]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_object.c
MFC r283924
[FreeBSD/stable/10.git] / sys / vm / vm_object.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory object module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include "opt_vm.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/lock.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/mutex.h>
78 #include <sys/proc.h>           /* for curproc, pageproc */
79 #include <sys/socket.h>
80 #include <sys/resourcevar.h>
81 #include <sys/rwlock.h>
82 #include <sys/user.h>
83 #include <sys/vnode.h>
84 #include <sys/vmmeter.h>
85 #include <sys/sx.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_radix.h>
99 #include <vm/vm_reserv.h>
100 #include <vm/uma.h>
101
102 static int old_msync;
103 SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0,
104     "Use old (insecure) msync behavior");
105
106 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
107                     int pagerflags, int flags, boolean_t *clearobjflags,
108                     boolean_t *eio);
109 static boolean_t vm_object_page_remove_write(vm_page_t p, int flags,
110                     boolean_t *clearobjflags);
111 static void     vm_object_qcollapse(vm_object_t object);
112 static void     vm_object_vndeallocate(vm_object_t object);
113
114 /*
115  *      Virtual memory objects maintain the actual data
116  *      associated with allocated virtual memory.  A given
117  *      page of memory exists within exactly one object.
118  *
119  *      An object is only deallocated when all "references"
120  *      are given up.  Only one "reference" to a given
121  *      region of an object should be writeable.
122  *
123  *      Associated with each object is a list of all resident
124  *      memory pages belonging to that object; this list is
125  *      maintained by the "vm_page" module, and locked by the object's
126  *      lock.
127  *
128  *      Each object also records a "pager" routine which is
129  *      used to retrieve (and store) pages to the proper backing
130  *      storage.  In addition, objects may be backed by other
131  *      objects from which they were virtual-copied.
132  *
133  *      The only items within the object structure which are
134  *      modified after time of creation are:
135  *              reference count         locked by object's lock
136  *              pager routine           locked by object's lock
137  *
138  */
139
140 struct object_q vm_object_list;
141 struct mtx vm_object_list_mtx;  /* lock for object list and count */
142
143 struct vm_object kernel_object_store;
144 struct vm_object kmem_object_store;
145
146 static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD, 0,
147     "VM object stats");
148
149 static long object_collapses;
150 SYSCTL_LONG(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD,
151     &object_collapses, 0, "VM object collapses");
152
153 static long object_bypasses;
154 SYSCTL_LONG(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD,
155     &object_bypasses, 0, "VM object bypasses");
156
157 static uma_zone_t obj_zone;
158
159 static int vm_object_zinit(void *mem, int size, int flags);
160
161 #ifdef INVARIANTS
162 static void vm_object_zdtor(void *mem, int size, void *arg);
163
164 static void
165 vm_object_zdtor(void *mem, int size, void *arg)
166 {
167         vm_object_t object;
168
169         object = (vm_object_t)mem;
170         KASSERT(object->ref_count == 0,
171             ("object %p ref_count = %d", object, object->ref_count));
172         KASSERT(TAILQ_EMPTY(&object->memq),
173             ("object %p has resident pages in its memq", object));
174         KASSERT(vm_radix_is_empty(&object->rtree),
175             ("object %p has resident pages in its trie", object));
176 #if VM_NRESERVLEVEL > 0
177         KASSERT(LIST_EMPTY(&object->rvq),
178             ("object %p has reservations",
179             object));
180 #endif
181         KASSERT(vm_object_cache_is_empty(object),
182             ("object %p has cached pages",
183             object));
184         KASSERT(object->paging_in_progress == 0,
185             ("object %p paging_in_progress = %d",
186             object, object->paging_in_progress));
187         KASSERT(object->resident_page_count == 0,
188             ("object %p resident_page_count = %d",
189             object, object->resident_page_count));
190         KASSERT(object->shadow_count == 0,
191             ("object %p shadow_count = %d",
192             object, object->shadow_count));
