]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_object.c
MFC r215597
[FreeBSD/stable/8.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sx.h>
84
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_reserv.h>
97 #include <vm/uma.h>
98
99 static int msync_flush_flags = 0;
100 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags, CTLFLAG_RW, &msync_flush_flags, 0,
101     "Does nothing; kept for backward compatibility");
102
103 static int old_msync;
104 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
105     "Use old (insecure) msync behavior");
106
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
108                     int pagerflags, int flags, int *clearobjflags);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     int *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0, "VM object stats");
147
148 static long object_collapses;
149 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
150     &object_collapses, 0, "VM object collapses");
151
152 static long object_bypasses;
153 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
154     &object_bypasses, 0, "VM object bypasses");
155
156 static uma_zone_t obj_zone;
157
158 static int vm_object_zinit(void *mem, int size, int flags);
159
160 #ifdef INVARIANTS
161 static void vm_object_zdtor(void *mem, int size, void *arg);
162
163 static void
164 vm_object_zdtor(void *mem, int size, void *arg)
165 {
166         vm_object_t object;
167
168         object = (vm_object_t)mem;
169         KASSERT(TAILQ_EMPTY(&object->memq),
170             ("object %p has resident pages",
171             object));
172 #if VM_NRESERVLEVEL > 0
173         KASSERT(LIST_EMPTY(&object->rvq),
174             ("object %p has reservations",
175             object));
176 #endif
177         KASSERT(object->cache == NULL,
178             ("object %p has cached pages",
179             object));
180         KASSERT(object->paging_in_progress == 0,
181             ("object %p paging_in_progress = %d",
182             object, object->paging_in_progress));
183         KASSERT(object->resident_page_count == 0,
184             ("object %p resident_page_count = %d",
185             object, object->resident_page_count));
186         KASSERT(object->shadow_count == 0,
187             ("object %p shadow_count = %d",
188             object, object->shadow_count));
189 }
190 #endif
191
192 static int
193 vm_object_zinit(void *mem, int size, int flags)
194 {
195         vm_object_t object;
196
197         object = (vm_object_t)mem;
198         bzero(&object->mtx, sizeof(object->mtx));
199         VM_OBJECT_LOCK_INIT(object, "standard object");
200
201         /* These are true for any object that has been freed */
202         object->paging_in_progress = 0;
203         object->resident_page_count = 0;
204         object->shadow_count = 0;
205         return (0);
206 }
207
208 void
209 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
210 {
211
212         TAILQ_INIT(&object->memq);
213         LIST_INIT(&object->shadow_head);
214
215         object->root = NULL;
216         object->type = type;
217         object->size = size;
218         object->generation = 1;
219         object->ref_count = 1;
220         object->memattr = VM_MEMATTR_DEFAULT;
221         object->flags = 0;
222         object->uip = NULL;
223         object->charge = 0;
224         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
225                 object->flags = OBJ_ONEMAPPING;
226         object->pg_color = 0;
227         object->handle = NULL;
228         object->backing_object = NULL;
229         object->backing_object_offset = (vm_ooffset_t) 0;
230 #if VM_NRESERVLEVEL > 0
231         LIST_INIT(&object->rvq);
232 #endif
233         object->cache = NULL;
234
235         mtx_lock(&vm_object_list_mtx);
236         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
237         mtx_unlock(&vm_object_list_mtx);
238 }
239
240 /*
241  *      vm_object_init:
242  *
243  *      Initialize the VM objects module.
244  */
245 void
246 vm_object_init(void)
247 {
248         TAILQ_INIT(&vm_object_list);
249         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
250         
251         VM_OBJECT_LOCK_INIT(kernel_object, "kernel object");
252         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
253             kernel_object);
254 #if VM_NRESERVLEVEL > 0
255         kernel_object->flags |= OBJ_COLORED;
256         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
257 #endif
258
259         VM_OBJECT_LOCK_INIT(kmem_object, "kmem object");
260         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
261             kmem_object);
262 #if VM_NRESERVLEVEL > 0
263         kmem_object->flags |= OBJ_COLORED;
264         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
265 #endif
266
267         /*
268          * The lock portion of struct vm_object must be type stable due
269          * to vm_pageout_fallback_object_lock locking a vm object
270          * without holding any references to it.
271          */
272         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
273 #ifdef INVARIANTS
274             vm_object_zdtor,
275 #else
276             NULL,
277 #endif
278             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM|UMA_ZONE_NOFREE);
279 }
280
281 void
282 vm_object_clear_flag(vm_object_t object, u_short bits)
283 {
284
285         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
286         object->flags &= ~bits;
287 }
288
289 /*
290  *      Sets the default memory attribute for the specified object.  Pages
291  *      that are allocated to this object are by default assigned this memory
292  *      attribute.
293  *
294  *      Presently, this function must be called before any pages are allocated
295  *      to the object.  In the future, this requirement may be relaxed for
296  *      "default" and "swap" objects.
297  */
298 int
299 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
300 {
301
302         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
303         switch (object->type) {
304         case OBJT_DEFAULT:
305         case OBJT_DEVICE:
306         case OBJT_PHYS:
307         case OBJT_SG:
308         case OBJT_SWAP:
309         case OBJT_VNODE:
310                 if (!TAILQ_EMPTY(&object->memq))
311                         return (KERN_FAILURE);
312                 break;
313         case OBJT_DEAD:
314                 return (KERN_INVALID_ARGUMENT);
315         }
316         object->memattr = memattr;
317         return (KERN_SUCCESS);
318 }
319
320 void
321 vm_object_pip_add(vm_object_t object, short i)
322 {
323
324         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
325         object->paging_in_progress += i;
326 }
327
328 void
329 vm_object_pip_subtract(vm_object_t object, short i)
330 {
331
332         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
333         object->paging_in_progress -= i;
334 }
335
336 void
337 vm_object_pip_wakeup(vm_object_t object)
338 {
339
340         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
341         object->paging_in_progress--;
342         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
343                 vm_object_clear_flag(object, OBJ_PIPWNT);
344                 wakeup(object);
345         }
346 }
347
348 void
349 vm_object_pip_wakeupn(vm_object_t object, short i)
350 {
351
352         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
353         if (i)
354                 object->paging_in_progress -= i;
355         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
356                 vm_object_clear_flag(object, OBJ_PIPWNT);
357                 wakeup(object);
358         }
359 }
360
361 void
362 vm_object_pip_wait(vm_object_t object, char *waitid)
363 {
364
365         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
366         while (object->paging_in_progress) {
367                 object->flags |= OBJ_PIPWNT;
368                 msleep(object, VM_OBJECT_MTX(object), PVM, waitid, 0);
369         }
370 }
371
372 /*
373  *      vm_object_allocate:
374  *
375  *      Returns a new object with the given size.
376  */
377 vm_object_t
378 vm_object_allocate(objtype_t type, vm_pindex_t size)
379 {
380         vm_object_t object;
381
382         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
383         _vm_object_allocate(type, size, object);
384         return (object);
385 }
386
387
388 /*
389  *      vm_object_reference:
390  *
391  *      Gets another reference to the given object.  Note: OBJ_DEAD
392  *      objects can be referenced during final cleaning.
393  */
394 void
395 vm_object_reference(vm_object_t object)
396 {
397         if (object == NULL)
398                 return;
399         VM_OBJECT_LOCK(object);
400         vm_object_reference_locked(object);
401         VM_OBJECT_UNLOCK(object);
402 }
403
404 /*
405  *      vm_object_reference_locked:
406  *
407  *      Gets another reference to the given object.
408  *
409  *      The object must be locked.
410  */
411 void
412 vm_object_reference_locked(vm_object_t object)
413 {
414         struct vnode *vp;
415
416         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
417         object->ref_count++;
418         if (object->type == OBJT_VNODE) {
419                 vp = object->handle;
420                 vref(vp);
421         }
422 }
423
424 /*
425  * Handle deallocating an object of type OBJT_VNODE.
