]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_object.c
MFC r200770:
[FreeBSD/stable/8.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 #define EASY_SCAN_FACTOR       8
100
101 #define MSYNC_FLUSH_HARDSEQ     0x01
102 #define MSYNC_FLUSH_SOFTSEQ     0x02
103
104 /*
105  * msync / VM object flushing optimizations
106  */
107 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
108 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
109     "Enable sequential iteration optimization");
110
111 static int old_msync;
112 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
113     "Use old (insecure) msync behavior");
114
115 static void     vm_object_qcollapse(vm_object_t object);
116 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
117 static void     vm_object_vndeallocate(vm_object_t object);
118
119 /*
120  *      Virtual memory objects maintain the actual data
121  *      associated with allocated virtual memory.  A given
122  *      page of memory exists within exactly one object.
123  *
124  *      An object is only deallocated when all "references"
125  *      are given up.  Only one "reference" to a given
126  *      region of an object should be writeable.
127  *
128  *      Associated with each object is a list of all resident
129  *      memory pages belonging to that object; this list is
130  *      maintained by the "vm_page" module, and locked by the object's
131  *      lock.
132  *
133  *      Each object also records a "pager" routine which is
134  *      used to retrieve (and store) pages to the proper backing
135  *      storage.  In addition, objects may be backed by other
136  *      objects from which they were virtual-copied.
137  *
138  *      The only items within the object structure which are
139  *      modified after time of creation are:
140  *              reference count         locked by object's lock
141  *              pager routine           locked by object's lock
142  *
143  */
144
145 struct object_q vm_object_list;
146 struct mtx vm_object_list_mtx;  /* lock for object list and count */
147
148 struct vm_object kernel_object_store;
149 struct vm_object kmem_object_store;
150
151 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
152
153 static long object_collapses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
155     &object_collapses, 0, "VM object collapses");
156
157 static long object_bypasses;
158 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
159     &object_bypasses, 0, "VM object bypasses");
160
161 static uma_zone_t obj_zone;
162
163 static int vm_object_zinit(void *mem, int size, int flags);
164
165 #ifdef INVARIANTS
166 static void vm_object_zdtor(void *mem, int size, void *arg);
167
168 static void
169 vm_object_zdtor(void *mem, int size, void *arg)
170 {
171         vm_object_t object;
172
173         object = (vm_object_t)mem;
174         KASSERT(TAILQ_EMPTY(&object->memq),
175             ("object %p has resident pages",
176             object));
177 #if VM_NRESERVLEVEL > 0
178         KASSERT(LIST_EMPTY(&object->rvq),
179             ("object %p has reservations",
180             object));
181 #endif
182         KASSERT(object->cache == NULL,
183             ("object %p has cached pages",
184             object));
185         KASSERT(object->paging_in_progress == 0,
186             ("object %p paging_in_progress = %d",
187             object, object->paging_in_progress));
188         KASSERT(object->resident_page_count == 0,
189             ("object %p resident_page_count = %d",
190             object, object->resident_page_count));
191         KASSERT(object->shadow_count == 0,
192             ("object %p shadow_count = %d",
193             object, object->shadow_count));
194 }
195 #endif
196
197 static int
198 vm_object_zinit(void *mem, int size, int flags)
199 {
200         vm_object_t object;
201
202         object = (vm_object_t)mem;
203         bzero(&object->mtx, sizeof(object->mtx));
204         VM_OBJECT_LOCK_INIT(object, "standard object");
205
206         /* These are true for any object that has been freed */
207         object->paging_in_progress = 0;
208         object->resident_page_count = 0;
209         object->shadow_count = 0;
210         return (0);
211 }
212
213 void
214 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
215 {
216
217         TAILQ_INIT(&object->memq);
218         LIST_INIT(&object->shadow_head);
219
220         object->root = NULL;
221         object->type = type;
222         object->size = size;
223         object->generation = 1;
224         object->ref_count = 1;
225         object->memattr = VM_MEMATTR_DEFAULT;
226         object->flags = 0;
227         object->uip = NULL;
228         object->charge = 0;
229         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
230                 object->flags = OBJ_ONEMAPPING;
231         object->pg_color = 0;
232         object->handle = NULL;
233         object->backing_object = NULL;
234         object->backing_object_offset = (vm_ooffset_t) 0;
235 #if VM_NRESERVLEVEL > 0
236         LIST_INIT(&object->rvq);
237 #endif
238         object->cache = NULL;
239
240         mtx_lock(&vm_object_list_mtx);
241         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
242         mtx_unlock(&vm_object_list_mtx);
243 }
244
245 /*
246  *      vm_object_init:
247  *
248  *      Initialize the VM objects module.
249  */
250 void
251 vm_object_init(void)
252 {
253         TAILQ_INIT(&vm_object_list);
254         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
255         
256         VM_OBJECT_LOCK_INIT(&kernel_object_store, "kernel object");
257         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
258             kernel_object);
259 #if VM_NRESERVLEVEL > 0
260         kernel_object->flags |= OBJ_COLORED;
261         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
262 #endif
263
264         VM_OBJECT_LOCK_INIT(&kmem_object_store, "kmem object");
265         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
266             kmem_object);
267 #if VM_NRESERVLEVEL > 0
268         kmem_object->flags |= OBJ_COLORED;
269         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
270 #endif
271
272         /*
273          * The lock portion of struct vm_object must be type stable due
274          * to vm_pageout_fallback_object_lock locking a vm object
275          * without holding any references to it.
276          */
277         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
278 #ifdef INVARIANTS
279             vm_object_zdtor,
280 #else
281             NULL,
282 #endif
283             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
284 }
285
286 void
287 vm_object_clear_flag(vm_object_t object, u_short bits)
288 {
289
290         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
291         object->flags &= ~bits;
292 }
293
294 /*
295  *      Sets the default memory attribute for the specified object.  Pages
296  *      that are allocated to this object are by default assigned this memory
297  *      attribute.
298  *
299  *      Presently, this function must be called before any pages are allocated
300  *      to the object.  In the future, this requirement may be relaxed for
301  *      "default" and "swap" objects.
302  */
303 int
304 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
305 {
306
307         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
308         switch (object->type) {
309         case OBJT_DEFAULT:
310         case OBJT_DEVICE:
311         case OBJT_PHYS:
312         case OBJT_SG:
313         case OBJT_SWAP:
314         case OBJT_VNODE:
315                 if (!TAILQ_EMPTY(&object->memq))
316                         return (KERN_FAILURE);
317                 break;
318         case OBJT_DEAD:
319                 return (KERN_INVALID_ARGUMENT);
320         }
321         object->memattr = memattr;
322         return (KERN_SUCCESS);
323 }
324
325 void
326 vm_object_pip_add(vm_object_t object, short i)
327 {
328
329         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
330         object->paging_in_progress += i;
331 }
332
333 void
334 vm_object_pip_subtract(vm_object_t object, short i)
335 {
336
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338         object->paging_in_progress -= i;
339 }
340
341 void
342 vm_object_pip_wakeup(vm_object_t object)
343 {
344
345         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
346         object->paging_in_progress--;
347         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
348                 vm_object_clear_flag(object, OBJ_PIPWNT);
349                 wakeup(object);
350         }
351 }
352
353 void
354 vm_object_pip_wakeupn(vm_object_t object, short i)
355 {
356
357         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
358         if (i)
359                 object->paging_in_progress -= i;
360         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
361                 vm_object_clear_flag(object, OBJ_PIPWNT);
362                 wakeup(object);
363         }
364 }
365
366 void
367 vm_object_pip_wait(vm_object_t object, char *waitid)
368 {
369
370         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
371         while (object->paging_in_progress) {
372                 object->flags |= OBJ_PIPWNT;
373                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
374         }
375 }
376
377 /*
378  *      vm_object_allocate:
379  *
380  *      Returns a new object with the given size.
381  */
382 vm_object_t
383 vm_object_allocate(objtype_t type, vm_pindex_t size)
384 {
385         vm_object_t object;
386
387         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
388         _vm_object_allocate(type, size, object);
389         return (object);
390 }
391
392
393 /*
394  *      vm_object_reference:
395  *
396  *      Gets another reference to the given object.  Note: OBJ_DEAD
397  *      objects can be referenced during final cleaning.
398  */
399 void
400 vm_object_reference(vm_object_t object)
401 {
402         if (object == NULL)
403                 return;
404         VM_OBJECT_LOCK(object);
405         vm_object_reference_locked(object);
406         VM_OBJECT_UNLOCK(object);
407 }
408
409 /*
410  *      vm_object_reference_locked:
411  *
412  *      Gets another reference to the given object.
413  *
414  *      The object must be locked.
415  */
416 void
417 vm_object_reference_locked(vm_object_t object)
418 {
419         struct vnode *vp;
420
421         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
422         object->ref_count++;
423         if (object->type == OBJT_VNODE) {
424                 vp = object->handle;
425                 vref(vp);
426         }
427 }
428
429 /*
430  * Handle deallocating an object of type OBJT_VNODE.
