279         }
1280 retry:
1281         m = vm_page_find_least(orig_object, offidxstart);
1282         vm_page_lock_queues();
1283         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1284             m = m_next) {
1285                 m_next = TAILQ_NEXT(m, listq);
1286
1287                 /*
1288                  * We must wait for pending I/O to complete before we can
1289                  * rename the page.
1290                  *
1291                  * We do not have to VM_PROT_NONE the page as mappings should
1292                  * not be changed by this operation.
1293                  */
1294                 if ((m->oflags & VPO_BUSY) || m->busy) {
1295                         vm_page_unlock_queues();
1296                         VM_OBJECT_UNLOCK(new_object);
1297                         m->oflags |= VPO_WANTED;
1298                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1299                         VM_OBJECT_LOCK(new_object);
1300                         goto retry;
1301                 }
1302                 vm_page_rename(m, new_object, idx);
1303                 /* page automatically made dirty by rename and cache handled */
1304                 vm_page_busy(m);
1305         }
1306         vm_page_unlock_queues();
1307         if (orig_object->type == OBJT_SWAP) {
1308                 /*
1309                  * swap_pager_copy() can sleep, in which case the orig_object's
1310                  * and new_object's locks are released and reacquired. 
1311                  */
1312                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1313
1314                 /*
1315                  * Transfer any cached pages from orig_object to new_object.
1316                  */
1317                 if (__predict_false(orig_object->cache != NULL))
1318                         vm_page_cache_transfer(orig_object, offidxstart,
1319                             new_object);
1320         }
1321         VM_OBJECT_UNLOCK(orig_object);
1322         TAILQ_FOREACH(m, &new_object->memq, listq)
1323                 vm_page_wakeup(m);
1324         VM_OBJECT_UNLOCK(new_object);
1325         entry->object.vm_object = new_object;
1326         entry->offset = 0LL;
1327         vm_object_deallocate(orig_object);
1328         VM_OBJECT_LOCK(new_object);
1329 }
1330
1331 #define OBSC_TEST_ALL_SHADOWED  0x0001
1332 #define OBSC_COLLAPSE_NOWAIT    0x0002
1333 #define OBSC_COLLAPSE_WAIT      0x0004
1334
1335 static int
1336 vm_object_backing_scan(vm_object_t object, int op)
1337 {
1338         int r = 1;
1339         vm_page_t p;
1340         vm_object_t backing_object;
1341         vm_pindex_t backing_offset_index;
1342
1343         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1344         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1345
1346         backing_object = object->backing_object;
1347         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1348
1349         /*
1350          * Initial conditions
1351          */
1352         if (op & OBSC_TEST_ALL_SHADOWED) {
1353                 /*
1354                  * We do not want to have to test for the existence of cache
1355                  * or swap pages in the backing object.  XXX but with the
1356                  * new swapper this would be pretty easy to do.
1357                  *
1358                  * XXX what about anonymous MAP_SHARED memory that hasn't
1359                  * been ZFOD faulted yet?  If we do not test for this, the
1360                  * shadow test may succeed! XXX
1361                  */
1362                 if (backing_object->type != OBJT_DEFAULT) {
1363                         return (0);
1364                 }
1365         }
1366         if (op & OBSC_COLLAPSE_WAIT) {
1367                 vm_object_set_flag(backing_object, OBJ_DEAD);
1368         }
1369
1370         /*
1371          * Our scan
1372          */
1373         p = TAILQ_FIRST(&backing_object->memq);
1374         while (p) {
1375                 vm_page_t next = TAILQ_NEXT(p, listq);
1376                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1377
1378                 if (op & OBSC_TEST_ALL_SHADOWED) {
1379                         vm_page_t pp;
1380
1381                         /*
1382                          * Ignore pages outside the parent object's range
1383                          * and outside the parent object's mapping of the 
1384                          * backing object.
1385                          *
1386                          * note that we do not busy the backing object's
1387                          * page.