426  */
427 static void
428 vm_object_vndeallocate(vm_object_t object)
429 {
430         struct vnode *vp = (struct vnode *) object->handle;
431
432         VFS_ASSERT_GIANT(vp->v_mount);
433         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
434         KASSERT(object->type == OBJT_VNODE,
435             ("vm_object_vndeallocate: not a vnode object"));
436         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
437 #ifdef INVARIANTS
438         if (object->ref_count == 0) {
439                 vprint("vm_object_vndeallocate", vp);
440                 panic("vm_object_vndeallocate: bad object reference count");
441         }
442 #endif
443
444         if (object->ref_count > 1) {
445                 object->ref_count--;
446                 VM_OBJECT_UNLOCK(object);
447                 /* vrele may need the vnode lock. */
448                 vrele(vp);
449         } else {
450                 vhold(vp);
451                 VM_OBJECT_UNLOCK(object);
452                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
453                 vdrop(vp);
454                 VM_OBJECT_LOCK(object);
455                 object->ref_count--;
456                 if (object->type == OBJT_DEAD) {
457                         VM_OBJECT_UNLOCK(object);
458                         VOP_UNLOCK(vp, 0);
459                 } else {
460                         if (object->ref_count == 0)
461                                 vp->v_vflag &= ~VV_TEXT;
462                         VM_OBJECT_UNLOCK(object);
463                         vput(vp);
464                 }
465         }
466 }
467
468 /*
469  *      vm_object_deallocate:
470  *
471  *      Release a reference to the specified object,
472  *      gained either through a vm_object_allocate
473  *      or a vm_object_reference call.  When all references
474  *      are gone, storage associated with this object
475  *      may be relinquished.
476  *
477  *      No object may be locked.
478  */
479 void
480 vm_object_deallocate(vm_object_t object)
481 {
482         vm_object_t temp;
483
484         while (object != NULL) {
485                 int vfslocked;
486
487                 vfslocked = 0;
488         restart:
489                 VM_OBJECT_LOCK(object);
490                 if (object->type == OBJT_VNODE) {
491                         struct vnode *vp = (struct vnode *) object->handle;
492
493                         /*
494                          * Conditionally acquire Giant for a vnode-backed
495                          * object.  We have to be careful since the type of
496                          * a vnode object can change while the object is
497                          * unlocked.
498                          */
499                         if (VFS_NEEDSGIANT(vp->v_mount) && !vfslocked) {
500                                 vfslocked = 1;
501                                 if (!mtx_trylock(&Giant)) {
502                                         VM_OBJECT_UNLOCK(object);
503                                         mtx_lock(&Giant);
504                                         goto restart;
505                                 }
506                         }
507                         vm_object_vndeallocate(object);
508                         VFS_UNLOCK_GIANT(vfslocked);
509                         return;
510                 } else
511                         /*
512                          * This is to handle the case that the object
513                          * changed type while we dropped its lock to
514                          * obtain Giant.
515                          */
516                         VFS_UNLOCK_GIANT(vfslocked);
517
518                 KASSERT(object->ref_count != 0,
519                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
520
521                 /*
522                  * If the reference count goes to 0 we start calling
523                  * vm_object_terminate() on the object chain.
524                  * A ref count of 1 may be a special case depending on the
525                  * shadow count being 0 or 1.
526                  */
527                 object->ref_count--;
528                 if (object->ref_count > 1) {
529                         VM_OBJECT_UNLOCK(object);
530                         return;
531                 } else if (object->ref_count == 1) {
532                         if (object->shadow_count == 0 &&
533                             object->handle == NULL &&
534                             (object->type == OBJT_DEFAULT ||
535                              object->type == OBJT_SWAP)) {
536                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
537                         } else if ((object->shadow_count == 1) &&
538                             (object->handle == NULL) &&
539                             (object->type == OBJT_DEFAULT ||
540                              object->type == OBJT_SWAP)) {
541                                 vm_object_t robject;
542
543                                 robject = LIST_FIRST(&object->shadow_head);
544                                 KASSERT(robject != NULL,
545                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
546                                          object->ref_count,
547                                          object->shadow_count));
548                                 if (!VM_OBJECT_TRYLOCK(robject)) {
549                                         /*
550                                          * Avoid a potential deadlock.
551                                          */
552                                         object->ref_count++;
553                                         VM_OBJECT_UNLOCK(object);
554                                         /*
555                                          * More likely than not the thread
556                                          * holding robject's lock has lower
557                                          * priority than the current thread.
558                                          * Let the lower priority thread run.
559                                          */
560                                         pause("vmo_de", 1);
561                                         continue;
562                                 }
563                                 /*
564                                  * Collapse object into its shadow unless its
565                                  * shadow is dead.  In that case, object will
566                                  * be deallocated by the thread that is
567                                  * deallocating its shadow.
568                                  */
569                                 if ((robject->flags & OBJ_DEAD) == 0 &&
570                                     (robject->handle == NULL) &&
571                                     (robject->type == OBJT_DEFAULT ||
572                                      robject->type == OBJT_SWAP)) {
573
574                                         robject->ref_count++;
575 retry:
576                                         if (robject->paging_in_progress) {
577                                                 VM_OBJECT_UNLOCK(object);
578                                                 vm_object_pip_wait(robject,
579                                                     "objde1");
580                                                 temp = robject->backing_object;
581                                                 if (object == temp) {
582                                                         VM_OBJECT_LOCK(object);
583                                                         goto retry;
584                                                 }
585                                         } else if (object->paging_in_progress) {
586                                                 VM_OBJECT_UNLOCK(robject);
587                                                 object->flags |= OBJ_PIPWNT;
588                                                 msleep(object,
589                                                     VM_OBJECT_MTX(object),
590                                                     PDROP | PVM, "objde2", 0);
591                                                 VM_OBJECT_LOCK(robject);
592                                                 temp = robject->backing_object;
593                                                 if (object == temp) {
594                                                         VM_OBJECT_LOCK(object);
595                                                         goto retry;
596                                                 }
597                                         } else
598                                                 VM_OBJECT_UNLOCK(object);
599
600                                         if (robject->ref_count == 1) {
601                                                 robject->ref_count--;
602                                                 object = robject;
603                                                 goto doterm;
604                                         }
605                                         object = robject;
606                                         vm_object_collapse(object);
607                                         VM_OBJECT_UNLOCK(object);
608                                         continue;
609                                 }
610                                 VM_OBJECT_UNLOCK(robject);
611                         }
612                         VM_OBJECT_UNLOCK(object);
613                         return;
614                 }
615 doterm:
616                 temp = object->backing_object;
617                 if (temp != NULL) {
618                         VM_OBJECT_LOCK(temp);
619                         LIST_REMOVE(object, shadow_list);
620                         temp->shadow_count--;
621                         VM_OBJECT_UNLOCK(temp);
622                         object->backing_object = NULL;
623                 }
624                 /*
625                  * Don't double-terminate, we could be in a termination
626                  * recursion due to the terminate having to sync data
627                  * to disk.
628                  */
629                 if ((object->flags & OBJ_DEAD) == 0)
630                         vm_object_terminate(object);
631                 else
632                         VM_OBJECT_UNLOCK(object);
633                 object = temp;
634         }
635 }
636
637 /*
638  *      vm_object_destroy removes the object from the global object list
639  *      and frees the space for the object.
640  */
641 void
642 vm_object_destroy(vm_object_t object)
643 {
644
645         /*
646          * Remove the object from the global object list.
647          */
648         mtx_lock(&vm_object_list_mtx);
649         TAILQ_REMOVE(&vm_object_list, object, object_list);
650         mtx_unlock(&vm_object_list_mtx);
651
652         /*
653          * Release the allocation charge.
654          */
655         if (object->uip != NULL) {
656                 KASSERT(object->type == OBJT_DEFAULT ||
657                     object->type == OBJT_SWAP,
658                     ("vm_object_terminate: non-swap obj %p has uip",
659                      object));
660                 swap_release_by_uid(object->charge, object->uip);
661                 object->charge = 0;
662                 uifree(object->uip);
663                 object->uip = NULL;
664         }
665
666         /*
667          * Free the space for the object.
668          */
669         uma_zfree(obj_zone, object);
670 }
671
672 /*
673  *      vm_object_terminate actually destroys the specified object, freeing
674  *      up all previously used resources.
675  *
676  *      The object must be locked.
677  *      This routine may block.
678  */
679 void
680 vm_object_terminate(vm_object_t object)
681 {
682         vm_page_t p, p_next;
683
684         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
685
686         /*
687          * Make sure no one uses us.
688          */
689         vm_object_set_flag(object, OBJ_DEAD);
690
691         /*
692          * wait for the pageout daemon to be done with the object
693          */
694         vm_object_pip_wait(object, "objtrm");
695
696         KASSERT(!object->paging_in_progress,
697                 ("vm_object_terminate: pageout in progress"));
698
699         /*
700          * Clean and free the pages, as appropriate. All references to the
701          * object are gone, so we don't need to lock it.
702          */
703         if (object->type == OBJT_VNODE) {
704                 struct vnode *vp = (struct vnode *)object->handle;
705
706                 /*
707                  * Clean pages and flush buffers.