193         KASSERT(object->type == OBJT_DEAD,
194             ("object %p has non-dead type %d",
195             object, object->type));
196 }
197 #endif
198
199 static int
200 vm_object_zinit(void *mem, int size, int flags)
201 {
202         vm_object_t object;
203
204         object = (vm_object_t)mem;
205         bzero(&object->lock, sizeof(object->lock));
206         rw_init_flags(&object->lock, "vm object", RW_DUPOK);
207
208         /* These are true for any object that has been freed */
209         object->type = OBJT_DEAD;
210         object->ref_count = 0;
211         object->rtree.rt_root = 0;
212         object->rtree.rt_flags = 0;
213         object->paging_in_progress = 0;
214         object->resident_page_count = 0;
215         object->shadow_count = 0;
216         object->cache.rt_root = 0;
217         object->cache.rt_flags = 0;
218
219         mtx_lock(&vm_object_list_mtx);
220         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
221         mtx_unlock(&vm_object_list_mtx);
222         return (0);
223 }
224
225 static void
226 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
227 {
228
229         TAILQ_INIT(&object->memq);
230         LIST_INIT(&object->shadow_head);
231
232         object->type = type;
233         switch (type) {
234         case OBJT_DEAD:
235                 panic("_vm_object_allocate: can't create OBJT_DEAD");
236         case OBJT_DEFAULT:
237         case OBJT_SWAP:
238                 object->flags = OBJ_ONEMAPPING;
239                 break;
240         case OBJT_DEVICE:
241         case OBJT_SG:
242                 object->flags = OBJ_FICTITIOUS | OBJ_UNMANAGED;
243                 break;
244         case OBJT_MGTDEVICE:
245                 object->flags = OBJ_FICTITIOUS;
246                 break;
247         case OBJT_PHYS:
248                 object->flags = OBJ_UNMANAGED;
249                 break;
250         case OBJT_VNODE:
251                 object->flags = 0;
252                 break;
253         default:
254                 panic("_vm_object_allocate: type %d is undefined", type);
255         }
256         object->size = size;
257         object->generation = 1;
258         object->ref_count = 1;
259         object->memattr = VM_MEMATTR_DEFAULT;
260         object->cred = NULL;
261         object->charge = 0;
262         object->handle = NULL;
263         object->backing_object = NULL;
264         object->backing_object_offset = (vm_ooffset_t) 0;
265 #if VM_NRESERVLEVEL > 0
266         LIST_INIT(&object->rvq);
267 #endif
268 }
269
270 /*
271  *      vm_object_init:
272  *
273  *      Initialize the VM objects module.
274  */
275 void
276 vm_object_init(void)
277 {
278         TAILQ_INIT(&vm_object_list);
279         mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF);
280         
281         rw_init(&kernel_object->lock, "kernel vm object");
282         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
283             kernel_object);
284 #if VM_NRESERVLEVEL > 0
285         kernel_object->flags |= OBJ_COLORED;
286         kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
287 #endif
288
289         rw_init(&kmem_object->lock, "kmem vm object");
290         _vm_object_allocate(OBJT_PHYS, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
291             kmem_object);
292 #if VM_NRESERVLEVEL > 0
293         kmem_object->flags |= OBJ_COLORED;
294         kmem_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS);
295 #endif
296
297         /*
298          * The lock portion of struct vm_object must be type stable due
299          * to vm_pageout_fallback_object_lock locking a vm object
300          * without holding any references to it.
301          */
302         obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL,
303 #ifdef INVARIANTS
304             vm_object_zdtor,
305 #else
306             NULL,
307 #endif
308             vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
309
310         vm_radix_init();
311 }
312
313 void
314 vm_object_clear_flag(vm_object_t object, u_short bits)
315 {
316
317         VM_OBJECT_ASSERT_WLOCKED(object);
318         object->flags &= ~bits;
319 }
320
321 /*
322  *      Sets the default memory attribute for the specified object.  Pages
323  *      that are allocated to this object are by default assigned this memory
324  *      attribute.
325  *
326  *      Presently, this function must be called before any pages are allocated
327  *      to the object.  In the future, this requirement may be relaxed for
328  *      "default" and "swap" objects.