1388                          */
1389                         if (
1390                             p->pindex < backing_offset_index ||
1391                             new_pindex >= object->size
1392                         ) {
1393                                 p = next;
1394                                 continue;
1395                         }
1396
1397                         /*
1398                          * See if the parent has the page or if the parent's
1399                          * object pager has the page.  If the parent has the
1400                          * page but the page is not valid, the parent's
1401                          * object pager must have the page.
1402                          *
1403                          * If this fails, the parent does not completely shadow
1404                          * the object and we might as well give up now.
1405                          */
1406
1407                         pp = vm_page_lookup(object, new_pindex);
1408                         if (
1409                             (pp == NULL || pp->valid == 0) &&
1410                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1411                         ) {
1412                                 r = 0;
1413                                 break;
1414                         }
1415                 }
1416
1417                 /*
1418                  * Check for busy page
1419                  */
1420                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1421                         vm_page_t pp;
1422
1423                         if (op & OBSC_COLLAPSE_NOWAIT) {
1424                                 if ((p->oflags & VPO_BUSY) ||
1425                                     !p->valid || 
1426                                     p->busy) {
1427                                         p = next;
1428                                         continue;
1429                                 }
1430                         } else if (op & OBSC_COLLAPSE_WAIT) {
1431                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1432                                         VM_OBJECT_UNLOCK(object);
1433                                         p->oflags |= VPO_WANTED;
1434                                         msleep(p, VM_OBJECT_MTX(backing_object),
1435                                             PDROP | PVM, "vmocol", 0);
1436                                         VM_OBJECT_LOCK(object);
1437                                         VM_OBJECT_LOCK(backing_object);
1438                                         /*
1439                                          * If we slept, anything could have
1440                                          * happened.  Since the object is
1441                                          * marked dead, the backing offset
1442                                          * should not have changed so we
1443                                          * just restart our scan.
1444                                          */
1445                                         p = TAILQ_FIRST(&backing_object->memq);
1446                                         continue;
1447                                 }
1448                         }
1449
1450                         KASSERT(
1451                             p->object == backing_object,
1452                             ("vm_object_backing_scan: object mismatch")
1453                         );
1454
1455                         /*
1456                          * Destroy any associated swap
1457                          */
1458                         if (backing_object->type == OBJT_SWAP) {
1459                                 swap_pager_freespace(
1460                                     backing_object, 
1461                                     p->pindex,
1462                                     1
1463                                 );
1464                         }
1465
1466                         if (
1467                             p->pindex < backing_offset_index ||
1468                             new_pindex >= object->size
1469                         ) {
1470                                 /*
1471                                  * Page is out of the parent object's range, we 
1472                                  * can simply destroy it. 
1473                                  */
1474                                 vm_page_lock_queues();
1475                                 KASSERT(!pmap_page_is_mapped(p),
1476                                     ("freeing mapped page %p", p));
1477                                 if (p->wire_count == 0)
1478                                         vm_page_free(p);
1479                                 else
1480                                         vm_page_remove(p);
1481                                 vm_page_unlock_queues();
1482                                 p = next;
1483                                 continue;
1484                         }
1485
1486                         pp = vm_page_lookup(object, new_pindex);
1487                         if (
1488                             pp != NULL ||
1489                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1490                         ) {
1491                                 /*
1492                                  * page already exists in parent OR swap exists
1493                                  * for this location in the parent.  Destroy 
1494                                  * the original page from the backing object.
1495                                  *
1496                                  * Leave the parent's page alone
1497                                  */
1498                                 vm_page_lock_queues();
1499                                 KASSERT(!pmap_page_is_mapped(p),
1500                                     ("freeing mapped page %p", p));
1501                                 if (p->wire_count == 0)
1502                                         vm_page_free(p);
1503                                 else
1504                                         vm_page_remove(p);
1505                                 vm_page_unlock_queues();
1506                                 p = next;
1507                                 continue;
1508                         }
1509
1510 #if VM_NRESERVLEVEL > 0
1511                         /*
1512                          * Rename the reservation.