708                  */
709                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
710                 VM_OBJECT_UNLOCK(object);
711
712                 vinvalbuf(vp, V_SAVE, 0, 0);
713
714                 VM_OBJECT_LOCK(object);
715         }
716
717         KASSERT(object->ref_count == 0, 
718                 ("vm_object_terminate: object with references, ref_count=%d",
719                 object->ref_count));
720
721         /*
722          * Free any remaining pageable pages.  This also removes them from the
723          * paging queues.  However, don't free wired pages, just remove them
724          * from the object.  Rather than incrementally removing each page from
725          * the object, the page and object are reset to any empty state. 
726          */
727         vm_page_lock_queues();
728         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
729                 KASSERT(!p->busy && (p->oflags & VPO_BUSY) == 0,
730                     ("vm_object_terminate: freeing busy page %p", p));
731                 /*
732                  * Optimize the page's removal from the object by resetting
733                  * its "object" field.  Specifically, if the page is not
734                  * wired, then the effect of this assignment is that
735                  * vm_page_free()'s call to vm_page_remove() will return
736                  * immediately without modifying the page or the object.
737                  */ 
738                 p->object = NULL;
739                 if (p->wire_count == 0) {
740                         vm_page_free(p);
741                         cnt.v_pfree++;
742                 }
743         }
744         vm_page_unlock_queues();
745         /*
746          * If the object contained any pages, then reset it to an empty state.
747          * None of the object's fields, including "resident_page_count", were
748          * modified by the preceding loop.
749          */
750         if (object->resident_page_count != 0) {
751                 object->root = NULL;
752                 TAILQ_INIT(&object->memq);
753                 object->resident_page_count = 0;
754                 if (object->type == OBJT_VNODE)
755                         vdrop(object->handle);
756         }
757
758 #if VM_NRESERVLEVEL > 0
759         if (__predict_false(!LIST_EMPTY(&object->rvq)))
760                 vm_reserv_break_all(object);
761 #endif
762         if (__predict_false(object->cache != NULL))
763                 vm_page_cache_free(object, 0, 0);
764
765         /*
766          * Let the pager know object is dead.
767          */
768         vm_pager_deallocate(object);
769         VM_OBJECT_UNLOCK(object);
770
771         vm_object_destroy(object);
772 }
773
774 static boolean_t
775 vm_object_page_remove_write(vm_page_t p, int flags, int *clearobjflags)
776 {
777
778         /*
779          * If we have been asked to skip nosync pages and this is a
780          * nosync page, skip it.  Note that the object flags were not
781          * cleared in this case so we do not have to set them.
782          */
783         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
784                 *clearobjflags = 0;
785                 return (FALSE);
786         } else {
787                 pmap_remove_write(p);
788                 return (p->dirty != 0);
789         }
790 }
791
792 /*
793  *      vm_object_page_clean
794  *
795  *      Clean all dirty pages in the specified range of object.  Leaves page 
796  *      on whatever queue it is currently on.   If NOSYNC is set then do not
797  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
798  *      leaving the object dirty.
799  *
800  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
801  *      synchronous clustering mode implementation.
802  *
803  *      Odd semantics: if start == end, we clean everything.
804  *
805  *      The object must be locked.
806  */
807 void
808 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
809     int flags)
810 {
811         vm_page_t np, p;
812         vm_pindex_t pi, tend;
813         int clearobjflags, curgeneration, n, pagerflags;
814
815         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
816         KASSERT(object->type == OBJT_VNODE, ("Not a vnode object"));
817         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
818             object->resident_page_count == 0)
819                 return;
820
821         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
822             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
823         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
824
825         tend = (end == 0) ? object->size : end;
826
827         vm_object_set_flag(object, OBJ_CLEANING);
828
829         vm_page_lock_queues();
830
831         /*
832          * Make the page read-only so we can then clear the object flags.
833          *
834          * However, if this is a nosync mmap then the object is likely to 
835          * stay dirty so do not mess with the page and do not clear the
836          * object flags.
837          */
838         clearobjflags = 1;
839
840 rescan:
841         curgeneration = object->generation;
842
843         for (p = vm_page_find_least(object, start); p != NULL; p = np) {
844                 pi = p->pindex;
845                 if (pi >= tend)
846                         break;
847                 np = TAILQ_NEXT(p, listq);
848                 if (p->valid == 0)
849                         continue;
850                 if (vm_page_sleep_if_busy(p, TRUE, "vpcwai")) {
851                         vm_page_lock_queues();
852                         if (object->generation != curgeneration)
853                                 goto rescan;
854                         np = vm_page_find_least(object, pi);
855                         continue;
856                 }
857                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
858                         continue;
859
860                 n = vm_object_page_collect_flush(object, p, pagerflags,
861                     flags, &clearobjflags);
862                 if (object->generation != curgeneration)
863                         goto rescan;
864
865                 /*
866                  * If the VOP_PUTPAGES() did a truncated write, so
867                  * that even the first page of the run is not fully
868                  * written, vm_pageout_flush() returns 0 as the run
869                  * length.  Since the condition that caused truncated
870                  * write may be permanent, e.g. exhausted free space,
871                  * accepting n == 0 would cause an infinite loop.
872                  *
873                  * Forwarding the iterator leaves the unwritten page
874                  * behind, but there is not much we can do there if
875                  * filesystem refuses to write it.
876                  */
877                 if (n == 0)
878                         n = 1;
879                 np = vm_page_find_least(object, pi + n);
880         }
881         vm_page_unlock_queues();
882 #if 0
883         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
884 #endif
885
886         vm_object_clear_flag(object, OBJ_CLEANING);
887         if (clearobjflags && start == 0 && tend == object->size)
888                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
889 }
890
891 static int
892 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
893     int flags, int *clearobjflags)
894 {
895         vm_page_t ma[vm_pageout_page_count], p_first, tp;
896         int count, i, mreq, runlen;
897
898         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
899
900         count = 1;
901         mreq = 0;
902
903         for (tp = p; count < vm_pageout_page_count; count++) {
904                 tp = vm_page_next(tp);
905                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
906                         break;
907                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
908                         break;
909         }
910
911         for (p_first = p; count < vm_pageout_page_count; count++) {
912                 tp = vm_page_prev(p_first);
913                 if (tp == NULL || tp->busy != 0 || (tp->oflags & VPO_BUSY) != 0)
914                         break;
915                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
916                         break;
917                 p_first = tp;
918                 mreq++;
919         }
920
921         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
922                 ma[i] = tp;
923
924         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen);
925         return (runlen);
926 }
927
928 /*
929  * Note that there is absolutely no sense in writing out
930  * anonymous objects, so we track down the vnode object
931  * to write out.
932  * We invalidate (remove) all pages from the address space
933  * for semantic correctness.
934  *
935  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
936  * may start out with a NULL object.
937  */
938 void
939 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
940     boolean_t syncio, boolean_t invalidate)
941 {
942         vm_object_t backing_object;
943         struct vnode *vp;
944         struct mount *mp;
945         int flags;
946
947         if (object == NULL)
948                 return;
949         VM_OBJECT_LOCK(object);
950         while ((backing_object = object->backing_object) != NULL) {
951                 VM_OBJECT_LOCK(backing_object);
952                 offset += object->backing_object_offset;
953                 VM_OBJECT_UNLOCK(object);
954                 object = backing_object;
955                 if (object->size < OFF_TO_IDX(offset + size))
956                         size = IDX_TO_OFF(object->size) - offset;
957         }
958         /*
959          * Flush pages if writing is allowed, invalidate them
960          * if invalidation requested.  Pages undergoing I/O
961          * will be ignored by vm_object_page_remove().
962          *
963          * We cannot lock the vnode and then wait for paging
964          * to complete without deadlocking against vm_fault.
965          * Instead we simply call vm_object_page_remove() and
966          * allow it to block internally on a page-by-page
967          * basis when it encounters pages undergoing async
968          * I/O.
969          */
970         if (object->type == OBJT_VNODE &&
971             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
972                 int vfslocked;
973                 vp = object->handle;
974                 VM_OBJECT_UNLOCK(object);
975                 (void) vn_start_write(vp, &mp, V_WAIT);
976                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
977                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
978                 flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
979                 flags |= invalidate ? OBJPC_INVAL : 0;
980                 VM_OBJECT_LOCK(object);
981                 vm_object_page_clean(object,
982                     OFF_TO_IDX(offset),
983                     OFF_TO_IDX(offset + size + PAGE_MASK),
984                     flags);
985                 VM_OBJECT_UNLOCK(object);
986                 VOP_UNLOCK(vp, 0);
987                 VFS_UNLOCK_GIANT(vfslocked);
988                 vn_finished_write(mp);
989                 VM_OBJECT_LOCK(object);
990         }
991         if ((object->type == OBJT_VNODE ||
992              object->type == OBJT_DEVICE) && invalidate) {
993                 boolean_t purge;
994                 purge = old_msync || (object->type == OBJT_DEVICE);
995                 vm_object_page_remove(object,
996                     OFF_TO_IDX(offset),
997                     OFF_TO_IDX(offset + size + PAGE_MASK),
998                     purge ? FALSE : TRUE);
999         }
1000         VM_OBJECT_UNLOCK(object);
1001 }
1002
1003 /*
1004  *      vm_object_madvise:
1005  *
1006  *      Implements the madvise function at the object/page level.