431  */
432 static void
433 vm_object_vndeallocate(vm_object_t object)
434 {
435         struct vnode *vp = (struct vnode *) object->handle;
436
437         VFS_ASSERT_GIANT(vp->v_mount);
438         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
439         KASSERT(object->type == OBJT_VNODE,
440             ("vm_object_vndeallocate: not a vnode object"));
441         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
442 #ifdef INVARIANTS
443         if (object->ref_count == 0) {
444                 vprint("vm_object_vndeallocate", vp);
445                 panic("vm_object_vndeallocate: bad object reference count");
446         }
447 #endif
448
449         object->ref_count--;
450         if (object->ref_count == 0) {
451                 mp_fixme("Unlocked vflag access.");
452                 vp->v_vflag &= ~VV_TEXT;
453         }
454         VM_OBJECT_UNLOCK(object);
455         /*
456          * vrele may need a vop lock
457          */
458         vrele(vp);
459 }
460
461 /*
462  *      vm_object_deallocate:
463  *
464  *      Release a reference to the specified object,
465  *      gained either through a vm_object_allocate
466  *      or a vm_object_reference call.  When all references
467  *      are gone, storage associated with this object
468  *      may be relinquished.
469  *
470  *      No object may be locked.
471  */
472 void
473 vm_object_deallocate(vm_object_t object)
474 {
475         vm_object_t temp;
476
477         while (object != NULL) {
478                 int vfslocked;
479
480                 vfslocked = 0;
481         restart:
482                 VM_OBJECT_LOCK(object);
483                 if (object->type == OBJT_VNODE) {
484                         struct vnode *vp = (struct vnode *) object->handle;
485
486                         /*
487                          * Conditionally acquire Giant for a vnode-backed
488                          * object.  We have to be careful since the type of
489                          * a vnode object can change while the object is
490                          * unlocked.
491                          */
492                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
493                                 vfslocked = 1;
494                                 if (!mtx_trylock(&Giant)) {
495                                         VM_OBJECT_UNLOCK(object);
496                                         mtx_lock(&Giant);
497                                         goto restart;
498                                 }
499                         }
500                         vm_object_vndeallocate(object);
501                         VFS_UNLOCK_GIANT(vfslocked);
502                         return;
503                 } else
504                         /*
505                          * This is to handle the case that the object
506                          * changed type while we dropped its lock to
507                          * obtain Giant.
508                          */
509                         VFS_UNLOCK_GIANT(vfslocked);
510
511                 KASSERT(object->ref_count != 0,
512                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
513
514                 /*
515                  * If the reference count goes to 0 we start calling
516                  * vm_object_terminate() on the object chain.
517                  * A ref count of 1 may be a special case depending on the
518                  * shadow count being 0 or 1.
519                  */
520                 object->ref_count--;
521                 if (object->ref_count > 1) {
522                         VM_OBJECT_UNLOCK(object);
523                         return;
524                 } else if (object->ref_count == 1) {
525                         if (object->shadow_count == 0 &&
526                             object->handle == NULL &&
527                             (object->type == OBJT_DEFAULT ||
528                              object->type == OBJT_SWAP)) {
529                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
530                         } else if ((object->shadow_count == 1) &&
531                             (object->handle == NULL) &&
532                             (object->type == OBJT_DEFAULT ||
533                              object->type == OBJT_SWAP)) {
534                                 vm_object_t robject;
535
536                                 robject = LIST_FIRST(&object->shadow_head);
537                                 KASSERT(robject != NULL,
538                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
539                                          object->ref_count,
540                                          object->shadow_count));
541                                 if (!VM_OBJECT_TRYLOCK(robject)) {
542                                         /*
543                                          * Avoid a potential deadlock.
544                                          */
545                                         object->ref_count++;
546                                         VM_OBJECT_UNLOCK(object);
547                                         /*
548                                          * More likely than not the thread
549                                          * holding robject's lock has lower
550                                          * priority than the current thread.
551                                          * Let the lower priority thread run.
552                                          */
553                                         pause("vmo_de", 1);
554                                         continue;
555                                 }
556                                 /*
557                                  * Collapse object into its shadow unless its
558                                  * shadow is dead.  In that case, object will
559                                  * be deallocated by the thread that is
560                                  * deallocating its shadow.
561                                  */
562                                 if ((robject->flags & OBJ_DEAD) == 0 &&
563                                     (robject->handle == NULL) &&
564                                     (robject->type == OBJT_DEFAULT ||
565                                      robject->type == OBJT_SWAP)) {
566
567                                         robject->ref_count++;
568 retry:
569                                         if (robject->paging_in_progress) {
570                                                 VM_OBJECT_UNLOCK(object);
571                                                 vm_object_pip_wait(robject,
572                                                     "objde1");
573                                                 temp = robject->backing_object;
574                                                 if (object == temp) {
575                                                         VM_OBJECT_LOCK(object);
576                                                         goto retry;
577                                                 }
578                                         } else if (object->paging_in_progress) {
579                                                 VM_OBJECT_UNLOCK(robject);
580                                                 object->flags |= OBJ_PIPWNT;
581                                                 msleep(object,
582                                                     VM_OBJECT_MTX(object),
583                                                     PDROP | PVM, "objde2", 0);
584                                                 VM_OBJECT_LOCK(robject);
585                                                 temp = robject->backing_object;
586                                                 if (object == temp) {
587                                                         VM_OBJECT_LOCK(object);
588                                                         goto retry;
589                                                 }
590                                         } else
591                                                 VM_OBJECT_UNLOCK(object);
592
593                                         if (robject->ref_count == 1) {
594                                                 robject->ref_count--;
595                                                 object = robject;
596                                                 goto doterm;
597                                         }
598                                         object = robject;
599                                         vm_object_collapse(object);
600                                         VM_OBJECT_UNLOCK(object);
601                                         continue;
602                                 }
603                                 VM_OBJECT_UNLOCK(robject);
604                         }
605                         VM_OBJECT_UNLOCK(object);
606                         return;
607                 }
608 doterm:
609                 temp = object->backing_object;
610                 if (temp != NULL) {
611                         VM_OBJECT_LOCK(temp);
612                         LIST_REMOVE(object, shadow_list);
613                         temp->shadow_count--;
614                         temp->generation++;
615                         VM_OBJECT_UNLOCK(temp);
616                         object->backing_object = NULL;
617                 }
618                 /*
619                  * Don't double-terminate, we could be in a termination
620                  * recursion due to the terminate having to sync data
621                  * to disk.
622                  */
623                 if ((object->flags & OBJ_DEAD) == 0)
624                         vm_object_terminate(object);
625                 else
626                         VM_OBJECT_UNLOCK(object);
627                 object = temp;
628         }
629 }
630
631 /*
632  *      vm_object_destroy removes the object from the global object list
633  *      and frees the space for the object.
634  */
635 void
636 vm_object_destroy(vm_object_t object)
637 {
638
639         /*
640          * Remove the object from the global object list.
641          */
642         mtx_lock(&vm_object_list_mtx);
643         TAILQ_REMOVE(&vm_object_list, object, object_list);
644         mtx_unlock(&vm_object_list_mtx);
645
646         /*
647          * Release the allocation charge.
648          */
649         if (object->uip != NULL) {
650                 KASSERT(object->type == OBJT_DEFAULT ||
651                     object->type == OBJT_SWAP,
652                     ("vm_object_terminate: non-swap obj %p has uip",
653                      object));
654                 swap_release_by_uid(object->charge, object->uip);
655                 object->charge = 0;
656                 uifree(object->uip);
657                 object->uip = NULL;
658         }
659
660         /*
661          * Free the space for the object.
662          */
663         uma_zfree(obj_zone, object);
664 }
665
666 /*
667  *      vm_object_terminate actually destroys the specified object, freeing
668  *      up all previously used resources.
669  *
670  *      The object must be locked.
671  *      This routine may block.
672  */
673 void
674 vm_object_terminate(vm_object_t object)
675 {
676         vm_page_t p;
677
678         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
679
680         /*
681          * Make sure no one uses us.
682          */
683         vm_object_set_flag(object, OBJ_DEAD);
684
685         /*
686          * wait for the pageout daemon to be done with the object
687          */
688         vm_object_pip_wait(object, "objtrm");
689
690         KASSERT(!object->paging_in_progress,
691                 ("vm_object_terminate: pageout in progress"));
692
693         /*
694          * Clean and free the pages, as appropriate. All references to the
695          * object are gone, so we don't need to lock it.
696          */
697         if (object->type == OBJT_VNODE) {
698                 struct vnode *vp = (struct vnode *)object->handle;
699
700                 /*
701                  * Clean pages and flush buffers.
702                  */
703                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
704                 VM_OBJECT_UNLOCK(object);
705
706                 vinvalbuf(vp, V_SAVE, 0, 0);
707
708                 VM_OBJECT_LOCK(object);
709         }
710
711         KASSERT(object->ref_count == 0, 
712                 ("vm_object_terminate: object with references, ref_count=%d",
713                 object->ref_count));
714
715         /*
716          * Now free any remaining pages. For internal objects, this also
717          * removes them from paging queues. Don't free wired pages, just
718          * remove them from the object. 