1513                          */
1514                         vm_reserv_rename(p, object, backing_object,
1515                             backing_offset_index);
1516 #endif
1517
1518                         /*
1519                          * Page does not exist in parent, rename the
1520                          * page from the backing object to the main object. 
1521                          *
1522                          * If the page was mapped to a process, it can remain 
1523                          * mapped through the rename.
1524                          */
1525                         vm_page_lock_queues();
1526                         vm_page_rename(p, object, new_pindex);
1527                         vm_page_unlock_queues();
1528                         /* page automatically made dirty by rename */
1529                 }
1530                 p = next;
1531         }
1532         return (r);
1533 }
1534
1535
1536 /*
1537  * this version of collapse allows the operation to occur earlier and
1538  * when paging_in_progress is true for an object...  This is not a complete
1539  * operation, but should plug 99.9% of the rest of the leaks.
1540  */
1541 static void
1542 vm_object_qcollapse(vm_object_t object)
1543 {
1544         vm_object_t backing_object = object->backing_object;
1545
1546         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1547         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1548
1549         if (backing_object->ref_count != 1)
1550                 return;
1551
1552         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1553 }
1554
1555 /*
1556  *      vm_object_collapse:
1557  *
1558  *      Collapse an object with the object backing it.
1559  *      Pages in the backing object are moved into the
1560  *      parent, and the backing object is deallocated.
1561  */
1562 void
1563 vm_object_collapse(vm_object_t object)
1564 {
1565         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1566         
1567         while (TRUE) {
1568                 vm_object_t backing_object;
1569
1570                 /*
1571                  * Verify that the conditions are right for collapse:
1572                  *
1573                  * The object exists and the backing object exists.
1574                  */
1575                 if ((backing_object = object->backing_object) == NULL)
1576                         break;
1577
1578                 /*
1579                  * we check the backing object first, because it is most likely
1580                  * not collapsable.
1581                  */
1582                 VM_OBJECT_LOCK(backing_object);
1583                 if (backing_object->handle != NULL ||
1584                     (backing_object->type != OBJT_DEFAULT &&
1585                      backing_object->type != OBJT_SWAP) ||
1586                     (backing_object->flags & OBJ_DEAD) ||
1587                     object->handle != NULL ||
1588                     (object->type != OBJT_DEFAULT &&
1589                      object->type != OBJT_SWAP) ||
1590                     (object->flags & OBJ_DEAD)) {
1591                         VM_OBJECT_UNLOCK(backing_object);
1592                         break;
1593                 }
1594
1595                 if (
1596                     object->paging_in_progress != 0 ||
1597                     backing_object->paging_in_progress != 0
1598                 ) {
1599                         vm_object_qcollapse(object);
1600                         VM_OBJECT_UNLOCK(backing_object);
1601                         break;
1602                 }
1603                 /*
1604                  * We know that we can either collapse the backing object (if
1605                  * the parent is the only reference to it) or (perhaps) have
1606                  * the parent bypass the object if the parent happens to shadow
1607                  * all the resident pages in the entire backing object.
1608                  *
1609                  * This is ignoring pager-backed pages such as swap pages.
1610                  * vm_object_backing_scan fails the shadowing test in this
1611                  * case.
1612                  */
1613                 if (backing_object->ref_count == 1) {
1614                         /*
1615                          * If there is exactly one reference to the backing
1616                          * object, we can collapse it into the parent.  
1617                          */
1618                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1619
1620 #if VM_NRESERVLEVEL > 0
1621                         /*
1622                          * Break any reservations from backing_object.
1623                          */
1624                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1625                                 vm_reserv_break_all(backing_object);
1626 #endif
1627
1628                         /*
1629                          * Move the pager from backing_object to object.
1630                          */
1631                         if (backing_object->type == OBJT_SWAP) {
1632                                 /*
1633                                  * swap_pager_copy() can sleep, in which case
1634                                  * the backing_object's and object's locks are
1635                                  * released and reacquired.
1636                                  */
1637                                 swap_pager_copy(
1638                                     backing_object,
1639                                     object,
1640                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1641
1642                                 /*
1643                                  * Free any cached pages from backing_object.