1007  *
1008  *      MADV_WILLNEED   (any object)
1009  *
1010  *          Activate the specified pages if they are resident.
1011  *
1012  *      MADV_DONTNEED   (any object)
1013  *
1014  *          Deactivate the specified pages if they are resident.
1015  *
1016  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1017  *                       OBJ_ONEMAPPING only)
1018  *
1019  *          Deactivate and clean the specified pages if they are
1020  *          resident.  This permits the process to reuse the pages
1021  *          without faulting or the kernel to reclaim the pages
1022  *          without I/O.
1023  */
1024 void
1025 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1026 {
1027         vm_pindex_t end, tpindex;
1028         vm_object_t backing_object, tobject;
1029         vm_page_t m;
1030
1031         if (object == NULL)
1032                 return;
1033         VM_OBJECT_LOCK(object);
1034         end = pindex + count;
1035         /*
1036          * Locate and adjust resident pages
1037          */
1038         for (; pindex < end; pindex += 1) {
1039 relookup:
1040                 tobject = object;
1041                 tpindex = pindex;
1042 shadowlookup:
1043                 /*
1044                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1045                  * and those pages must be OBJ_ONEMAPPING.
1046                  */
1047                 if (advise == MADV_FREE) {
1048                         if ((tobject->type != OBJT_DEFAULT &&
1049                              tobject->type != OBJT_SWAP) ||
1050                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1051                                 goto unlock_tobject;
1052                         }
1053                 } else if (tobject->type == OBJT_PHYS)
1054                         goto unlock_tobject;
1055                 m = vm_page_lookup(tobject, tpindex);
1056                 if (m == NULL && advise == MADV_WILLNEED) {
1057                         /*
1058                          * If the page is cached, reactivate it.
1059                          */
1060                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1061                             VM_ALLOC_NOBUSY);
1062                 }
1063                 if (m == NULL) {
1064                         /*
1065                          * There may be swap even if there is no backing page
1066                          */
1067                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1068                                 swap_pager_freespace(tobject, tpindex, 1);
1069                         /*
1070                          * next object
1071                          */
1072                         backing_object = tobject->backing_object;
1073                         if (backing_object == NULL)
1074                                 goto unlock_tobject;
1075                         VM_OBJECT_LOCK(backing_object);
1076                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1077                         if (tobject != object)
1078                                 VM_OBJECT_UNLOCK(tobject);
1079                         tobject = backing_object;
1080                         goto shadowlookup;
1081                 } else if (m->valid != VM_PAGE_BITS_ALL)
1082                         goto unlock_tobject;
1083                 /*
1084                  * If the page is not in a normal state, skip it.
1085                  */
1086                 vm_page_lock_queues();
1087                 if (m->hold_count != 0 || m->wire_count != 0) {
1088                         vm_page_unlock_queues();
1089                         goto unlock_tobject;
1090                 }
1091                 if ((m->oflags & VPO_BUSY) || m->busy) {
1092                         if (advise == MADV_WILLNEED)
1093                                 /*
1094                                  * Reference the page before unlocking and
1095                                  * sleeping so that the page daemon is less
1096                                  * likely to reclaim it. 
1097                                  */
1098                                 vm_page_flag_set(m, PG_REFERENCED);
1099                         vm_page_unlock_queues();
1100                         if (object != tobject)
1101                                 VM_OBJECT_UNLOCK(object);
1102                         m->oflags |= VPO_WANTED;
1103                         msleep(m, VM_OBJECT_MTX(tobject), PDROP | PVM, "madvpo",
1104                             0);
1105                         VM_OBJECT_LOCK(object);
1106                         goto relookup;
1107                 }
1108                 if (advise == MADV_WILLNEED) {
1109                         vm_page_activate(m);
1110                 } else if (advise == MADV_DONTNEED) {
1111                         vm_page_dontneed(m);
1112                 } else if (advise == MADV_FREE) {
1113                         /*
1114                          * Mark the page clean.  This will allow the page
1115                          * to be freed up by the system.  However, such pages
1116                          * are often reused quickly by malloc()/free()
1117                          * so we do not do anything that would cause
1118                          * a page fault if we can help it.
1119                          *
1120                          * Specifically, we do not try to actually free
1121                          * the page now nor do we try to put it in the
1122                          * cache (which would cause a page fault on reuse).
1123                          *
1124                          * But we do make the page is freeable as we
1125                          * can without actually taking the step of unmapping
1126                          * it.
1127                          */
1128                         pmap_clear_modify(m);
1129                         m->dirty = 0;
1130                         m->act_count = 0;
1131                         vm_page_dontneed(m);
1132                 }
1133                 vm_page_unlock_queues();
1134                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1135                         swap_pager_freespace(tobject, tpindex, 1);
1136 unlock_tobject:
1137                 if (tobject != object)
1138                         VM_OBJECT_UNLOCK(tobject);
1139         }       
1140         VM_OBJECT_UNLOCK(object);
1141 }
1142
1143 /*
1144  *      vm_object_shadow:
1145  *
1146  *      Create a new object which is backed by the
1147  *      specified existing object range.  The source
1148  *      object reference is deallocated.
1149  *
1150  *      The new object and offset into that object
1151  *      are returned in the source parameters.
1152  */
1153 void
1154 vm_object_shadow(
1155         vm_object_t *object,    /* IN/OUT */
1156         vm_ooffset_t *offset,   /* IN/OUT */
1157         vm_size_t length)
1158 {
1159         vm_object_t source;
1160         vm_object_t result;
1161
1162         source = *object;
1163
1164         /*
1165          * Don't create the new object if the old object isn't shared.
1166          */
1167         if (source != NULL) {
1168                 VM_OBJECT_LOCK(source);
1169                 if (source->ref_count == 1 &&
1170                     source->handle == NULL &&
1171                     (source->type == OBJT_DEFAULT ||
1172                      source->type == OBJT_SWAP)) {
1173                         VM_OBJECT_UNLOCK(source);
1174                         return;
1175                 }
1176                 VM_OBJECT_UNLOCK(source);
1177         }
1178
1179         /*
1180          * Allocate a new object with the given length.
1181          */
1182         result = vm_object_allocate(OBJT_DEFAULT, length);
1183
1184         /*
1185          * The new object shadows the source object, adding a reference to it.
1186          * Our caller changes his reference to point to the new object,
1187          * removing a reference to the source object.  Net result: no change
1188          * of reference count.
1189          *
1190          * Try to optimize the result object's page color when shadowing
1191          * in order to maintain page coloring consistency in the combined 
1192          * shadowed object.
1193          */
1194         result->backing_object = source;
1195         /*
1196          * Store the offset into the source object, and fix up the offset into
1197          * the new object.
1198          */
1199         result->backing_object_offset = *offset;
1200         if (source != NULL) {
1201                 VM_OBJECT_LOCK(source);
1202                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1203                 source->shadow_count++;
1204 #if VM_NRESERVLEVEL > 0
1205                 result->flags |= source->flags & OBJ_COLORED;
1206                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1207                     ((1 << (VM_NFREEORDER - 1)) - 1);
1208 #endif
1209                 VM_OBJECT_UNLOCK(source);
1210         }
1211
1212
1213         /*
1214          * Return the new things
1215          */
1216         *offset = 0;
1217         *object = result;
1218 }
1219
1220 /*
1221  *      vm_object_split:
1222  *
1223  * Split the pages in a map entry into a new object.  This affords
1224  * easier removal of unused pages, and keeps object inheritance from
1225  * being a negative impact on memory usage.
1226  */
1227 void
1228 vm_object_split(vm_map_entry_t entry)
1229 {
1230         vm_page_t m, m_next;
1231         vm_object_t orig_object, new_object, source;
1232         vm_pindex_t idx, offidxstart;
1233         vm_size_t size;
1234
1235         orig_object = entry->object.vm_object;
1236         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1237                 return;
1238         if (orig_object->ref_count <= 1)
1239                 return;
1240         VM_OBJECT_UNLOCK(orig_object);
1241
1242         offidxstart = OFF_TO_IDX(entry->offset);
1243         size = atop(entry->end - entry->start);
1244
1245         /*
1246          * If swap_pager_copy() is later called, it will convert new_object
1247          * into a swap object.