719          */
720         vm_page_lock_queues();
721         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
722                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
723                         ("vm_object_terminate: freeing busy page %p "
724                         "p->busy = %d, p->oflags %x\n", p, p->busy, p->oflags));
725                 if (p->wire_count == 0) {
726                         vm_page_free(p);
727                         cnt.v_pfree++;
728                 } else {
729                         vm_page_remove(p);
730                 }
731         }
732         vm_page_unlock_queues();
733
734 #if VM_NRESERVLEVEL > 0
735         if (__predict_false(!LIST_EMPTY(&object->rvq)))
736                 vm_reserv_break_all(object);
737 #endif
738         if (__predict_false(object->cache != NULL))
739                 vm_page_cache_free(object, 0, 0);
740
741         /*
742          * Let the pager know object is dead.
743          */
744         vm_pager_deallocate(object);
745         VM_OBJECT_UNLOCK(object);
746
747         vm_object_destroy(object);
748 }
749
750 /*
751  *      vm_object_page_clean
752  *
753  *      Clean all dirty pages in the specified range of object.  Leaves page 
754  *      on whatever queue it is currently on.   If NOSYNC is set then do not
755  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
756  *      leaving the object dirty.
757  *
758  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
759  *      synchronous clustering mode implementation.
760  *
761  *      Odd semantics: if start == end, we clean everything.
762  *
763  *      The object must be locked.
764  */
765 void
766 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int flags)
767 {
768         vm_page_t p, np;
769         vm_pindex_t tstart, tend;
770         vm_pindex_t pi;
771         int clearobjflags;
772         int pagerflags;
773         int curgeneration;
774
775         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
776         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0)
777                 return;
778         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
779
780         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
781         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
782
783         vm_object_set_flag(object, OBJ_CLEANING);
784
785         tstart = start;
786         if (end == 0) {
787                 tend = object->size;
788         } else {
789                 tend = end;
790         }
791
792         vm_page_lock_queues();
793         /*
794          * If the caller is smart and only msync()s a range he knows is
795          * dirty, we may be able to avoid an object scan.  This results in
796          * a phenominal improvement in performance.  We cannot do this
797          * as a matter of course because the object may be huge - e.g.
798          * the size might be in the gigabytes or terrabytes.
799          */
800         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
801                 vm_pindex_t tscan;
802                 int scanlimit;
803                 int scanreset;
804
805                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
806                 if (scanreset < 16)
807                         scanreset = 16;
808                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
809
810                 scanlimit = scanreset;
811                 tscan = tstart;
812                 while (tscan < tend) {
813                         curgeneration = object->generation;
814                         p = vm_page_lookup(object, tscan);
815                         if (p == NULL || p->valid == 0) {
816                                 if (--scanlimit == 0)
817                                         break;
818                                 ++tscan;
819                                 continue;
820                         }
821                         vm_page_test_dirty(p);
822                         if (p->dirty == 0) {
823                                 if (--scanlimit == 0)
824                                         break;
825                                 ++tscan;
826                                 continue;
827                         }
828                         /*
829                          * If we have been asked to skip nosync pages and 
830                          * this is a nosync page, we can't continue.
831                          */
832                         if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
833                                 if (--scanlimit == 0)
834                                         break;
835                                 ++tscan;
836                                 continue;
837                         }
838                         scanlimit = scanreset;
839
840                         /*
841                          * This returns 0 if it was unable to busy the first
842                          * page (i.e. had to sleep).
843                          */
844                         tscan += vm_object_page_collect_flush(object, p, curgeneration, pagerflags);
845                 }
846
847                 /*
848                  * If everything was dirty and we flushed it successfully,
849                  * and the requested range is not the entire object, we
850                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
851                  * return immediately.
852                  */
853                 if (tscan >= tend && (tstart || tend < object->size)) {
854                         vm_page_unlock_queues();
855                         vm_object_clear_flag(object, OBJ_CLEANING);
856                         return;
857                 }
858                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
859         }
860
861         /*
862          * Generally set CLEANCHK interlock and make the page read-only so
863          * we can then clear the object flags.
864          *
865          * However, if this is a nosync mmap then the object is likely to 
866          * stay dirty so do not mess with the page and do not clear the
867          * object flags.
868          */
869         clearobjflags = 1;
870         TAILQ_FOREACH(p, &object->memq, listq) {
871                 p->oflags |= VPO_CLEANCHK;
872                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC))
873                         clearobjflags = 0;
874                 else
875                         pmap_remove_write(p);
876         }
877
878         if (clearobjflags && (tstart == 0) && (tend == object->size))
879                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
880
881 rescan:
882         curgeneration = object->generation;
883
884         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
885                 int n;
886
887                 np = TAILQ_NEXT(p, listq);
888
889 again:
890                 pi = p->pindex;
891                 if ((p->oflags & VPO_CLEANCHK) == 0 ||
892                         (pi < tstart) || (pi >= tend) ||
893                     p->valid == 0) {
894                         p->oflags &= ~VPO_CLEANCHK;
895                         continue;
896                 }
897
898                 vm_page_test_dirty(p);
899                 if (p->dirty == 0) {
900                         p->oflags &= ~VPO_CLEANCHK;
901                         continue;
902                 }
903
904                 /*
905                  * If we have been asked to skip nosync pages and this is a
906                  * nosync page, skip it.  Note that the object flags were
907                  * not cleared in this case so we do not have to set them.
908                  */
909                 if ((flags & OBJPC_NOSYNC) && (p->oflags & VPO_NOSYNC)) {
910                         p->oflags &= ~VPO_CLEANCHK;
911                         continue;
912                 }
913
914                 n = vm_object_page_collect_flush(object, p,
915                         curgeneration, pagerflags);
916                 if (n == 0)
917                         goto rescan;
918
919                 if (object->generation != curgeneration)
920                         goto rescan;
921
922                 /*
923                  * Try to optimize the next page.  If we can't we pick up
924                  * our (random) scan where we left off.
925                  */
926                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
927                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
928                                 goto again;
929                 }
930         }
931         vm_page_unlock_queues();
932 #if 0
933         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
934 #endif
935
936         vm_object_clear_flag(object, OBJ_CLEANING);
937         return;
938 }
939
940 static int
941 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
942 {
943         int runlen;
944         int maxf;
945         int chkb;
946         int maxb;
947         int i;
948         vm_pindex_t pi;
949         vm_page_t maf[vm_pageout_page_count];
950         vm_page_t mab[vm_pageout_page_count];
951         vm_page_t ma[vm_pageout_page_count];
952
953         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
954         pi = p->pindex;
955         while (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
956                 vm_page_lock_queues();
957                 if (object->generation != curgeneration) {
958                         return(0);
959                 }
960         }
961         maxf = 0;
962         for(i = 1; i < vm_pageout_page_count; i++) {
963                 vm_page_t tp;
964
965                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
966                         if ((tp->oflags & VPO_BUSY) ||
967                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
968                                  (tp->oflags & VPO_CLEANCHK) == 0) ||
969                                 (tp->busy != 0))
970                                 break;
971                         vm_page_test_dirty(tp);
972                         if (tp->dirty == 0) {
973                                 tp->oflags &= ~VPO_CLEANCHK;
974                                 break;
975                         }
976                         maf[ i - 1 ] = tp;
977                         maxf++;
978                         continue;
979                 }
980                 break;
981         }
982
983         maxb = 0;
984         chkb = vm_pageout_page_count -  maxf;
985         if (chkb) {
986                 for(i = 1; i < chkb;i++) {
987                         vm_page_t tp;
988
989                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
990                                 if ((tp->oflags & VPO_BUSY) ||
991                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
992                                          (tp->oflags & VPO_CLEANCHK) == 0) ||
993                                         (tp->busy != 0))
994                                         break;
995                                 vm_page_test_dirty(tp);
996                                 if (tp->dirty == 0) {
997                                         tp->oflags &= ~VPO_CLEANCHK;
998                                         break;
999                                 }
1000                                 mab[ i - 1 ] = tp;
1001                                 maxb++;
1002                                 continue;
1003                         }
1004                         break;
1005                 }
1006         }
1007
1008         for(i = 0; i < maxb; i++) {
1009                 int index = (maxb - i) - 1;
1010                 ma[index] = mab[i];
1011                 ma[index]->oflags &= ~VPO_CLEANCHK;
1012         }
1013         p->oflags &= ~VPO_CLEANCHK;
1014         ma[maxb] = p;
1015         for(i = 0; i < maxf; i++) {
1016                 int index = (maxb + i) + 1;
1017                 ma[index] = maf[i];
1018                 ma[index]->oflags &= ~VPO_CLEANCHK;
1019         }
1020         runlen = maxb + maxf + 1;
1021
1022         vm_pageout_flush(ma, runlen, pagerflags);
1023         for (i = 0; i < runlen; i++) {
1024                 if (ma[i]->dirty) {
1025                         pmap_remove_write(ma[i]);
1026                         ma[i]->oflags |= VPO_CLEANCHK;
1027
1028                         /*
1029                          * maxf will end up being the actual number of pages
1030                          * we wrote out contiguously, non-inclusive of the
1031                          * first page.  We do not count look-behind pages.