1644                                  */
1645                                 if (__predict_false(backing_object->cache != NULL))
1646                                         vm_page_cache_free(backing_object, 0, 0);
1647                         }
1648                         /*
1649                          * Object now shadows whatever backing_object did.
1650                          * Note that the reference to 
1651                          * backing_object->backing_object moves from within 
1652                          * backing_object to within object.
1653                          */
1654                         LIST_REMOVE(object, shadow_list);
1655                         backing_object->shadow_count--;
1656                         backing_object->generation++;
1657                         if (backing_object->backing_object) {
1658                                 VM_OBJECT_LOCK(backing_object->backing_object);
1659                                 LIST_REMOVE(backing_object, shadow_list);
1660                                 LIST_INSERT_HEAD(
1661                                     &backing_object->backing_object->shadow_head,
1662                                     object, shadow_list);
1663                                 /*
1664                                  * The shadow_count has not changed.
1665                                  */
1666                                 backing_object->backing_object->generation++;
1667                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1668                         }
1669                         object->backing_object = backing_object->backing_object;
1670                         object->backing_object_offset +=
1671                             backing_object->backing_object_offset;
1672
1673                         /*
1674                          * Discard backing_object.
1675                          *
1676                          * Since the backing object has no pages, no pager left,
1677                          * and no object references within it, all that is
1678                          * necessary is to dispose of it.
1679                          */
1680                         KASSERT(backing_object->ref_count == 1, (
1681 "backing_object %p was somehow re-referenced during collapse!",
1682                             backing_object));
1683                         VM_OBJECT_UNLOCK(backing_object);
1684                         vm_object_destroy(backing_object);
1685
1686                         object_collapses++;
1687                 } else {
1688                         vm_object_t new_backing_object;
1689
1690                         /*
1691                          * If we do not entirely shadow the backing object,
1692                          * there is nothing we can do so we give up.
1693                          */
1694                         if (object->resident_page_count != object->size &&
1695                             vm_object_backing_scan(object,
1696                             OBSC_TEST_ALL_SHADOWED) == 0) {
1697                                 VM_OBJECT_UNLOCK(backing_object);
1698                                 break;
1699                         }
1700
1701                         /*
1702                          * Make the parent shadow the next object in the
1703                          * chain.  Deallocating backing_object will not remove
1704                          * it, since its reference count is at least 2.
1705                          */
1706                         LIST_REMOVE(object, shadow_list);
1707                         backing_object->shadow_count--;
1708                         backing_object->generation++;
1709
1710                         new_backing_object = backing_object->backing_object;
1711                         if ((object->backing_object = new_backing_object) != NULL) {
1712                                 VM_OBJECT_LOCK(new_backing_object);
1713                                 LIST_INSERT_HEAD(
1714                                     &new_backing_object->shadow_head,
1715                                     object,
1716                                     shadow_list
1717                                 );
1718                                 new_backing_object->shadow_count++;
1719                                 new_backing_object->generation++;
1720                                 vm_object_reference_locked(new_backing_object);
1721                                 VM_OBJECT_UNLOCK(new_backing_object);
1722                                 object->backing_object_offset +=
1723                                         backing_object->backing_object_offset;
1724                         }
1725
1726                         /*
1727                          * Drop the reference count on backing_object. Since
1728                          * its ref_count was at least 2, it will not vanish.
1729                          */
1730                         backing_object->ref_count--;
1731                         VM_OBJECT_UNLOCK(backing_object);
1732                         object_bypasses++;
1733                 }
1734
1735                 /*
1736                  * Try again with this object's new backing object.
1737                  */
1738         }
1739 }
1740
1741 /*
1742  *      vm_object_page_remove:
1743  *
1744  *      For the given object, either frees or invalidates each of the
1745  *      specified pages.  In general, a page is freed.  However, if a
1746  *      page is wired for any reason other than the existence of a
1747  *      managed, wired mapping, then it may be invalidated but not
1748  *      removed from the object.  Pages are specified by the given
1749  *      range ["start", "end") and Boolean "clean_only".  As a
1750  *      special case, if "end" is zero, then the range extends from
1751  *      "start" to the end of the object.  If "clean_only" is TRUE,
1752  *      then only the non-dirty pages within the specified range are
1753  *      affected.