329  */
330 int
331 vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr)
332 {
333
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         switch (object->type) {
336         case OBJT_DEFAULT:
337         case OBJT_DEVICE:
338         case OBJT_MGTDEVICE:
339         case OBJT_PHYS:
340         case OBJT_SG:
341         case OBJT_SWAP:
342         case OBJT_VNODE:
343                 if (!TAILQ_EMPTY(&object->memq))
344                         return (KERN_FAILURE);
345                 break;
346         case OBJT_DEAD:
347                 return (KERN_INVALID_ARGUMENT);
348         default:
349                 panic("vm_object_set_memattr: object %p is of undefined type",
350                     object);
351         }
352         object->memattr = memattr;
353         return (KERN_SUCCESS);
354 }
355
356 void
357 vm_object_pip_add(vm_object_t object, short i)
358 {
359
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         object->paging_in_progress += i;
362 }
363
364 void
365 vm_object_pip_subtract(vm_object_t object, short i)
366 {
367
368         VM_OBJECT_ASSERT_WLOCKED(object);
369         object->paging_in_progress -= i;
370 }
371
372 void
373 vm_object_pip_wakeup(vm_object_t object)
374 {
375
376         VM_OBJECT_ASSERT_WLOCKED(object);
377         object->paging_in_progress--;
378         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
379                 vm_object_clear_flag(object, OBJ_PIPWNT);
380                 wakeup(object);
381         }
382 }
383
384 void
385 vm_object_pip_wakeupn(vm_object_t object, short i)
386 {
387
388         VM_OBJECT_ASSERT_WLOCKED(object);
389         if (i)
390                 object->paging_in_progress -= i;
391         if ((object->flags & OBJ_PIPWNT) && object->paging_in_progress == 0) {
392                 vm_object_clear_flag(object, OBJ_PIPWNT);
393                 wakeup(object);
394         }
395 }
396
397 void
398 vm_object_pip_wait(vm_object_t object, char *waitid)
399 {
400
401         VM_OBJECT_ASSERT_WLOCKED(object);
402         while (object->paging_in_progress) {
403                 object->flags |= OBJ_PIPWNT;
404                 VM_OBJECT_SLEEP(object, object, PVM, waitid, 0);
405         }
406 }
407
408 /*
409  *      vm_object_allocate:
410  *
411  *      Returns a new object with the given size.
412  */
413 vm_object_t
414 vm_object_allocate(objtype_t type, vm_pindex_t size)
415 {
416         vm_object_t object;
417
418         object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK);
419         _vm_object_allocate(type, size, object);
420         return (object);
421 }
422
423
424 /*
425  *      vm_object_reference:
426  *
427  *      Gets another reference to the given object.  Note: OBJ_DEAD
428  *      objects can be referenced during final cleaning.
429  */
430 void
431 vm_object_reference(vm_object_t object)
432 {
433         if (object == NULL)
434                 return;
435         VM_OBJECT_WLOCK(object);
436         vm_object_reference_locked(object);
437         VM_OBJECT_WUNLOCK(object);
438 }
439
440 /*
441  *      vm_object_reference_locked:
442  *
443  *      Gets another reference to the given object.
444  *
445  *      The object must be locked.
446  */
447 void
448 vm_object_reference_locked(vm_object_t object)
449 {
450         struct vnode *vp;
451
452         VM_OBJECT_ASSERT_WLOCKED(object);
453         object->ref_count++;
454         if (object->type == OBJT_VNODE) {
455                 vp = object->handle;
456                 vref(vp);
457         }
458 }
459
460 /*
461  * Handle deallocating an object of type OBJT_VNODE.
462  */
463 static void
464 vm_object_vndeallocate(vm_object_t object)
465 {
466         struct vnode *vp = (struct vnode *) object->handle;
467
468         VM_OBJECT_ASSERT_WLOCKED(object);
469         KASSERT(object->type == OBJT_VNODE,
470             ("vm_object_vndeallocate: not a vnode object"));
471         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
472 #ifdef INVARIANTS
473         if (object->ref_count == 0) {
474                 vprint("vm_object_vndeallocate", vp);
475                 panic("vm_object_vndeallocate: bad object reference count");
476         }
477 #endif
478
479         /*
480          * The test for text of vp vnode does not need a bypass to
481          * reach right VV_TEXT there, since it is obtained from
482          * object->handle.
483          */
484         if (object->ref_count > 1 || (vp->v_vflag & VV_TEXT) == 0) {
485                 object->ref_count--;
486                 VM_OBJECT_WUNLOCK(object);
487                 /* vrele may need the vnode lock. */
488                 vrele(vp);
489         } else {
490                 vhold(vp);
491                 VM_OBJECT_WUNLOCK(object);
492                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
493                 vdrop(vp);
494                 VM_OBJECT_WLOCK(object);
495                 object->ref_count--;
496                 if (object->type == OBJT_DEAD) {
497                         VM_OBJECT_WUNLOCK(object);
498                         VOP_UNLOCK(vp, 0);
499                 } else {
500                         if (object->ref_count == 0)
501                                 VOP_UNSET_TEXT(vp);
502                         VM_OBJECT_WUNLOCK(object);
503                         vput(vp);
504                 }
505         }
506 }
507
508 /*
509  *      vm_object_deallocate:
510  *
511  *      Release a reference to the specified object,
512  *      gained either through a vm_object_allocate
513  *      or a vm_object_reference call.  When all references
514  *      are gone, storage associated with this object
515  *      may be relinquished.