1032                          */
1033                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
1034                                 maxf = i - maxb - 1;
1035                 }
1036         }
1037         return(maxf + 1);
1038 }
1039
1040 /*
1041  * Note that there is absolutely no sense in writing out
1042  * anonymous objects, so we track down the vnode object
1043  * to write out.
1044  * We invalidate (remove) all pages from the address space
1045  * for semantic correctness.
1046  *
1047  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
1048  * may start out with a NULL object.
1049  */
1050 void
1051 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
1052     boolean_t syncio, boolean_t invalidate)
1053 {
1054         vm_object_t backing_object;
1055         struct vnode *vp;
1056         struct mount *mp;
1057         int flags;
1058
1059         if (object == NULL)
1060                 return;
1061         VM_OBJECT_LOCK(object);
1062         while ((backing_object = object->backing_object) != NULL) {
1063                 VM_OBJECT_LOCK(backing_object);
1064                 offset += object->backing_object_offset;
1065                 VM_OBJECT_UNLOCK(object);
1066                 object = backing_object;
1067                 if (object->size < OFF_TO_IDX(offset + size))
1068                         size = IDX_TO_OFF(object->size) - offset;
1069         }
1070         /*
1071          * Flush pages if writing is allowed, invalidate them
1072          * if invalidation requested.  Pages undergoing I/O
1073          * will be ignored by vm_object_page_remove().
1074          *
1075          * We cannot lock the vnode and then wait for paging
1076          * to complete without deadlocking against vm_fault.
1077          * Instead we simply call vm_object_page_remove() and
1078          * allow it to block internally on a page-by-page
1079          * basis when it encounters pages undergoing async
1080          * I/O.
1081          */
1082         if (object->type == OBJT_VNODE &&
1083             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1084                 int vfslocked;
1085                 vp = object->handle;
1086                 VM_OBJECT_UNLOCK(object);
1087                 (void) vn_start_write(vp, &mp, V_WAIT);
1088                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1089                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1090                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1091                 flags |= invalidate ? OBJPC_INVAL : 0;
1092                 VM_OBJECT_LOCK(object);
1093                 vm_object_page_clean(object,
1094                     OFF_TO_IDX(offset),
1095                     OFF_TO_IDX(offset + size + PAGE_MASK),
1096                     flags);
1097                 VM_OBJECT_UNLOCK(object);
1098                 VOP_UNLOCK(vp, 0);
1099                 VFS_UNLOCK_GIANT(vfslocked);
1100                 vn_finished_write(mp);
1101                 VM_OBJECT_LOCK(object);
1102         }
1103         if ((object->type == OBJT_VNODE ||
1104              object->type == OBJT_DEVICE) && invalidate) {
1105                 boolean_t purge;
1106                 purge = old_msync || (object->type == OBJT_DEVICE);
1107                 vm_object_page_remove(object,
1108                     OFF_TO_IDX(offset),
1109                     OFF_TO_IDX(offset + size + PAGE_MASK),
1110                     purge ? FALSE : TRUE);
1111         }
1112         VM_OBJECT_UNLOCK(object);
1113 }
1114
1115 /*
1116  *      vm_object_madvise:
1117  *
1118  *      Implements the madvise function at the object/page level.
1119  *
1120  *      MADV_WILLNEED   (any object)
1121  *
1122  *          Activate the specified pages if they are resident.
1123  *
1124  *      MADV_DONTNEED   (any object)
1125  *
1126  *          Deactivate the specified pages if they are resident.
1127  *
1128  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1129  *                       OBJ_ONEMAPPING only)
1130  *
1131  *          Deactivate and clean the specified pages if they are
1132  *          resident.  This permits the process to reuse the pages
1133  *          without faulting or the kernel to reclaim the pages
1134  *          without I/O.
1135  */
1136 void
1137 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1138 {
1139         vm_pindex_t end, tpindex;
1140         vm_object_t backing_object, tobject;
1141         vm_page_t m;
1142
1143         if (object == NULL)
1144                 return;
1145         VM_OBJECT_LOCK(object);
1146         end = pindex + count;
1147         /*
1148          * Locate and adjust resident pages
1149          */
1150         for (; pindex < end; pindex += 1) {
1151 relookup:
1152                 tobject = object;
1153                 tpindex = pindex;
1154 shadowlookup:
1155                 /*
1156                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1157                  * and those pages must be OBJ_ONEMAPPING.
1158                  */
1159                 if (advise == MADV_FREE) {
1160                         if ((tobject->type != OBJT_DEFAULT &&
1161                              tobject->type != OBJT_SWAP) ||
1162                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1163                                 goto unlock_tobject;
1164                         }
1165                 }
1166                 m = vm_page_lookup(tobject, tpindex);
1167                 if (m == NULL && advise == MADV_WILLNEED) {
1168                         /*
1169                          * If the page is cached, reactivate it.
1170                          */
1171                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1172                             VM_ALLOC_NOBUSY);
1173                 }
1174                 if (m == NULL) {
1175                         /*
1176                          * There may be swap even if there is no backing page
1177                          */
1178                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1179                                 swap_pager_freespace(tobject, tpindex, 1);
1180                         /*
1181                          * next object
1182                          */
1183                         backing_object = tobject->backing_object;
1184                         if (backing_object == NULL)
1185                                 goto unlock_tobject;
1186                         VM_OBJECT_LOCK(backing_object);
1187                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1188                         if (tobject != object)
1189                                 VM_OBJECT_UNLOCK(tobject);
1190                         tobject = backing_object;
1191                         goto shadowlookup;
1192                 }
1193                 /*
1194                  * If the page is busy or not in a normal active state,
1195                  * we skip it.  If the page is not managed there are no
1196                  * page queues to mess with.  Things can break if we mess
1197                  * with pages in any of the below states.
1198                  */
1199                 vm_page_lock_queues();
1200                 if (m->hold_count ||
1201                     m->wire_count ||
1202                     (m->flags & PG_UNMANAGED) ||
1203                     m->valid != VM_PAGE_BITS_ALL) {
1204                         vm_page_unlock_queues();
1205                         goto unlock_tobject;
1206                 }
1207                 if ((m->oflags & VPO_BUSY) || m->busy) {
1208                         vm_page_flag_set(m, PG_REFERENCED);
1209                         vm_page_unlock_queues();
1210                         if (object != tobject)
1211                                 VM_OBJECT_UNLOCK(object);
1212                         m->oflags |= VPO_WANTED;
1213                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo", 0);
1214                         VM_OBJECT_LOCK(object);
1215                         goto relookup;
1216                 }
1217                 if (advise == MADV_WILLNEED) {
1218                         vm_page_activate(m);
1219                 } else if (advise == MADV_DONTNEED) {
1220                         vm_page_dontneed(m);
1221                 } else if (advise == MADV_FREE) {
1222                         /*
1223                          * Mark the page clean.  This will allow the page
1224                          * to be freed up by the system.  However, such pages
1225                          * are often reused quickly by malloc()/free()
1226                          * so we do not do anything that would cause
1227                          * a page fault if we can help it.
1228                          *
1229                          * Specifically, we do not try to actually free
1230                          * the page now nor do we try to put it in the
1231                          * cache (which would cause a page fault on reuse).
1232                          *
1233                          * But we do make the page is freeable as we
1234                          * can without actually taking the step of unmapping
1235                          * it.
1236                          */
1237                         pmap_clear_modify(m);
1238                         m->dirty = 0;
1239                         m->act_count = 0;
1240                         vm_page_dontneed(m);
1241                 }
1242                 vm_page_unlock_queues();
1243                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1244                         swap_pager_freespace(tobject, tpindex, 1);
1245 unlock_tobject:
1246                 if (tobject != object)
1247                         VM_OBJECT_UNLOCK(tobject);
1248         }       
1249         VM_OBJECT_UNLOCK(object);
1250 }
1251
1252 /*
1253  *      vm_object_shadow:
1254  *
1255  *      Create a new object which is backed by the
1256  *      specified existing object range.  The source
1257  *      object reference is deallocated.
1258  *
1259  *      The new object and offset into that object
1260  *      are returned in the source parameters.
1261  */
1262 void
1263 vm_object_shadow(
1264         vm_object_t *object,    /* IN/OUT */
1265         vm_ooffset_t *offset,   /* IN/OUT */
1266         vm_size_t length)
1267 {
1268         vm_object_t source;
1269         vm_object_t result;
1270
1271         source = *object;
1272
1273         /*
1274          * Don't create the new object if the old object isn't shared.
1275          */
1276         if (source != NULL) {
1277                 VM_OBJECT_LOCK(source);
1278                 if (source->ref_count == 1 &&
1279                     source->handle == NULL &&
1280                     (source->type == OBJT_DEFAULT ||
1281                      source->type == OBJT_SWAP)) {
1282                         VM_OBJECT_UNLOCK(source);
1283                         return;
1284                 }
1285                 VM_OBJECT_UNLOCK(source);
1286         }
1287
1288         /*
1289          * Allocate a new object with the given length.