1754  *
1755  *      In general, this operation should only be performed on objects
1756  *      that contain managed pages.  There are two exceptions.  First,
1757  *      it may be performed on the kernel and kmem objects.  Second,
1758  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1759  *      device-backed pages.  In both of these cases, "clean_only"
1760  *      must be FALSE.
1761  *
1762  *      The object must be locked.
1763  */
1764 void
1765 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1766     boolean_t clean_only)
1767 {
1768         vm_page_t p, next;
1769         int wirings;
1770
1771         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1772         if (object->resident_page_count == 0)
1773                 goto skipmemq;
1774
1775         /*
1776          * Since physically-backed objects do not use managed pages, we can't
1777          * remove pages from the object (we must instead remove the page
1778          * references, and then destroy the object).
1779          */
1780         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1781             object == kmem_object,
1782             ("attempt to remove pages from a physical object"));
1783
1784         vm_object_pip_add(object, 1);
1785 again:
1786         p = vm_page_find_least(object, start);
1787         vm_page_lock_queues();
1788         /*
1789          * Assert: the variable p is either (1) the page with the
1790          * least pindex greater than or equal to the parameter pindex
1791          * or (2) NULL.
1792          */
1793         for (;
1794              p != NULL && (p->pindex < end || end == 0);
1795              p = next) {
1796                 next = TAILQ_NEXT(p, listq);
1797
1798                 /*
1799                  * If the page is wired for any reason besides the
1800                  * existence of managed, wired mappings, then it cannot
1801                  * be freed.  For example, fictitious pages, which
1802                  * represent device memory, are inherently wired and
1803                  * cannot be freed.  They can, however, be invalidated
1804                  * if "clean_only" is FALSE.
1805                  */
1806                 if ((wirings = p->wire_count) != 0 &&
1807                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1808                         /* Fictitious pages do not have managed mappings. */
1809                         if ((p->flags & PG_FICTITIOUS) == 0)
1810                                 pmap_remove_all(p);
1811                         /* Account for removal of managed, wired mappings. */
1812                         p->wire_count -= wirings;
1813                         if (!clean_only) {
1814                                 p->valid = 0;
1815                                 vm_page_undirty(p);
1816                         }
1817                         continue;
1818                 }
1819                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1820                         goto again;
1821                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1822                     ("vm_object_page_remove: page %p is fictitious", p));
1823                 if (clean_only && p->valid) {
1824                         pmap_remove_write(p);
1825                         if (p->dirty)
1826                                 continue;
1827                 }
1828                 pmap_remove_all(p);
1829                 /* Account for removal of managed, wired mappings. */
1830                 if (wirings != 0)
1831                         p->wire_count -= wirings;
1832                 vm_page_free(p);
1833         }
1834         vm_page_unlock_queues();
1835         vm_object_pip_wakeup(object);
1836 skipmemq:
1837         if (__predict_false(object->cache != NULL))
1838                 vm_page_cache_free(object, start, end);
1839 }
1840
1841 /*
1842  *      Populate the specified range of the object with valid pages.  Returns
1843  *      TRUE if the range is successfully populated and FALSE otherwise.
1844  *
1845  *      Note: This function should be optimized to pass a larger array of
1846  *      pages to vm_pager_get_pages() before it is applied to a non-
1847  *      OBJT_DEVICE object.
1848  *
1849  *      The object must be locked.