516  *
517  *      No object may be locked.
518  */
519 void
520 vm_object_deallocate(vm_object_t object)
521 {
522         vm_object_t temp;
523         struct vnode *vp;
524
525         while (object != NULL) {
526                 VM_OBJECT_WLOCK(object);
527                 if (object->type == OBJT_VNODE) {
528                         vm_object_vndeallocate(object);
529                         return;
530                 }
531
532                 KASSERT(object->ref_count != 0,
533                         ("vm_object_deallocate: object deallocated too many times: %d", object->type));
534
535                 /*
536                  * If the reference count goes to 0 we start calling
537                  * vm_object_terminate() on the object chain.
538                  * A ref count of 1 may be a special case depending on the
539                  * shadow count being 0 or 1.
540                  */
541                 object->ref_count--;
542                 if (object->ref_count > 1) {
543                         VM_OBJECT_WUNLOCK(object);
544                         return;
545                 } else if (object->ref_count == 1) {
546                         if (object->type == OBJT_SWAP &&
547                             (object->flags & OBJ_TMPFS) != 0) {
548                                 vp = object->un_pager.swp.swp_tmpfs;
549                                 vhold(vp);
550                                 VM_OBJECT_WUNLOCK(object);
551                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
552                                 VM_OBJECT_WLOCK(object);
553                                 if (object->type == OBJT_DEAD ||
554                                     object->ref_count != 1) {
555                                         VM_OBJECT_WUNLOCK(object);
556                                         VOP_UNLOCK(vp, 0);
557                                         vdrop(vp);
558                                         return;
559                                 }
560                                 if ((object->flags & OBJ_TMPFS) != 0)
561                                         VOP_UNSET_TEXT(vp);
562                                 VOP_UNLOCK(vp, 0);
563                                 vdrop(vp);
564                         }
565                         if (object->shadow_count == 0 &&
566                             object->handle == NULL &&
567                             (object->type == OBJT_DEFAULT ||
568                             (object->type == OBJT_SWAP &&
569                             (object->flags & OBJ_TMPFS_NODE) == 0))) {
570                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
571                         } else if ((object->shadow_count == 1) &&
572                             (object->handle == NULL) &&
573                             (object->type == OBJT_DEFAULT ||
574                              object->type == OBJT_SWAP)) {
575                                 vm_object_t robject;
576
577                                 robject = LIST_FIRST(&object->shadow_head);
578                                 KASSERT(robject != NULL,
579                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
580                                          object->ref_count,
581                                          object->shadow_count));
582                                 KASSERT((robject->flags & OBJ_TMPFS_NODE) == 0,
583                                     ("shadowed tmpfs v_object %p", object));
584                                 if (!VM_OBJECT_TRYWLOCK(robject)) {
585                                         /*
586                                          * Avoid a potential deadlock.
587                                          */
588                                         object->ref_count++;
589                                         VM_OBJECT_WUNLOCK(object);
590                                         /*
591                                          * More likely than not the thread
592                                          * holding robject's lock has lower
593                                          * priority than the current thread.
594                                          * Let the lower priority thread run.
595                                          */
596                                         pause("vmo_de", 1);
597                                         continue;
598                                 }
599                                 /*
600                                  * Collapse object into its shadow unless its
601                                  * shadow is dead.  In that case, object will
602                                  * be deallocated by the thread that is
603                                  * deallocating its shadow.