1290          */
1291         result = vm_object_allocate(OBJT_DEFAULT, length);
1292
1293         /*
1294          * The new object shadows the source object, adding a reference to it.
1295          * Our caller changes his reference to point to the new object,
1296          * removing a reference to the source object.  Net result: no change
1297          * of reference count.
1298          *
1299          * Try to optimize the result object's page color when shadowing
1300          * in order to maintain page coloring consistency in the combined 
1301          * shadowed object.
1302          */
1303         result->backing_object = source;
1304         /*
1305          * Store the offset into the source object, and fix up the offset into
1306          * the new object.
1307          */
1308         result->backing_object_offset = *offset;
1309         if (source != NULL) {
1310                 VM_OBJECT_LOCK(source);
1311                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1312                 source->shadow_count++;
1313                 source->generation++;
1314 #if VM_NRESERVLEVEL > 0
1315                 result->flags |= source->flags & OBJ_COLORED;
1316                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1317                     ((1 << (VM_NFREEORDER - 1)) - 1);
1318 #endif
1319                 VM_OBJECT_UNLOCK(source);
1320         }
1321
1322
1323         /*
1324          * Return the new things
1325          */
1326         *offset = 0;
1327         *object = result;
1328 }
1329
1330 /*
1331  *      vm_object_split:
1332  *
1333  * Split the pages in a map entry into a new object.  This affords
1334  * easier removal of unused pages, and keeps object inheritance from
1335  * being a negative impact on memory usage.
1336  */
1337 void
1338 vm_object_split(vm_map_entry_t entry)
1339 {
1340         vm_page_t m, m_next;
1341         vm_object_t orig_object, new_object, source;
1342         vm_pindex_t idx, offidxstart;
1343         vm_size_t size;
1344
1345         orig_object = entry->object.vm_object;
1346         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1347                 return;
1348         if (orig_object->ref_count <= 1)
1349                 return;
1350         VM_OBJECT_UNLOCK(orig_object);
1351
1352         offidxstart = OFF_TO_IDX(entry->offset);
1353         size = atop(entry->end - entry->start);
1354
1355         /*
1356          * If swap_pager_copy() is later called, it will convert new_object
1357          * into a swap object.
1358          */
1359         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1360
1361         /*
1362          * At this point, the new object is still private, so the order in
1363          * which the original and new objects are locked does not matter.
1364          */
1365         VM_OBJECT_LOCK(new_object);
1366         VM_OBJECT_LOCK(orig_object);
1367         source = orig_object->backing_object;
1368         if (source != NULL) {
1369                 VM_OBJECT_LOCK(source);
1370                 if ((source->flags & OBJ_DEAD) != 0) {
1371                         VM_OBJECT_UNLOCK(source);
1372                         VM_OBJECT_UNLOCK(orig_object);
1373                         VM_OBJECT_UNLOCK(new_object);
1374                         vm_object_deallocate(new_object);
1375                         VM_OBJECT_LOCK(orig_object);
1376                         return;
1377                 }
1378                 LIST_INSERT_HEAD(&source->shadow_head,
1379                                   new_object, shadow_list);
1380                 source->shadow_count++;
1381                 source->generation++;
1382                 vm_object_reference_locked(source);     /* for new_object */
1383                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1384                 VM_OBJECT_UNLOCK(source);
1385                 new_object->backing_object_offset = 
1386                         orig_object->backing_object_offset + entry->offset;
1387                 new_object->backing_object = source;
1388         }
1389         if (orig_object->uip != NULL) {
1390                 new_object->uip = orig_object->uip;
1391                 uihold(orig_object->uip);
1392                 new_object->charge = ptoa(size);
1393                 KASSERT(orig_object->charge >= ptoa(size),
1394                     ("orig_object->charge < 0"));
1395                 orig_object->charge -= ptoa(size);
1396         }
1397 retry:
1398         if ((m = TAILQ_FIRST(&orig_object->memq)) != NULL) {
1399                 if (m->pindex < offidxstart) {
1400                         m = vm_page_splay(offidxstart, orig_object->root);
1401                         if ((orig_object->root = m)->pindex < offidxstart)
1402                                 m = TAILQ_NEXT(m, listq);
1403                 }
1404         }
1405         vm_page_lock_queues();
1406         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1407             m = m_next) {
1408                 m_next = TAILQ_NEXT(m, listq);
1409
1410                 /*
1411                  * We must wait for pending I/O to complete before we can
1412                  * rename the page.
1413                  *
1414                  * We do not have to VM_PROT_NONE the page as mappings should
1415                  * not be changed by this operation.
1416                  */
1417                 if ((m->oflags & VPO_BUSY) || m->busy) {
1418                         vm_page_flag_set(m, PG_REFERENCED);
1419                         vm_page_unlock_queues();
1420                         VM_OBJECT_UNLOCK(new_object);
1421                         m->oflags |= VPO_WANTED;
1422                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1423                         VM_OBJECT_LOCK(new_object);
1424                         goto retry;
1425                 }
1426                 vm_page_rename(m, new_object, idx);
1427                 /* page automatically made dirty by rename and cache handled */
1428                 vm_page_busy(m);
1429         }
1430         vm_page_unlock_queues();
1431         if (orig_object->type == OBJT_SWAP) {
1432                 /*
1433                  * swap_pager_copy() can sleep, in which case the orig_object's
1434                  * and new_object's locks are released and reacquired. 
1435                  */
1436                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1437
1438                 /*
1439                  * Transfer any cached pages from orig_object to new_object.
1440                  */
1441                 if (__predict_false(orig_object->cache != NULL))
1442                         vm_page_cache_transfer(orig_object, offidxstart,
1443                             new_object);
1444         }
1445         VM_OBJECT_UNLOCK(orig_object);
1446         TAILQ_FOREACH(m, &new_object->memq, listq)
1447                 vm_page_wakeup(m);
1448         VM_OBJECT_UNLOCK(new_object);
1449         entry->object.vm_object = new_object;
1450         entry->offset = 0LL;
1451         vm_object_deallocate(orig_object);
1452         VM_OBJECT_LOCK(new_object);
1453 }
1454
1455 #define OBSC_TEST_ALL_SHADOWED  0x0001
1456 #define OBSC_COLLAPSE_NOWAIT    0x0002
1457 #define OBSC_COLLAPSE_WAIT      0x0004
1458
1459 static int
1460 vm_object_backing_scan(vm_object_t object, int op)
1461 {
1462         int r = 1;
1463         vm_page_t p;
1464         vm_object_t backing_object;
1465         vm_pindex_t backing_offset_index;
1466
1467         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1468         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1469
1470         backing_object = object->backing_object;
1471         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1472
1473         /*
1474          * Initial conditions
1475          */
1476         if (op & OBSC_TEST_ALL_SHADOWED) {
1477                 /*
1478                  * We do not want to have to test for the existence of cache
1479                  * or swap pages in the backing object.  XXX but with the
1480                  * new swapper this would be pretty easy to do.
1481                  *
1482                  * XXX what about anonymous MAP_SHARED memory that hasn't
1483                  * been ZFOD faulted yet?  If we do not test for this, the
1484                  * shadow test may succeed! XXX
1485                  */
1486                 if (backing_object->type != OBJT_DEFAULT) {
1487                         return (0);
1488                 }
1489         }
1490         if (op & OBSC_COLLAPSE_WAIT) {
1491                 vm_object_set_flag(backing_object, OBJ_DEAD);
1492         }
1493
1494         /*
1495          * Our scan
1496          */
1497         p = TAILQ_FIRST(&backing_object->memq);
1498         while (p) {
1499                 vm_page_t next = TAILQ_NEXT(p, listq);
1500                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1501
1502                 if (op & OBSC_TEST_ALL_SHADOWED) {
1503                         vm_page_t pp;
1504
1505                         /*
1506                          * Ignore pages outside the parent object's range
1507                          * and outside the parent object's mapping of the 
1508                          * backing object.
1509                          *
1510                          * note that we do not busy the backing object's
1511                          * page.
1512                          */
1513                         if (
1514                             p->pindex < backing_offset_index ||
1515                             new_pindex >= object->size
1516                         ) {
1517                                 p = next;
1518                                 continue;
1519                         }
1520
1521                         /*
1522                          * See if the parent has the page or if the parent's
1523                          * object pager has the page.  If the parent has the
1524                          * page but the page is not valid, the parent's
1525                          * object pager must have the page.
1526                          *
1527                          * If this fails, the parent does not completely shadow
1528                          * the object and we might as well give up now.