1850  */
1851 boolean_t
1852 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1853 {
1854         vm_page_t m, ma[1];
1855         vm_pindex_t pindex;
1856         int rv;
1857
1858         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1859         for (pindex = start; pindex < end; pindex++) {
1860                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1861                     VM_ALLOC_RETRY);
1862                 if (m->valid != VM_PAGE_BITS_ALL) {
1863                         ma[0] = m;
1864                         rv = vm_pager_get_pages(object, ma, 1, 0);
1865                         m = vm_page_lookup(object, pindex);
1866                         if (m == NULL)
1867                                 break;
1868                         if (rv != VM_PAGER_OK) {
1869                                 vm_page_lock_queues();
1870                                 vm_page_free(m);
1871                                 vm_page_unlock_queues();
1872                                 break;
1873                         }
1874                 }
1875                 /*
1876                  * Keep "m" busy because a subsequent iteration may unlock
1877                  * the object.
1878                  */
1879         }
1880         if (pindex > start) {
1881                 m = vm_page_lookup(object, start);
1882                 while (m != NULL && m->pindex < pindex) {
1883                         vm_page_wakeup(m);
1884                         m = TAILQ_NEXT(m, listq);
1885                 }
1886         }
1887         return (pindex == end);
1888 }
1889
1890 /*
1891  *      Routine:        vm_object_coalesce
1892  *      Function:       Coalesces two objects backing up adjoining
1893  *                      regions of memory into a single object.
1894  *
1895  *      returns TRUE if objects were combined.
1896  *
1897  *      NOTE:   Only works at the moment if the second object is NULL -
1898  *              if it's not, which object do we lock first?
1899  *
1900  *      Parameters:
1901  *              prev_object     First object to coalesce
1902  *              prev_offset     Offset into prev_object
1903  *              prev_size       Size of reference to prev_object
1904  *              next_size       Size of reference to the second object
1905  *              reserved        Indicator that extension region has
1906  *                              swap accounted for
1907  *
1908  *      Conditions:
1909  *      The object must *not* be locked.
1910  */
1911 boolean_t
1912 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1913     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1914 {
1915         vm_pindex_t next_pindex;
1916
1917         if (prev_object == NULL)
1918                 return (TRUE);
1919         VM_OBJECT_LOCK(prev_object);
1920         if (prev_object->type != OBJT_DEFAULT &&
1921             prev_object->type != OBJT_SWAP) {
1922                 VM_OBJECT_UNLOCK(prev_object);
1923                 return (FALSE);
1924         }
1925
1926         /*
1927          * Try to collapse the object first
1928          */
1929         vm_object_collapse(prev_object);
1930
1931         /*
1932          * Can't coalesce if: . more than one reference . paged out . shadows
1933          * another object . has a copy elsewhere (any of which mean that the
1934          * pages not mapped to prev_entry may be in use anyway)
1935          */
1936         if (prev_object->backing_object != NULL) {
1937                 VM_OBJECT_UNLOCK(prev_object);
1938                 return (FALSE);
1939         }
1940
1941         prev_size >>= PAGE_SHIFT;
1942         next_size >>= PAGE_SHIFT;
1943         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1944
1945         if ((prev_object->ref_count > 1) &&
1946             (prev_object->size != next_pindex)) {
1947                 VM_OBJECT_UNLOCK(prev_object);
1948                 return (FALSE);
1949         }
1950
1951         /*
1952          * Account for the charge.
1953          */
1954         if (prev_object->uip != NULL) {
1955
1956                 /*
1957                  * If prev_object was charged, then this mapping,
1958                  * althought not charged now, may become writable
1959                  * later. Non-NULL uip in the object would prevent
1960                  * swap reservation during enabling of the write
1961                  * access, so reserve swap now. Failed reservation
1962                  * cause allocation of the separate object for the map
1963                  * entry, and swap reservation for this entry is
1964                  * managed in appropriate time.
1965                  */
1966                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
1967                     prev_object->uip)) {
1968                         return (FALSE);
1969                 }
1970                 prev_object->charge += ptoa(next_size);
1971         }
1972
1973         /*
1974          * Remove any pages that may still be in the object from a previous
1975          * deallocation.