1248          */
1249         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1250
1251         /*
1252          * At this point, the new object is still private, so the order in
1253          * which the original and new objects are locked does not matter.
1254          */
1255         VM_OBJECT_LOCK(new_object);
1256         VM_OBJECT_LOCK(orig_object);
1257         source = orig_object->backing_object;
1258         if (source != NULL) {
1259                 VM_OBJECT_LOCK(source);
1260                 if ((source->flags & OBJ_DEAD) != 0) {
1261                         VM_OBJECT_UNLOCK(source);
1262                         VM_OBJECT_UNLOCK(orig_object);
1263                         VM_OBJECT_UNLOCK(new_object);
1264                         vm_object_deallocate(new_object);
1265                         VM_OBJECT_LOCK(orig_object);
1266                         return;
1267                 }
1268                 LIST_INSERT_HEAD(&source->shadow_head,
1269                                   new_object, shadow_list);
1270                 source->shadow_count++;
1271                 vm_object_reference_locked(source);     /* for new_object */
1272                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1273                 VM_OBJECT_UNLOCK(source);
1274                 new_object->backing_object_offset = 
1275                         orig_object->backing_object_offset + entry->offset;
1276                 new_object->backing_object = source;
1277         }
1278         if (orig_object->uip != NULL) {
1279                 new_object->uip = orig_object->uip;
1280                 uihold(orig_object->uip);
1281                 new_object->charge = ptoa(size);
1282                 KASSERT(orig_object->charge >= ptoa(size),
1283                     ("orig_object->charge < 0"));
1284                 orig_object->charge -= ptoa(size);
1285         }
1286 retry:
1287         m = vm_page_find_least(orig_object, offidxstart);
1288         vm_page_lock_queues();
1289         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1290             m = m_next) {
1291                 m_next = TAILQ_NEXT(m, listq);
1292
1293                 /*
1294                  * We must wait for pending I/O to complete before we can
1295                  * rename the page.
1296                  *
1297                  * We do not have to VM_PROT_NONE the page as mappings should
1298                  * not be changed by this operation.
1299                  */
1300                 if ((m->oflags & VPO_BUSY) || m->busy) {
1301                         vm_page_unlock_queues();
1302                         VM_OBJECT_UNLOCK(new_object);
1303                         m->oflags |= VPO_WANTED;
1304                         msleep(m, VM_OBJECT_MTX(orig_object), PVM, "spltwt", 0);
1305                         VM_OBJECT_LOCK(new_object);
1306                         goto retry;
1307                 }
1308                 vm_page_rename(m, new_object, idx);
1309                 /* page automatically made dirty by rename and cache handled */
1310                 vm_page_busy(m);
1311         }
1312         vm_page_unlock_queues();
1313         if (orig_object->type == OBJT_SWAP) {
1314                 /*
1315                  * swap_pager_copy() can sleep, in which case the orig_object's
1316                  * and new_object's locks are released and reacquired. 
1317                  */
1318                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1319
1320                 /*
1321                  * Transfer any cached pages from orig_object to new_object.
1322                  */
1323                 if (__predict_false(orig_object->cache != NULL))
1324                         vm_page_cache_transfer(orig_object, offidxstart,
1325                             new_object);
1326         }
1327         VM_OBJECT_UNLOCK(orig_object);
1328         TAILQ_FOREACH(m, &new_object->memq, listq)
1329                 vm_page_wakeup(m);
1330         VM_OBJECT_UNLOCK(new_object);
1331         entry->object.vm_object = new_object;
1332         entry->offset = 0LL;
1333         vm_object_deallocate(orig_object);
1334         VM_OBJECT_LOCK(new_object);
1335 }
1336
1337 #define OBSC_TEST_ALL_SHADOWED  0x0001
1338 #define OBSC_COLLAPSE_NOWAIT    0x0002
1339 #define OBSC_COLLAPSE_WAIT      0x0004
1340
1341 static int
1342 vm_object_backing_scan(vm_object_t object, int op)
1343 {
1344         int r = 1;
1345         vm_page_t p;
1346         vm_object_t backing_object;
1347         vm_pindex_t backing_offset_index;
1348
1349         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1350         VM_OBJECT_LOCK_ASSERT(object->backing_object, MA_OWNED);
1351
1352         backing_object = object->backing_object;
1353         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1354
1355         /*
1356          * Initial conditions
1357          */
1358         if (op & OBSC_TEST_ALL_SHADOWED) {
1359                 /*
1360                  * We do not want to have to test for the existence of cache
1361                  * or swap pages in the backing object.  XXX but with the
1362                  * new swapper this would be pretty easy to do.
1363                  *
1364                  * XXX what about anonymous MAP_SHARED memory that hasn't
1365                  * been ZFOD faulted yet?  If we do not test for this, the
1366                  * shadow test may succeed! XXX
1367                  */
1368                 if (backing_object->type != OBJT_DEFAULT) {
1369                         return (0);
1370                 }
1371         }
1372         if (op & OBSC_COLLAPSE_WAIT) {
1373                 vm_object_set_flag(backing_object, OBJ_DEAD);
1374         }
1375
1376         /*
1377          * Our scan
1378          */
1379         p = TAILQ_FIRST(&backing_object->memq);
1380         while (p) {
1381                 vm_page_t next = TAILQ_NEXT(p, listq);
1382                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1383
1384                 if (op & OBSC_TEST_ALL_SHADOWED) {
1385                         vm_page_t pp;
1386
1387                         /*
1388                          * Ignore pages outside the parent object's range
1389                          * and outside the parent object's mapping of the 
1390                          * backing object.
1391                          *
1392                          * note that we do not busy the backing object's
1393                          * page.
1394                          */
1395                         if (
1396                             p->pindex < backing_offset_index ||
1397                             new_pindex >= object->size
1398                         ) {
1399                                 p = next;
1400                                 continue;
1401                         }
1402
1403                         /*
1404                          * See if the parent has the page or if the parent's
1405                          * object pager has the page.  If the parent has the
1406                          * page but the page is not valid, the parent's
1407                          * object pager must have the page.
1408                          *
1409                          * If this fails, the parent does not completely shadow
1410                          * the object and we might as well give up now.
1411                          */
1412
1413                         pp = vm_page_lookup(object, new_pindex);
1414                         if (
1415                             (pp == NULL || pp->valid == 0) &&
1416                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1417                         ) {
1418                                 r = 0;
1419                                 break;
1420                         }
1421                 }
1422
1423                 /*
1424                  * Check for busy page
1425                  */
1426                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1427                         vm_page_t pp;
1428
1429                         if (op & OBSC_COLLAPSE_NOWAIT) {
1430                                 if ((p->oflags & VPO_BUSY) ||
1431                                     !p->valid || 
1432                                     p->busy) {
1433                                         p = next;
1434                                         continue;
1435                                 }
1436                         } else if (op & OBSC_COLLAPSE_WAIT) {
1437                                 if ((p->oflags & VPO_BUSY) || p->busy) {
1438                                         VM_OBJECT_UNLOCK(object);
1439                                         p->oflags |= VPO_WANTED;
1440                                         msleep(p, VM_OBJECT_MTX(backing_object),
1441                                             PDROP | PVM, "vmocol", 0);
1442                                         VM_OBJECT_LOCK(object);
1443                                         VM_OBJECT_LOCK(backing_object);
1444                                         /*
1445                                          * If we slept, anything could have
1446                                          * happened.  Since the object is
1447                                          * marked dead, the backing offset
1448                                          * should not have changed so we
1449                                          * just restart our scan.
1450                                          */
1451                                         p = TAILQ_FIRST(&backing_object->memq);
1452                                         continue;
1453                                 }
1454                         }
1455
1456                         KASSERT(
1457                             p->object == backing_object,
1458                             ("vm_object_backing_scan: object mismatch")
1459                         );
1460
1461                         /*
1462                          * Destroy any associated swap
1463                          */
1464                         if (backing_object->type == OBJT_SWAP) {
1465                                 swap_pager_freespace(
1466                                     backing_object, 
1467                                     p->pindex,
1468                                     1
1469                                 );
1470                         }
1471
1472                         if (
1473                             p->pindex < backing_offset_index ||
1474                             new_pindex >= object->size
1475                         ) {
1476                                 /*
1477                                  * Page is out of the parent object's range, we 
1478                                  * can simply destroy it. 