1529                          */
1530
1531                         pp = vm_page_lookup(object, new_pindex);
1532                         if (
1533                             (pp == NULL || pp->valid == 0) &&
1534                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1535                         ) {
1536                                 r = 0;
1537                                 break;
1538                         }
1539                 }
1540
1541                 /*
1542                  * Check for busy page
1543                  */
1544                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1545                         vm_page_t pp;
1546
1547                         if (op & OBSC_COLLAPSE_NOWAIT) {
1548                                 if ((p->oflags & VPO_BUSY) ||
1549                                     !p->valid || 
1550                                     p->busy) {
1551                                         p = next;
1552                                         continue;
1553                                 }
1554                         } else if (op & OBSC_COLLAPSE_WAIT) {
1555                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1556                                         vm_page_lock_queues();
1557                                         vm_page_flag_set(p, PG_REFERENCED);
1558                                         vm_page_unlock_queues();
1559                                         VM_OBJECT_UNLOCK(object);
1560                                         p->oflags |= VPO_WANTED;
1561                                         msleep(p, VM_OBJECT_MTX(backing_object),
1562                                             PDROP | PVM, "vmocol", 0);
1563                                         VM_OBJECT_LOCK(object);
1564                                         VM_OBJECT_LOCK(backing_object);
1565                                         /*
1566                                          * If we slept, anything could have
1567                                          * happened.  Since the object is
1568                                          * marked dead, the backing offset
1569                                          * should not have changed so we
1570                                          * just restart our scan.
1571                                          */
1572                                         p = TAILQ_FIRST(&backing_object->memq);
1573                                         continue;
1574                                 }
1575                         }
1576
1577                         KASSERT(
1578                             p->object == backing_object,
1579                             ("vm_object_backing_scan: object mismatch")
1580                         );
1581
1582                         /*
1583                          * Destroy any associated swap
1584                          */
1585                         if (backing_object->type == OBJT_SWAP) {
1586                                 swap_pager_freespace(
1587                                     backing_object, 
1588                                     p->pindex,
1589                                     1
1590                                 );
1591                         }
1592
1593                         if (
1594                             p->pindex < backing_offset_index ||
1595                             new_pindex >= object->size
1596                         ) {
1597                                 /*
1598                                  * Page is out of the parent object's range, we 
1599                                  * can simply destroy it. 
1600                                  */
1601                                 vm_page_lock_queues();
1602                                 KASSERT(!pmap_page_is_mapped(p),
1603                                     ("freeing mapped page %p", p));
1604                                 if (p->wire_count == 0)
1605                                         vm_page_free(p);
1606                                 else
1607                                         vm_page_remove(p);
1608                                 vm_page_unlock_queues();
1609                                 p = next;
1610                                 continue;
1611                         }
1612
1613                         pp = vm_page_lookup(object, new_pindex);
1614                         if (
1615                             pp != NULL ||
1616                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1617                         ) {
1618                                 /*
1619                                  * page already exists in parent OR swap exists
1620                                  * for this location in the parent.  Destroy 
1621                                  * the original page from the backing object.
1622                                  *
1623                                  * Leave the parent's page alone
1624                                  */
1625                                 vm_page_lock_queues();
1626                                 KASSERT(!pmap_page_is_mapped(p),
1627                                     ("freeing mapped page %p", p));
1628                                 if (p->wire_count == 0)
1629                                         vm_page_free(p);
1630                                 else
1631                                         vm_page_remove(p);
1632                                 vm_page_unlock_queues();
1633                                 p = next;
1634                                 continue;
1635                         }
1636
1637 #if VM_NRESERVLEVEL > 0
1638                         /*
1639                          * Rename the reservation.
1640                          */
1641                         vm_reserv_rename(p, object, backing_object,
1642                             backing_offset_index);
1643 #endif
1644
1645                         /*
1646                          * Page does not exist in parent, rename the
1647                          * page from the backing object to the main object. 
1648                          *
1649                          * If the page was mapped to a process, it can remain 
1650                          * mapped through the rename.
1651                          */
1652                         vm_page_lock_queues();
1653                         vm_page_rename(p, object, new_pindex);
1654                         vm_page_unlock_queues();
1655                         /* page automatically made dirty by rename */
1656                 }
1657                 p = next;
1658         }
1659         return (r);
1660 }
1661
1662
1663 /*
1664  * this version of collapse allows the operation to occur earlier and
1665  * when paging_in_progress is true for an object...  This is not a complete
1666  * operation, but should plug 99.9% of the rest of the leaks.
1667  */
1668 static void
1669 vm_object_qcollapse(vm_object_t object)
1670 {
1671         vm_object_t backing_object = object->backing_object;
1672
1673         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1674         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1675
1676         if (backing_object->ref_count != 1)
1677                 return;
1678
1679         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1680 }
1681
1682 /*
1683  *      vm_object_collapse:
1684  *
1685  *      Collapse an object with the object backing it.
1686  *      Pages in the backing object are moved into the
1687  *      parent, and the backing object is deallocated.
1688  */
1689 void
1690 vm_object_collapse(vm_object_t object)
1691 {
1692         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1693         
1694         while (TRUE) {
1695                 vm_object_t backing_object;
1696
1697                 /*
1698                  * Verify that the conditions are right for collapse:
1699                  *
1700                  * The object exists and the backing object exists.
1701                  */
1702                 if ((backing_object = object->backing_object) == NULL)
1703                         break;
1704
1705                 /*
1706                  * we check the backing object first, because it is most likely
1707                  * not collapsable.
1708                  */
1709                 VM_OBJECT_LOCK(backing_object);
1710                 if (backing_object->handle != NULL ||
1711                     (backing_object->type != OBJT_DEFAULT &&
1712                      backing_object->type != OBJT_SWAP) ||
1713                     (backing_object->flags & OBJ_DEAD) ||
1714                     object->handle != NULL ||
1715                     (object->type != OBJT_DEFAULT &&
1716                      object->type != OBJT_SWAP) ||
1717                     (object->flags & OBJ_DEAD)) {
1718                         VM_OBJECT_UNLOCK(backing_object);
1719                         break;
1720                 }
1721
1722                 if (
1723                     object->paging_in_progress != 0 ||
1724                     backing_object->paging_in_progress != 0
1725                 ) {
1726                         vm_object_qcollapse(object);
1727                         VM_OBJECT_UNLOCK(backing_object);
1728                         break;
1729                 }
1730                 /*
1731                  * We know that we can either collapse the backing object (if
1732                  * the parent is the only reference to it) or (perhaps) have
1733                  * the parent bypass the object if the parent happens to shadow
1734                  * all the resident pages in the entire backing object.
1735                  *
1736                  * This is ignoring pager-backed pages such as swap pages.
1737                  * vm_object_backing_scan fails the shadowing test in this
1738                  * case.
1739                  */
1740                 if (backing_object->ref_count == 1) {
1741                         /*
1742                          * If there is exactly one reference to the backing
1743                          * object, we can collapse it into the parent.  
1744                          */
1745                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1746
1747 #if VM_NRESERVLEVEL > 0
1748                         /*
1749                          * Break any reservations from backing_object.
1750                          */
1751                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1752                                 vm_reserv_break_all(backing_object);
1753 #endif
1754
1755                         /*
1756                          * Move the pager from backing_object to object.
1757                          */
1758                         if (backing_object->type == OBJT_SWAP) {
1759                                 /*
1760                                  * swap_pager_copy() can sleep, in which case
1761                                  * the backing_object's and object's locks are
1762                                  * released and reacquired.
1763                                  */
1764                                 swap_pager_copy(
1765                                     backing_object,
1766                                     object,
1767                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1768
1769                                 /*
1770                                  * Free any cached pages from backing_object.
1771                                  */
1772                                 if (__predict_false(backing_object->cache != NULL))
1773                                         vm_page_cache_free(backing_object, 0, 0);
1774                         }
1775                         /*
1776                          * Object now shadows whatever backing_object did.
1777                          * Note that the reference to 
1778                          * backing_object->backing_object moves from within 
1779                          * backing_object to within object.
1780                          */
1781                         LIST_REMOVE(object, shadow_list);
1782                         backing_object->shadow_count--;
1783                         backing_object->generation++;
1784                         if (backing_object->backing_object) {
1785                                 VM_OBJECT_LOCK(backing_object->backing_object);
1786                                 LIST_REMOVE(backing_object, shadow_list);
1787                                 LIST_INSERT_HEAD(
1788                                     &backing_object->backing_object->shadow_head,
1789                                     object, shadow_list);
1790                                 /*
1791                                  * The shadow_count has not changed.
1792                                  */
1793                                 backing_object->backing_object->generation++;
1794                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1795                         }
1796                         object->backing_object = backing_object->backing_object;
1797                         object->backing_object_offset +=
1798                             backing_object->backing_object_offset;
1799
1800                         /*
1801                          * Discard backing_object.
1802                          *
1803                          * Since the backing object has no pages, no pager left,
1804                          * and no object references within it, all that is
1805                          * necessary is to dispose of it.
1806                          */
1807                         KASSERT(backing_object->ref_count == 1, (
1808 "backing_object %p was somehow re-referenced during collapse!",
1809                             backing_object));
1810                         VM_OBJECT_UNLOCK(backing_object);
1811                         vm_object_destroy(backing_object);
1812
1813                         object_collapses++;
1814                 } else {
1815                         vm_object_t new_backing_object;
1816
1817                         /*
1818                          * If we do not entirely shadow the backing object,
1819                          * there is nothing we can do so we give up.