1976          */
1977         if (next_pindex < prev_object->size) {
1978                 vm_object_page_remove(prev_object,
1979                                       next_pindex,
1980                                       next_pindex + next_size, FALSE);
1981                 if (prev_object->type == OBJT_SWAP)
1982                         swap_pager_freespace(prev_object,
1983                                              next_pindex, next_size);
1984 #if 0
1985                 if (prev_object->uip != NULL) {
1986                         KASSERT(prev_object->charge >=
1987                             ptoa(prev_object->size - next_pindex),
1988                             ("object %p overcharged 1 %jx %jx", prev_object,
1989                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
1990                         prev_object->charge -= ptoa(prev_object->size -
1991                             next_pindex);
1992                 }
1993 #endif
1994         }
1995
1996         /*
1997          * Extend the object if necessary.
1998          */
1999         if (next_pindex + next_size > prev_object->size)
2000                 prev_object->size = next_pindex + next_size;
2001
2002         VM_OBJECT_UNLOCK(prev_object);
2003         return (TRUE);
2004 }
2005
2006 void
2007 vm_object_set_writeable_dirty(vm_object_t object)
2008 {
2009
2010         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2011         if (object->type != OBJT_VNODE ||
2012             (object->flags & OBJ_MIGHTBEDIRTY) != 0)
2013                 return;
2014         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2015 }
2016
2017 #include "opt_ddb.h"
2018 #ifdef DDB
2019 #include <sys/kernel.h>
2020
2021 #include <sys/cons.h>
2022
2023 #include <ddb/ddb.h>
2024
2025 static int
2026 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2027 {
2028         vm_map_t tmpm;
2029         vm_map_entry_t tmpe;
2030         vm_object_t obj;
2031         int entcount;
2032
2033         if (map == 0)
2034                 return 0;
2035
2036         if (entry == 0) {
2037                 tmpe = map->header.next;
2038                 entcount = map->nentries;
2039                 while (entcount-- && (tmpe != &map->header)) {
2040                         if (_vm_object_in_map(map, object, tmpe)) {
2041                                 return 1;
2042                         }
2043                         tmpe = tmpe->next;
2044                 }
2045         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2046                 tmpm = entry->object.sub_map;
2047                 tmpe = tmpm->header.next;
2048                 entcount = tmpm->nentries;
2049                 while (entcount-- && tmpe != &tmpm->header) {
2050                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2051                                 return 1;
2052                         }
2053                         tmpe = tmpe->next;
2054                 }
2055         } else if ((obj = entry->object.vm_object) != NULL) {
2056                 for (; obj; obj = obj->backing_object)
2057                         if (obj == object) {
2058                                 return 1;
2059                         }
2060         }
2061         return 0;
2062 }
2063
2064 static int
2065 vm_object_in_map(vm_object_t object)
2066 {
2067         struct proc *p;
2068
2069         /* sx_slock(&allproc_lock); */
2070         FOREACH_PROC_IN_SYSTEM(p) {
2071                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2072                         continue;
2073                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2074                         /* sx_sunlock(&allproc_lock); */
2075                         return 1;
2076                 }
2077         }
2078         /* sx_sunlock(&allproc_lock); */
2079         if (_vm_object_in_map(kernel_map, object, 0))
2080                 return 1;
2081         if (_vm_object_in_map(kmem_map, object, 0))
2082                 return 1;
2083         if (_vm_object_in_map(pager_map, object, 0))
2084                 return 1;
2085         if (_vm_object_in_map(buffer_map, object, 0))
2086                 return 1;
2087         return 0;
2088 }
2089
2090 DB_SHOW_COMMAND(vmochk, vm_object_check)
2091 {
2092         vm_object_t object;
2093
2094         /*
2095          * make sure that internal objs are in a map somewhere
2096          * and none have zero ref counts.