1479                                  */
1480                                 vm_page_lock_queues();
1481                                 KASSERT(!pmap_page_is_mapped(p),
1482                                     ("freeing mapped page %p", p));
1483                                 if (p->wire_count == 0)
1484                                         vm_page_free(p);
1485                                 else
1486                                         vm_page_remove(p);
1487                                 vm_page_unlock_queues();
1488                                 p = next;
1489                                 continue;
1490                         }
1491
1492                         pp = vm_page_lookup(object, new_pindex);
1493                         if (
1494                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1495                             (pp != NULL && pp->valid == 0)
1496                         ) {
1497                                 /*
1498                                  * The page in the parent is not (yet) valid.
1499                                  * We don't know anything about the state of
1500                                  * the original page.  It might be mapped,
1501                                  * so we must avoid the next if here.
1502                                  *
1503                                  * This is due to a race in vm_fault() where
1504                                  * we must unbusy the original (backing_obj)
1505                                  * page before we can (re)lock the parent.
1506                                  * Hence we can get here.
1507                                  */
1508                                 p = next;
1509                                 continue;
1510                         }
1511                         if (
1512                             pp != NULL ||
1513                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1514                         ) {
1515                                 /*
1516                                  * page already exists in parent OR swap exists
1517                                  * for this location in the parent.  Destroy 
1518                                  * the original page from the backing object.
1519                                  *
1520                                  * Leave the parent's page alone
1521                                  */
1522                                 vm_page_lock_queues();
1523                                 KASSERT(!pmap_page_is_mapped(p),
1524                                     ("freeing mapped page %p", p));
1525                                 if (p->wire_count == 0)
1526                                         vm_page_free(p);
1527                                 else
1528                                         vm_page_remove(p);
1529                                 vm_page_unlock_queues();
1530                                 p = next;
1531                                 continue;
1532                         }
1533
1534 #if VM_NRESERVLEVEL > 0
1535                         /*
1536                          * Rename the reservation.
1537                          */
1538                         vm_reserv_rename(p, object, backing_object,
1539                             backing_offset_index);
1540 #endif
1541
1542                         /*
1543                          * Page does not exist in parent, rename the
1544                          * page from the backing object to the main object. 
1545                          *
1546                          * If the page was mapped to a process, it can remain 
1547                          * mapped through the rename.
1548                          */
1549                         vm_page_lock_queues();
1550                         vm_page_rename(p, object, new_pindex);
1551                         vm_page_unlock_queues();
1552                         /* page automatically made dirty by rename */
1553                 }
1554                 p = next;
1555         }
1556         return (r);
1557 }
1558
1559
1560 /*
1561  * this version of collapse allows the operation to occur earlier and
1562  * when paging_in_progress is true for an object...  This is not a complete
1563  * operation, but should plug 99.9% of the rest of the leaks.
1564  */
1565 static void
1566 vm_object_qcollapse(vm_object_t object)
1567 {
1568         vm_object_t backing_object = object->backing_object;
1569
1570         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1571         VM_OBJECT_LOCK_ASSERT(backing_object, MA_OWNED);
1572
1573         if (backing_object->ref_count != 1)
1574                 return;
1575
1576         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1577 }
1578
1579 /*
1580  *      vm_object_collapse:
1581  *
1582  *      Collapse an object with the object backing it.
1583  *      Pages in the backing object are moved into the
1584  *      parent, and the backing object is deallocated.
1585  */
1586 void
1587 vm_object_collapse(vm_object_t object)
1588 {
1589         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1590         
1591         while (TRUE) {
1592                 vm_object_t backing_object;
1593
1594                 /*
1595                  * Verify that the conditions are right for collapse:
1596                  *
1597                  * The object exists and the backing object exists.
1598                  */
1599                 if ((backing_object = object->backing_object) == NULL)
1600                         break;
1601
1602                 /*
1603                  * we check the backing object first, because it is most likely
1604                  * not collapsable.
1605                  */
1606                 VM_OBJECT_LOCK(backing_object);
1607                 if (backing_object->handle != NULL ||
1608                     (backing_object->type != OBJT_DEFAULT &&
1609                      backing_object->type != OBJT_SWAP) ||
1610                     (backing_object->flags & OBJ_DEAD) ||
1611                     object->handle != NULL ||
1612                     (object->type != OBJT_DEFAULT &&
1613                      object->type != OBJT_SWAP) ||
1614                     (object->flags & OBJ_DEAD)) {
1615                         VM_OBJECT_UNLOCK(backing_object);
1616                         break;
1617                 }
1618
1619                 if (
1620                     object->paging_in_progress != 0 ||
1621                     backing_object->paging_in_progress != 0
1622                 ) {
1623                         vm_object_qcollapse(object);
1624                         VM_OBJECT_UNLOCK(backing_object);
1625                         break;
1626                 }
1627                 /*
1628                  * We know that we can either collapse the backing object (if
1629                  * the parent is the only reference to it) or (perhaps) have
1630                  * the parent bypass the object if the parent happens to shadow
1631                  * all the resident pages in the entire backing object.
1632                  *
1633                  * This is ignoring pager-backed pages such as swap pages.
1634                  * vm_object_backing_scan fails the shadowing test in this
1635                  * case.
1636                  */
1637                 if (backing_object->ref_count == 1) {
1638                         /*
1639                          * If there is exactly one reference to the backing
1640                          * object, we can collapse it into the parent.  
1641                          */
1642                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1643
1644 #if VM_NRESERVLEVEL > 0
1645                         /*
1646                          * Break any reservations from backing_object.
1647                          */
1648                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1649                                 vm_reserv_break_all(backing_object);
1650 #endif
1651
1652                         /*
1653                          * Move the pager from backing_object to object.
1654                          */
1655                         if (backing_object->type == OBJT_SWAP) {
1656                                 /*
1657                                  * swap_pager_copy() can sleep, in which case
1658                                  * the backing_object's and object's locks are
1659                                  * released and reacquired.
1660                                  */
1661                                 swap_pager_copy(
1662                                     backing_object,
1663                                     object,
1664                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1665
1666                                 /*
1667                                  * Free any cached pages from backing_object.
1668                                  */
1669                                 if (__predict_false(backing_object->cache != NULL))
1670                                         vm_page_cache_free(backing_object, 0, 0);
1671                         }
1672                         /*
1673                          * Object now shadows whatever backing_object did.
1674                          * Note that the reference to 
1675                          * backing_object->backing_object moves from within 
1676                          * backing_object to within object.
1677                          */
1678                         LIST_REMOVE(object, shadow_list);
1679                         backing_object->shadow_count--;
1680                         if (backing_object->backing_object) {
1681                                 VM_OBJECT_LOCK(backing_object->backing_object);
1682                                 LIST_REMOVE(backing_object, shadow_list);
1683                                 LIST_INSERT_HEAD(
1684                                     &backing_object->backing_object->shadow_head,
1685                                     object, shadow_list);
1686                                 /*
1687                                  * The shadow_count has not changed.
1688                                  */
1689                                 VM_OBJECT_UNLOCK(backing_object->backing_object);
1690                         }
1691                         object->backing_object = backing_object->backing_object;
1692                         object->backing_object_offset +=
1693                             backing_object->backing_object_offset;
1694
1695                         /*
1696                          * Discard backing_object.
1697                          *
1698                          * Since the backing object has no pages, no pager left,
1699                          * and no object references within it, all that is
1700                          * necessary is to dispose of it.
1701                          */
1702                         KASSERT(backing_object->ref_count == 1, (
1703 "backing_object %p was somehow re-referenced during collapse!",
1704                             backing_object));
1705                         VM_OBJECT_UNLOCK(backing_object);
1706                         vm_object_destroy(backing_object);
1707
1708                         object_collapses++;
1709                 } else {
1710                         vm_object_t new_backing_object;
1711
1712                         /*
1713                          * If we do not entirely shadow the backing object,
1714                          * there is nothing we can do so we give up.
1715                          */
1716                         if (object->resident_page_count != object->size &&
1717                             vm_object_backing_scan(object,
1718                             OBSC_TEST_ALL_SHADOWED) == 0) {
1719                                 VM_OBJECT_UNLOCK(backing_object);
1720                                 break;
1721                         }
1722
1723                         /*
1724                          * Make the parent shadow the next object in the
1725                          * chain.  Deallocating backing_object will not remove
1726                          * it, since its reference count is at least 2.
1727                          */
1728                         LIST_REMOVE(object, shadow_list);
1729                         backing_object->shadow_count--;
1730
1731                         new_backing_object = backing_object->backing_object;
1732                         if ((object->backing_object = new_backing_object) != NULL) {
1733                                 VM_OBJECT_LOCK(new_backing_object);
1734                                 LIST_INSERT_HEAD(
1735                                     &new_backing_object->shadow_head,
1736                                     object,
1737                                     shadow_list
1738                                 );
1739                                 new_backing_object->shadow_count++;
1740                                 vm_object_reference_locked(new_backing_object);
1741                                 VM_OBJECT_UNLOCK(new_backing_object);
1742                                 object->backing_object_offset +=
1743                                         backing_object->backing_object_offset;
1744                         }
1745
1746                         /*
1747                          * Drop the reference count on backing_object. Since
1748                          * its ref_count was at least 2, it will not vanish.