1820                          */
1821                         if (object->resident_page_count != object->size &&
1822                             vm_object_backing_scan(object,
1823                             OBSC_TEST_ALL_SHADOWED) == 0) {
1824                                 VM_OBJECT_UNLOCK(backing_object);
1825                                 break;
1826                         }
1827
1828                         /*
1829                          * Make the parent shadow the next object in the
1830                          * chain.  Deallocating backing_object will not remove
1831                          * it, since its reference count is at least 2.
1832                          */
1833                         LIST_REMOVE(object, shadow_list);
1834                         backing_object->shadow_count--;
1835                         backing_object->generation++;
1836
1837                         new_backing_object = backing_object->backing_object;
1838                         if ((object->backing_object = new_backing_object) != NULL) {
1839                                 VM_OBJECT_LOCK(new_backing_object);
1840                                 LIST_INSERT_HEAD(
1841                                     &new_backing_object->shadow_head,
1842                                     object,
1843                                     shadow_list
1844                                 );
1845                                 new_backing_object->shadow_count++;
1846                                 new_backing_object->generation++;
1847                                 vm_object_reference_locked(new_backing_object);
1848                                 VM_OBJECT_UNLOCK(new_backing_object);
1849                                 object->backing_object_offset +=
1850                                         backing_object->backing_object_offset;
1851                         }
1852
1853                         /*
1854                          * Drop the reference count on backing_object. Since
1855                          * its ref_count was at least 2, it will not vanish.
1856                          */
1857                         backing_object->ref_count--;
1858                         VM_OBJECT_UNLOCK(backing_object);
1859                         object_bypasses++;
1860                 }
1861
1862                 /*
1863                  * Try again with this object's new backing object.
1864                  */
1865         }
1866 }
1867
1868 /*
1869  *      vm_object_page_remove:
1870  *
1871  *      For the given object, either frees or invalidates each of the
1872  *      specified pages.  In general, a page is freed.  However, if a
1873  *      page is wired for any reason other than the existence of a
1874  *      managed, wired mapping, then it may be invalidated but not
1875  *      removed from the object.  Pages are specified by the given
1876  *      range ["start", "end") and Boolean "clean_only".  As a
1877  *      special case, if "end" is zero, then the range extends from
1878  *      "start" to the end of the object.  If "clean_only" is TRUE,
1879  *      then only the non-dirty pages within the specified range are
1880  *      affected.
1881  *
1882  *      In general, this operation should only be performed on objects
1883  *      that contain managed pages.  There are two exceptions.  First,
1884  *      it may be performed on the kernel and kmem objects.  Second,
1885  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1886  *      device-backed pages.
1887  *
1888  *      The object must be locked.
1889  */
1890 void
1891 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1892     boolean_t clean_only)
1893 {
1894         vm_page_t p, next;
1895         int wirings;
1896
1897         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1898         if (object->resident_page_count == 0)
1899                 goto skipmemq;
1900
1901         /*
1902          * Since physically-backed objects do not use managed pages, we can't
1903          * remove pages from the object (we must instead remove the page
1904          * references, and then destroy the object).
1905          */
1906         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1907             object == kmem_object,
1908             ("attempt to remove pages from a physical object"));
1909
1910         vm_object_pip_add(object, 1);
1911 again:
1912         if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1913                 if (p->pindex < start) {
1914                         p = vm_page_splay(start, object->root);
1915                         if ((object->root = p)->pindex < start)
1916                                 p = TAILQ_NEXT(p, listq);
1917                 }
1918         }
1919         vm_page_lock_queues();
1920         /*
1921          * Assert: the variable p is either (1) the page with the
1922          * least pindex greater than or equal to the parameter pindex
1923          * or (2) NULL.
1924          */
1925         for (;
1926              p != NULL && (p->pindex < end || end == 0);
1927              p = next) {
1928                 next = TAILQ_NEXT(p, listq);
1929
1930                 /*
1931                  * If the page is wired for any reason besides the
1932                  * existence of managed, wired mappings, then it cannot
1933                  * be freed.  For example, fictitious pages, which
1934                  * represent device memory, are inherently wired and
1935                  * cannot be freed.  They can, however, be invalidated
1936                  * if "clean_only" is FALSE.
1937                  */
1938                 if ((wirings = p->wire_count) != 0 &&
1939                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1940                         /* Fictitious pages do not have managed mappings. */
1941                         if ((p->flags & PG_FICTITIOUS) == 0)
1942                                 pmap_remove_all(p);
1943                         /* Account for removal of managed, wired mappings. */
1944                         p->wire_count -= wirings;
1945                         if (!clean_only) {
1946                                 p->valid = 0;
1947                                 vm_page_undirty(p);
1948                         }
1949                         continue;
1950                 }
1951                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1952                         goto again;
1953                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1954                     ("vm_object_page_remove: page %p is fictitious", p));
1955                 if (clean_only && p->valid) {
1956                         pmap_remove_write(p);
1957                         if (p->dirty)
1958                                 continue;
1959                 }
1960                 pmap_remove_all(p);
1961                 /* Account for removal of managed, wired mappings. */
1962                 if (wirings != 0)
1963                         p->wire_count -= wirings;
1964                 vm_page_free(p);
1965         }
1966         vm_page_unlock_queues();
1967         vm_object_pip_wakeup(object);
1968 skipmemq:
1969         if (__predict_false(object->cache != NULL))
1970                 vm_page_cache_free(object, start, end);
1971 }
1972
1973 /*
1974  *      Populate the specified range of the object with valid pages.  Returns
1975  *      TRUE if the range is successfully populated and FALSE otherwise.
1976  *
1977  *      Note: This function should be optimized to pass a larger array of
1978  *      pages to vm_pager_get_pages() before it is applied to a non-
1979  *      OBJT_DEVICE object.
1980  *
1981  *      The object must be locked.
1982  */
1983 boolean_t
1984 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1985 {
1986         vm_page_t m, ma[1];
1987         vm_pindex_t pindex;
1988         int rv;
1989
1990         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1991         for (pindex = start; pindex < end; pindex++) {
1992                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1993                     VM_ALLOC_RETRY);
1994                 if (m->valid != VM_PAGE_BITS_ALL) {
1995                         ma[0] = m;
1996                         rv = vm_pager_get_pages(object, ma, 1, 0);
1997                         m = vm_page_lookup(object, pindex);
1998                         if (m == NULL)
1999                                 break;
2000                         if (rv != VM_PAGER_OK) {
2001                                 vm_page_lock_queues();
2002                                 vm_page_free(m);
2003                                 vm_page_unlock_queues();
2004                                 break;
2005                         }
2006                 }
2007                 /*
2008                  * Keep "m" busy because a subsequent iteration may unlock
2009                  * the object.
2010                  */
2011         }
2012         if (pindex > start) {
2013                 m = vm_page_lookup(object, start);
2014                 while (m != NULL && m->pindex < pindex) {
2015                         vm_page_wakeup(m);
2016                         m = TAILQ_NEXT(m, listq);
2017                 }
2018         }
2019         return (pindex == end);
2020 }
2021
2022 /*
2023  *      Routine:        vm_object_coalesce
2024  *      Function:       Coalesces two objects backing up adjoining
2025  *                      regions of memory into a single object.
2026  *
2027  *      returns TRUE if objects were combined.
2028  *
2029  *      NOTE:   Only works at the moment if the second object is NULL -
2030  *              if it's not, which object do we lock first?
2031  *
2032  *      Parameters:
2033  *              prev_object     First object to coalesce
2034  *              prev_offset     Offset into prev_object
2035  *              prev_size       Size of reference to prev_object
2036  *              next_size       Size of reference to the second object
2037  *              reserved        Indicator that extension region has
2038  *                              swap accounted for
2039  *
2040  *      Conditions:
2041  *      The object must *not* be locked.
2042  */
2043 boolean_t
2044 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2045     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2046 {
2047         vm_pindex_t next_pindex;
2048
2049         if (prev_object == NULL)
2050                 return (TRUE);
2051         VM_OBJECT_LOCK(prev_object);
2052         if (prev_object->type != OBJT_DEFAULT &&
2053             prev_object->type != OBJT_SWAP) {
2054                 VM_OBJECT_UNLOCK(prev_object);
2055                 return (FALSE);
2056         }
2057
2058         /*
2059          * Try to collapse the object first
2060          */
2061         vm_object_collapse(prev_object);
2062
2063         /*
2064          * Can't coalesce if: . more than one reference . paged out . shadows
2065          * another object . has a copy elsewhere (any of which mean that the
2066          * pages not mapped to prev_entry may be in use anyway)
2067          */
2068         if (prev_object->backing_object != NULL) {
2069                 VM_OBJECT_UNLOCK(prev_object);
2070                 return (FALSE);
2071         }
2072
2073         prev_size >>= PAGE_SHIFT;
2074         next_size >>= PAGE_SHIFT;
2075         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2076
2077         if ((prev_object->ref_count > 1) &&
2078             (prev_object->size != next_pindex)) {
2079                 VM_OBJECT_UNLOCK(prev_object);
2080                 return (FALSE);
2081         }
2082
2083         /*
2084          * Account for the charge.