2097          */
2098         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2099                 if (object->handle == NULL &&
2100                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2101                         if (object->ref_count == 0) {
2102                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2103                                         (long)object->size);
2104                         }
2105                         if (!vm_object_in_map(object)) {
2106                                 db_printf(
2107                         "vmochk: internal obj is not in a map: "
2108                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2109                                     object->ref_count, (u_long)object->size, 
2110                                     (u_long)object->size,
2111                                     (void *)object->backing_object);
2112                         }
2113                 }
2114         }
2115 }
2116
2117 /*
2118  *      vm_object_print:        [ debug ]
2119  */
2120 DB_SHOW_COMMAND(object, vm_object_print_static)
2121 {
2122         /* XXX convert args. */
2123         vm_object_t object = (vm_object_t)addr;
2124         boolean_t full = have_addr;
2125
2126         vm_page_t p;
2127
2128         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2129 #define count   was_count
2130
2131         int count;
2132
2133         if (object == NULL)
2134                 return;
2135
2136         db_iprintf(
2137             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2138             object, (int)object->type, (uintmax_t)object->size,
2139             object->resident_page_count, object->ref_count, object->flags,
2140             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2141         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2142             object->shadow_count, 
2143             object->backing_object ? object->backing_object->ref_count : 0,
2144             object->backing_object, (uintmax_t)object->backing_object_offset);
2145
2146         if (!full)
2147                 return;
2148
2149         db_indent += 2;
2150         count = 0;
2151         TAILQ_FOREACH(p, &object->memq, listq) {
2152                 if (count == 0)
2153                         db_iprintf("memory:=");
2154                 else if (count == 6) {
2155                         db_printf("\n");
2156                         db_iprintf(" ...");
2157                         count = 0;
2158                 } else
2159                         db_printf(",");
2160                 count++;
2161
2162                 db_printf("(off=0x%jx,page=0x%jx)",
2163                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2164         }
2165         if (count != 0)
2166                 db_printf("\n");
2167         db_indent -= 2;
2168 }
2169
2170 /* XXX. */
2171 #undef count
2172
2173 /* XXX need this non-static entry for calling from vm_map_print. */
2174 void
2175 vm_object_print(
2176         /* db_expr_t */ long addr,
2177         boolean_t have_addr,
2178         /* db_expr_t */ long count,
2179         char *modif)
2180 {
2181         vm_object_print_static(addr, have_addr, count, modif);
2182 }
2183
2184 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2185 {
2186         vm_object_t object;
2187         vm_pindex_t fidx;
2188         vm_paddr_t pa;
2189         vm_page_t m, prev_m;
2190         int rcount, nl, c;
2191
2192         nl = 0;
2193         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2194                 db_printf("new object: %p\n", (void *)object);
2195                 if (nl > 18) {
2196                         c = cngetc();
2197                         if (c != ' ')
2198                                 return;
2199                         nl = 0;
2200                 }
2201                 nl++;
2202                 rcount = 0;
2203                 fidx = 0;
2204                 pa = -1;
2205                 TAILQ_FOREACH(m, &object->memq, listq) {
2206                         if (m->pindex > 128)
2207                                 break;
2208                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2209                             prev_m->pindex + 1 != m->pindex) {
2210                                 if (rcount) {
2211                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2212                                                 (long)fidx, rcount, (long)pa);
2213                                         if (nl > 18) {
2214                                                 c = cngetc();
2215                                                 if (c != ' ')
2216                                                         return;
2217                                                 nl = 0;
2218                                         }
2219                                         nl++;
2220                                         rcount = 0;
2221                                 }
2222                         }                               
2223                         if (rcount &&
2224                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2225                                 ++rcount;
2226                                 continue;
2227                         }
2228                         if (rcount) {
2229                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2230                                         (long)fidx, rcount, (long)pa);
2231                                 if (nl > 18) {
2232                                         c = cngetc();
2233                                         if (c != ' ')
2234                                                 return;
2235                                         nl = 0;
2236                                 }
2237                                 nl++;
2238                         }
2239                         fidx = m->pindex;
2240                         pa = VM_PAGE_TO_PHYS(m);
2241                         rcount = 1;
2242                 }
2243                 if (rcount) {
2244                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2245                                 (long)fidx, rcount, (long)pa);
2246                         if (nl > 18) {
2247                                 c = cngetc();
2248                                 if (c != ' ')
2249                                         return;
2250                                 nl = 0;
2251                         }
2252                         nl++;
2253                 }
2254         }
2255 }
2256 #endif /* DDB */