1749                          */
1750                         backing_object->ref_count--;
1751                         VM_OBJECT_UNLOCK(backing_object);
1752                         object_bypasses++;
1753                 }
1754
1755                 /*
1756                  * Try again with this object's new backing object.
1757                  */
1758         }
1759 }
1760
1761 /*
1762  *      vm_object_page_remove:
1763  *
1764  *      For the given object, either frees or invalidates each of the
1765  *      specified pages.  In general, a page is freed.  However, if a
1766  *      page is wired for any reason other than the existence of a
1767  *      managed, wired mapping, then it may be invalidated but not
1768  *      removed from the object.  Pages are specified by the given
1769  *      range ["start", "end") and Boolean "clean_only".  As a
1770  *      special case, if "end" is zero, then the range extends from
1771  *      "start" to the end of the object.  If "clean_only" is TRUE,
1772  *      then only the non-dirty pages within the specified range are
1773  *      affected.
1774  *
1775  *      In general, this operation should only be performed on objects
1776  *      that contain managed pages.  There are two exceptions.  First,
1777  *      it may be performed on the kernel and kmem objects.  Second,
1778  *      it may be used by msync(..., MS_INVALIDATE) to invalidate
1779  *      device-backed pages.  In both of these cases, "clean_only"
1780  *      must be FALSE.
1781  *
1782  *      The object must be locked.
1783  */
1784 void
1785 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1786     boolean_t clean_only)
1787 {
1788         vm_page_t p, next;
1789         int wirings;
1790
1791         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1792         if (object->resident_page_count == 0)
1793                 goto skipmemq;
1794
1795         /*
1796          * Since physically-backed objects do not use managed pages, we can't
1797          * remove pages from the object (we must instead remove the page
1798          * references, and then destroy the object).
1799          */
1800         KASSERT(object->type != OBJT_PHYS || object == kernel_object ||
1801             object == kmem_object,
1802             ("attempt to remove pages from a physical object"));
1803
1804         vm_object_pip_add(object, 1);
1805 again:
1806         p = vm_page_find_least(object, start);
1807         vm_page_lock_queues();
1808         /*
1809          * Assert: the variable p is either (1) the page with the
1810          * least pindex greater than or equal to the parameter pindex
1811          * or (2) NULL.
1812          */
1813         for (;
1814              p != NULL && (p->pindex < end || end == 0);
1815              p = next) {
1816                 next = TAILQ_NEXT(p, listq);
1817
1818                 /*
1819                  * If the page is wired for any reason besides the
1820                  * existence of managed, wired mappings, then it cannot
1821                  * be freed.  For example, fictitious pages, which
1822                  * represent device memory, are inherently wired and
1823                  * cannot be freed.  They can, however, be invalidated
1824                  * if "clean_only" is FALSE.
1825                  */
1826                 if ((wirings = p->wire_count) != 0 &&
1827                     (wirings = pmap_page_wired_mappings(p)) != p->wire_count) {
1828                         /* Fictitious pages do not have managed mappings. */
1829                         if ((p->flags & PG_FICTITIOUS) == 0)
1830                                 pmap_remove_all(p);
1831                         /* Account for removal of managed, wired mappings. */
1832                         p->wire_count -= wirings;
1833                         if (!clean_only) {
1834                                 p->valid = 0;
1835                                 vm_page_undirty(p);
1836                         }
1837                         continue;
1838                 }
1839                 if (vm_page_sleep_if_busy(p, TRUE, "vmopar"))
1840                         goto again;
1841                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1842                     ("vm_object_page_remove: page %p is fictitious", p));
1843                 if (clean_only && p->valid) {
1844                         pmap_remove_write(p);
1845                         if (p->dirty)
1846                                 continue;
1847                 }
1848                 pmap_remove_all(p);
1849                 /* Account for removal of managed, wired mappings. */
1850                 if (wirings != 0)
1851                         p->wire_count -= wirings;
1852                 vm_page_free(p);
1853         }
1854         vm_page_unlock_queues();
1855         vm_object_pip_wakeup(object);
1856 skipmemq:
1857         if (__predict_false(object->cache != NULL))
1858                 vm_page_cache_free(object, start, end);
1859 }
1860
1861 /*
1862  *      Populate the specified range of the object with valid pages.  Returns
1863  *      TRUE if the range is successfully populated and FALSE otherwise.
1864  *
1865  *      Note: This function should be optimized to pass a larger array of
1866  *      pages to vm_pager_get_pages() before it is applied to a non-
1867  *      OBJT_DEVICE object.
1868  *
1869  *      The object must be locked.
1870  */
1871 boolean_t
1872 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1873 {
1874         vm_page_t m, ma[1];
1875         vm_pindex_t pindex;
1876         int rv;
1877
1878         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1879         for (pindex = start; pindex < end; pindex++) {
1880                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL |
1881                     VM_ALLOC_RETRY);
1882                 if (m->valid != VM_PAGE_BITS_ALL) {
1883                         ma[0] = m;
1884                         rv = vm_pager_get_pages(object, ma, 1, 0);
1885                         m = vm_page_lookup(object, pindex);
1886                         if (m == NULL)
1887                                 break;
1888                         if (rv != VM_PAGER_OK) {
1889                                 vm_page_lock_queues();
1890                                 vm_page_free(m);
1891                                 vm_page_unlock_queues();
1892                                 break;
1893                         }
1894                 }
1895                 /*
1896                  * Keep "m" busy because a subsequent iteration may unlock
1897                  * the object.
1898                  */
1899         }
1900         if (pindex > start) {
1901                 m = vm_page_lookup(object, start);
1902                 while (m != NULL && m->pindex < pindex) {
1903                         vm_page_wakeup(m);
1904                         m = TAILQ_NEXT(m, listq);
1905                 }
1906         }
1907         return (pindex == end);
1908 }
1909
1910 /*
1911  *      Routine:        vm_object_coalesce
1912  *      Function:       Coalesces two objects backing up adjoining
1913  *                      regions of memory into a single object.
1914  *
1915  *      returns TRUE if objects were combined.
1916  *
1917  *      NOTE:   Only works at the moment if the second object is NULL -
1918  *              if it's not, which object do we lock first?
1919  *
1920  *      Parameters:
1921  *              prev_object     First object to coalesce
1922  *              prev_offset     Offset into prev_object
1923  *              prev_size       Size of reference to prev_object
1924  *              next_size       Size of reference to the second object
1925  *              reserved        Indicator that extension region has
1926  *                              swap accounted for
1927  *
1928  *      Conditions:
1929  *      The object must *not* be locked.
1930  */
1931 boolean_t
1932 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
1933     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
1934 {
1935         vm_pindex_t next_pindex;
1936
1937         if (prev_object == NULL)
1938                 return (TRUE);
1939         VM_OBJECT_LOCK(prev_object);
1940         if (prev_object->type != OBJT_DEFAULT &&
1941             prev_object->type != OBJT_SWAP) {
1942                 VM_OBJECT_UNLOCK(prev_object);
1943                 return (FALSE);
1944         }
1945
1946         /*
1947          * Try to collapse the object first
1948          */
1949         vm_object_collapse(prev_object);
1950
1951         /*
1952          * Can't coalesce if: . more than one reference . paged out . shadows
1953          * another object . has a copy elsewhere (any of which mean that the
1954          * pages not mapped to prev_entry may be in use anyway)
1955          */
1956         if (prev_object->backing_object != NULL) {
1957                 VM_OBJECT_UNLOCK(prev_object);
1958                 return (FALSE);
1959         }
1960
1961         prev_size >>= PAGE_SHIFT;
1962         next_size >>= PAGE_SHIFT;
1963         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
1964
1965         if ((prev_object->ref_count > 1) &&
1966             (prev_object->size != next_pindex)) {
1967                 VM_OBJECT_UNLOCK(prev_object);
1968                 return (FALSE);
1969         }
1970
1971         /*
1972          * Account for the charge.
1973          */
1974         if (prev_object->uip != NULL) {
1975
1976                 /*
1977                  * If prev_object was charged, then this mapping,
1978                  * althought not charged now, may become writable
1979                  * later. Non-NULL uip in the object would prevent
1980                  * swap reservation during enabling of the write
1981                  * access, so reserve swap now. Failed reservation
1982                  * cause allocation of the separate object for the map
1983                  * entry, and swap reservation for this entry is
1984                  * managed in appropriate time.