2085          */
2086         if (prev_object->uip != NULL) {
2087
2088                 /*
2089                  * If prev_object was charged, then this mapping,
2090                  * althought not charged now, may become writable
2091                  * later. Non-NULL uip in the object would prevent
2092                  * swap reservation during enabling of the write
2093                  * access, so reserve swap now. Failed reservation
2094                  * cause allocation of the separate object for the map
2095                  * entry, and swap reservation for this entry is
2096                  * managed in appropriate time.
2097                  */
2098                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
2099                     prev_object->uip)) {
2100                         return (FALSE);
2101                 }
2102                 prev_object->charge += ptoa(next_size);
2103         }
2104
2105         /*
2106          * Remove any pages that may still be in the object from a previous
2107          * deallocation.
2108          */
2109         if (next_pindex < prev_object->size) {
2110                 vm_object_page_remove(prev_object,
2111                                       next_pindex,
2112                                       next_pindex + next_size, FALSE);
2113                 if (prev_object->type == OBJT_SWAP)
2114                         swap_pager_freespace(prev_object,
2115                                              next_pindex, next_size);
2116 #if 0
2117                 if (prev_object->uip != NULL) {
2118                         KASSERT(prev_object->charge >=
2119                             ptoa(prev_object->size - next_pindex),
2120                             ("object %p overcharged 1 %jx %jx", prev_object,
2121                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2122                         prev_object->charge -= ptoa(prev_object->size -
2123                             next_pindex);
2124                 }
2125 #endif
2126         }
2127
2128         /*
2129          * Extend the object if necessary.
2130          */
2131         if (next_pindex + next_size > prev_object->size)
2132                 prev_object->size = next_pindex + next_size;
2133
2134         VM_OBJECT_UNLOCK(prev_object);
2135         return (TRUE);
2136 }
2137
2138 void
2139 vm_object_set_writeable_dirty(vm_object_t object)
2140 {
2141
2142         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2143         if (object->type != OBJT_VNODE ||
2144             (object->flags & OBJ_MIGHTBEDIRTY) != 0)
2145                 return;
2146         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2147 }
2148
2149 #include "opt_ddb.h"
2150 #ifdef DDB
2151 #include <sys/kernel.h>
2152
2153 #include <sys/cons.h>
2154
2155 #include <ddb/ddb.h>
2156
2157 static int
2158 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2159 {
2160         vm_map_t tmpm;
2161         vm_map_entry_t tmpe;
2162         vm_object_t obj;
2163         int entcount;
2164
2165         if (map == 0)
2166                 return 0;
2167
2168         if (entry == 0) {
2169                 tmpe = map->header.next;
2170                 entcount = map->nentries;
2171                 while (entcount-- && (tmpe != &map->header)) {
2172                         if (_vm_object_in_map(map, object, tmpe)) {
2173                                 return 1;
2174                         }
2175                         tmpe = tmpe->next;
2176                 }
2177         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2178                 tmpm = entry->object.sub_map;
2179                 tmpe = tmpm->header.next;
2180                 entcount = tmpm->nentries;
2181                 while (entcount-- && tmpe != &tmpm->header) {
2182                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2183                                 return 1;
2184                         }
2185                         tmpe = tmpe->next;
2186                 }
2187         } else if ((obj = entry->object.vm_object) != NULL) {
2188                 for (; obj; obj = obj->backing_object)
2189                         if (obj == object) {
2190                                 return 1;
2191                         }
2192         }
2193         return 0;
2194 }
2195
2196 static int
2197 vm_object_in_map(vm_object_t object)
2198 {
2199         struct proc *p;
2200
2201         /* sx_slock(&allproc_lock); */
2202         FOREACH_PROC_IN_SYSTEM(p) {
2203                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2204                         continue;
2205                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2206                         /* sx_sunlock(&allproc_lock); */
2207                         return 1;
2208                 }
2209         }
2210         /* sx_sunlock(&allproc_lock); */
2211         if (_vm_object_in_map(kernel_map, object, 0))
2212                 return 1;
2213         if (_vm_object_in_map(kmem_map, object, 0))
2214                 return 1;
2215         if (_vm_object_in_map(pager_map, object, 0))
2216                 return 1;
2217         if (_vm_object_in_map(buffer_map, object, 0))
2218                 return 1;
2219         return 0;
2220 }
2221
2222 DB_SHOW_COMMAND(vmochk, vm_object_check)
2223 {
2224         vm_object_t object;
2225
2226         /*
2227          * make sure that internal objs are in a map somewhere
2228          * and none have zero ref counts.
2229          */
2230         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2231                 if (object->handle == NULL &&
2232                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2233                         if (object->ref_count == 0) {
2234                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2235                                         (long)object->size);
2236                         }
2237                         if (!vm_object_in_map(object)) {
2238                                 db_printf(
2239                         "vmochk: internal obj is not in a map: "
2240                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2241                                     object->ref_count, (u_long)object->size, 
2242                                     (u_long)object->size,
2243                                     (void *)object->backing_object);
2244                         }
2245                 }
2246         }
2247 }
2248
2249 /*
2250  *      vm_object_print:        [ debug ]
2251  */
2252 DB_SHOW_COMMAND(object, vm_object_print_static)
2253 {
2254         /* XXX convert args. */
2255         vm_object_t object = (vm_object_t)addr;
2256         boolean_t full = have_addr;
2257
2258         vm_page_t p;
2259
2260         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2261 #define count   was_count
2262
2263         int count;
2264
2265         if (object == NULL)
2266                 return;
2267
2268         db_iprintf(
2269             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2270             object, (int)object->type, (uintmax_t)object->size,
2271             object->resident_page_count, object->ref_count, object->flags,
2272             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2273         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2274             object->shadow_count, 
2275             object->backing_object ? object->backing_object->ref_count : 0,
2276             object->backing_object, (uintmax_t)object->backing_object_offset);
2277
2278         if (!full)
2279                 return;
2280
2281         db_indent += 2;
2282         count = 0;
2283         TAILQ_FOREACH(p, &object->memq, listq) {
2284                 if (count == 0)
2285                         db_iprintf("memory:=");
2286                 else if (count == 6) {
2287                         db_printf("\n");
2288                         db_iprintf(" ...");
2289                         count = 0;
2290                 } else
2291                         db_printf(",");
2292                 count++;
2293
2294                 db_printf("(off=0x%jx,page=0x%jx)",
2295                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2296         }
2297         if (count != 0)
2298                 db_printf("\n");
2299         db_indent -= 2;
2300 }
2301
2302 /* XXX. */
2303 #undef count
2304
2305 /* XXX need this non-static entry for calling from vm_map_print. */
2306 void
2307 vm_object_print(
2308         /* db_expr_t */ long addr,
2309         boolean_t have_addr,
2310         /* db_expr_t */ long count,
2311         char *modif)
2312 {
2313         vm_object_print_static(addr, have_addr, count, modif);
2314 }
2315
2316 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2317 {
2318         vm_object_t object;
2319         vm_pindex_t fidx;
2320         vm_paddr_t pa;
2321         vm_page_t m, prev_m;
2322         int rcount, nl, c;
2323
2324         nl = 0;
2325         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2326                 db_printf("new object: %p\n", (void *)object);
2327                 if (nl > 18) {
2328                         c = cngetc();
2329                         if (c != ' ')
2330                                 return;
2331                         nl = 0;
2332                 }
2333                 nl++;
2334                 rcount = 0;
2335                 fidx = 0;
2336                 pa = -1;
2337                 TAILQ_FOREACH(m, &object->memq, listq) {
2338                         if (m->pindex > 128)
2339                                 break;
2340                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2341                             prev_m->pindex + 1 != m->pindex) {
2342                                 if (rcount) {
2343                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2344                                                 (long)fidx, rcount, (long)pa);
2345                                         if (nl > 18) {
2346                                                 c = cngetc();
2347                                                 if (c != ' ')
2348                                                         return;
2349                                                 nl = 0;
2350                                         }
2351                                         nl++;
2352                                         rcount = 0;
2353                                 }
2354                         }                               
2355                         if (rcount &&
2356                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2357                                 ++rcount;
2358                                 continue;
2359                         }
2360                         if (rcount) {
2361                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2362                                         (long)fidx, rcount, (long)pa);
2363                                 if (nl > 18) {
2364                                         c = cngetc();
2365                                         if (c != ' ')
2366                                                 return;
2367                                         nl = 0;
2368                                 }
2369                                 nl++;
2370                         }
2371                         fidx = m->pindex;
2372                         pa = VM_PAGE_TO_PHYS(m);
2373                         rcount = 1;
2374                 }
2375                 if (rcount) {
2376                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2377                                 (long)fidx, rcount, (long)pa);
2378                         if (nl > 18) {
2379                                 c = cngetc();
2380                                 if (c != ' ')
2381                                         return;
2382                                 nl = 0;
2383                         }
2384                         nl++;
2385                 }
2386         }
2387 }
2388 #endif /* DDB */