1985                  */
1986                 if (!reserved && !swap_reserve_by_uid(ptoa(next_size),
1987                     prev_object->uip)) {
1988                         return (FALSE);
1989                 }
1990                 prev_object->charge += ptoa(next_size);
1991         }
1992
1993         /*
1994          * Remove any pages that may still be in the object from a previous
1995          * deallocation.
1996          */
1997         if (next_pindex < prev_object->size) {
1998                 vm_object_page_remove(prev_object,
1999                                       next_pindex,
2000                                       next_pindex + next_size, FALSE);
2001                 if (prev_object->type == OBJT_SWAP)
2002                         swap_pager_freespace(prev_object,
2003                                              next_pindex, next_size);
2004 #if 0
2005                 if (prev_object->uip != NULL) {
2006                         KASSERT(prev_object->charge >=
2007                             ptoa(prev_object->size - next_pindex),
2008                             ("object %p overcharged 1 %jx %jx", prev_object,
2009                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2010                         prev_object->charge -= ptoa(prev_object->size -
2011                             next_pindex);
2012                 }
2013 #endif
2014         }
2015
2016         /*
2017          * Extend the object if necessary.
2018          */
2019         if (next_pindex + next_size > prev_object->size)
2020                 prev_object->size = next_pindex + next_size;
2021
2022         VM_OBJECT_UNLOCK(prev_object);
2023         return (TRUE);
2024 }
2025
2026 void
2027 vm_object_set_writeable_dirty(vm_object_t object)
2028 {
2029
2030         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2031         if (object->type != OBJT_VNODE)
2032                 return;
2033         object->generation++;
2034         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2035                 return;
2036         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2037 }
2038
2039 #include "opt_ddb.h"
2040 #ifdef DDB
2041 #include <sys/kernel.h>
2042
2043 #include <sys/cons.h>
2044
2045 #include <ddb/ddb.h>
2046
2047 static int
2048 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2049 {
2050         vm_map_t tmpm;
2051         vm_map_entry_t tmpe;
2052         vm_object_t obj;
2053         int entcount;
2054
2055         if (map == 0)
2056                 return 0;
2057
2058         if (entry == 0) {
2059                 tmpe = map->header.next;
2060                 entcount = map->nentries;
2061                 while (entcount-- && (tmpe != &map->header)) {
2062                         if (_vm_object_in_map(map, object, tmpe)) {
2063                                 return 1;
2064                         }
2065                         tmpe = tmpe->next;
2066                 }
2067         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2068                 tmpm = entry->object.sub_map;
2069                 tmpe = tmpm->header.next;
2070                 entcount = tmpm->nentries;
2071                 while (entcount-- && tmpe != &tmpm->header) {
2072                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2073                                 return 1;
2074                         }
2075                         tmpe = tmpe->next;
2076                 }
2077         } else if ((obj = entry->object.vm_object) != NULL) {
2078                 for (; obj; obj = obj->backing_object)
2079                         if (obj == object) {
2080                                 return 1;
2081                         }
2082         }
2083         return 0;
2084 }
2085
2086 static int
2087 vm_object_in_map(vm_object_t object)
2088 {
2089         struct proc *p;
2090
2091         /* sx_slock(&allproc_lock); */
2092         FOREACH_PROC_IN_SYSTEM(p) {
2093                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2094                         continue;
2095                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2096                         /* sx_sunlock(&allproc_lock); */
2097                         return 1;
2098                 }
2099         }
2100         /* sx_sunlock(&allproc_lock); */
2101         if (_vm_object_in_map(kernel_map, object, 0))
2102                 return 1;
2103         if (_vm_object_in_map(kmem_map, object, 0))
2104                 return 1;
2105         if (_vm_object_in_map(pager_map, object, 0))
2106                 return 1;
2107         if (_vm_object_in_map(buffer_map, object, 0))
2108                 return 1;
2109         return 0;
2110 }
2111
2112 DB_SHOW_COMMAND(vmochk, vm_object_check)
2113 {
2114         vm_object_t object;
2115
2116         /*
2117          * make sure that internal objs are in a map somewhere
2118          * and none have zero ref counts.
2119          */
2120         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2121                 if (object->handle == NULL &&
2122                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2123                         if (object->ref_count == 0) {
2124                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2125                                         (long)object->size);
2126                         }
2127                         if (!vm_object_in_map(object)) {
2128                                 db_printf(
2129                         "vmochk: internal obj is not in a map: "
2130                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2131                                     object->ref_count, (u_long)object->size, 
2132                                     (u_long)object->size,
2133                                     (void *)object->backing_object);
2134                         }
2135                 }
2136         }
2137 }
2138
2139 /*
2140  *      vm_object_print:        [ debug ]
2141  */
2142 DB_SHOW_COMMAND(object, vm_object_print_static)
2143 {
2144         /* XXX convert args. */
2145         vm_object_t object = (vm_object_t)addr;
2146         boolean_t full = have_addr;
2147
2148         vm_page_t p;
2149
2150         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2151 #define count   was_count
2152
2153         int count;
2154
2155         if (object == NULL)
2156                 return;
2157
2158         db_iprintf(
2159             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x uip %d charge %jx\n",
2160             object, (int)object->type, (uintmax_t)object->size,
2161             object->resident_page_count, object->ref_count, object->flags,
2162             object->uip ? object->uip->ui_uid : -1, (uintmax_t)object->charge);
2163         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2164             object->shadow_count, 
2165             object->backing_object ? object->backing_object->ref_count : 0,
2166             object->backing_object, (uintmax_t)object->backing_object_offset);
2167
2168         if (!full)
2169                 return;
2170
2171         db_indent += 2;
2172         count = 0;
2173         TAILQ_FOREACH(p, &object->memq, listq) {
2174                 if (count == 0)
2175                         db_iprintf("memory:=");
2176                 else if (count == 6) {
2177                         db_printf("\n");
2178                         db_iprintf(" ...");
2179                         count = 0;
2180                 } else
2181                         db_printf(",");
2182                 count++;
2183
2184                 db_printf("(off=0x%jx,page=0x%jx)",
2185                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2186         }
2187         if (count != 0)
2188                 db_printf("\n");
2189         db_indent -= 2;
2190 }
2191
2192 /* XXX. */
2193 #undef count
2194
2195 /* XXX need this non-static entry for calling from vm_map_print. */
2196 void
2197 vm_object_print(
2198         /* db_expr_t */ long addr,
2199         boolean_t have_addr,
2200         /* db_expr_t */ long count,
2201         char *modif)
2202 {
2203         vm_object_print_static(addr, have_addr, count, modif);
2204 }
2205
2206 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2207 {
2208         vm_object_t object;
2209         vm_pindex_t fidx;
2210         vm_paddr_t pa;
2211         vm_page_t m, prev_m;
2212         int rcount, nl, c;
2213
2214         nl = 0;
2215         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2216                 db_printf("new object: %p\n", (void *)object);
2217                 if (nl > 18) {
2218                         c = cngetc();
2219                         if (c != ' ')
2220                                 return;
2221                         nl = 0;
2222                 }
2223                 nl++;
2224                 rcount = 0;
2225                 fidx = 0;
2226                 pa = -1;
2227                 TAILQ_FOREACH(m, &object->memq, listq) {
2228                         if (m->pindex > 128)
2229                                 break;
2230                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2231                             prev_m->pindex + 1 != m->pindex) {
2232                                 if (rcount) {
2233                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2234                                                 (long)fidx, rcount, (long)pa);
2235                                         if (nl > 18) {
2236                                                 c = cngetc();
2237                                                 if (c != ' ')
2238                                                         return;
2239                                                 nl = 0;
2240                                         }
2241                                         nl++;
2242                                         rcount = 0;
2243                                 }
2244                         }                               
2245                         if (rcount &&
2246                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2247                                 ++rcount;
2248                                 continue;
2249                         }
2250                         if (rcount) {
2251                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2252                                         (long)fidx, rcount, (long)pa);
2253                                 if (nl > 18) {
2254                                         c = cngetc();
2255                                         if (c != ' ')
2256                                                 return;
2257                                         nl = 0;
2258                                 }
2259                                 nl++;
2260                         }
2261                         fidx = m->pindex;
2262                         pa = VM_PAGE_TO_PHYS(m);
2263                         rcount = 1;
2264                 }
2265                 if (rcount) {
2266                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2267                                 (long)fidx, rcount, (long)pa);
2268                         if (nl > 18) {
2269                                 c = cngetc();
2270                                 if (c != ' ')
2271                                         return;
2272                                 nl = 0;
2273                         }
2274                         nl++;
2275                 }
2276         }
2277 }
2278 #endif /* DDB */