604                                  */
605                                 if ((robject->flags & OBJ_DEAD) == 0 &&
606                                     (robject->handle == NULL) &&
607                                     (robject->type == OBJT_DEFAULT ||
608                                      robject->type == OBJT_SWAP)) {
609
610                                         robject->ref_count++;
611 retry:
612                                         if (robject->paging_in_progress) {
613                                                 VM_OBJECT_WUNLOCK(object);
614                                                 vm_object_pip_wait(robject,
615                                                     "objde1");
616                                                 temp = robject->backing_object;
617                                                 if (object == temp) {
618                                                         VM_OBJECT_WLOCK(object);
619                                                         goto retry;
620                                                 }
621                                         } else if (object->paging_in_progress) {
622                                                 VM_OBJECT_WUNLOCK(robject);
623                                                 object->flags |= OBJ_PIPWNT;
624                                                 VM_OBJECT_SLEEP(object, object,
625                                                     PDROP | PVM, "objde2", 0);
626                                                 VM_OBJECT_WLOCK(robject);
627                                                 temp = robject->backing_object;
628                                                 if (object == temp) {
629                                                         VM_OBJECT_WLOCK(object);
630                                                         goto retry;
631                                                 }
632                                         } else
633                                                 VM_OBJECT_WUNLOCK(object);
634
635                                         if (robject->ref_count == 1) {
636                                                 robject->ref_count--;
637                                                 object = robject;
638                                                 goto doterm;
639                                         }
640                                         object = robject;
641                                         vm_object_collapse(object);
642                                         VM_OBJECT_WUNLOCK(object);
643                                         continue;
644                                 }
645                                 VM_OBJECT_WUNLOCK(robject);
646                         }
647                         VM_OBJECT_WUNLOCK(object);
648                         return;
649                 }
650 doterm:
651                 temp = object->backing_object;
652                 if (temp != NULL) {
653                         KASSERT((object->flags & OBJ_TMPFS_NODE) == 0,
654                             ("shadowed tmpfs v_object 2 %p", object));
655                         VM_OBJECT_WLOCK(temp);
656                         LIST_REMOVE(object, shadow_list);
657                         temp->shadow_count--;
658                         VM_OBJECT_WUNLOCK(temp);
659                         object->backing_object = NULL;
660                 }
661                 /*
662                  * Don't double-terminate, we could be in a termination
663                  * recursion due to the terminate having to sync data
664                  * to disk.
665                  */
666                 if ((object->flags & OBJ_DEAD) == 0)
667                         vm_object_terminate(object);
668                 else
669                         VM_OBJECT_WUNLOCK(object);
670                 object = temp;
671         }
672 }
673
674 /*
675  *      vm_object_destroy removes the object from the global object list
676  *      and frees the space for the object.
677  */
678 void
679 vm_object_destroy(vm_object_t object)
680 {
681
682         /*
683          * Release the allocation charge.
684          */
685         if (object->cred != NULL) {
686                 swap_release_by_cred(object->charge, object->cred);
687                 object->charge = 0;
688                 crfree(object->cred);
689                 object->cred = NULL;
690         }
691
692         /*
693          * Free the space for the object.
694          */
695         uma_zfree(obj_zone, object);
696 }
697
698 /*
699  *      vm_object_terminate actually destroys the specified object, freeing
700  *      up all previously used resources.
701  *
702  *      The object must be locked.
703  *      This routine may block.
704  */
705 void
706 vm_object_terminate(vm_object_t object)
707 {
708         vm_page_t p, p_next;
709
710         VM_OBJECT_ASSERT_WLOCKED(object);
711
712         /*
713          * Make sure no one uses us.
714          */
715         vm_object_set_flag(object, OBJ_DEAD);
716
717         /*
718          * wait for the pageout daemon to be done with the object
719          */
720         vm_object_pip_wait(object, "objtrm");
721
722         KASSERT(!object->paging_in_progress,
723                 ("vm_object_terminate: pageout in progress"));
724
725         /*
726          * Clean and free the pages, as appropriate. All references to the
727          * object are gone, so we don't need to lock it.
728          */
729         if (object->type == OBJT_VNODE) {
730                 struct vnode *vp = (struct vnode *)object->handle;
731
732                 /*
733                  * Clean pages and flush buffers.
734                  */
735                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
736                 VM_OBJECT_WUNLOCK(object);
737
738                 vinvalbuf(vp, V_SAVE, 0, 0);
739
740                 VM_OBJECT_WLOCK(object);
741         }
742
743         KASSERT(object->ref_count == 0, 
744                 ("vm_object_terminate: object with references, ref_count=%d",
745                 object->ref_count));
746
747         /*
748          * Free any remaining pageable pages.  This also removes them from the
749          * paging queues.  However, don't free wired pages, just remove them
750          * from the object.  Rather than incrementally removing each page from
751          * the object, the page and object are reset to any empty state. 
752          */
753         TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) {
754                 vm_page_assert_unbusied(p);
755                 vm_page_lock(p);
756                 /*
757                  * Optimize the page's removal from the object by resetting
758                  * its "object" field.  Specifically, if the page is not
759                  * wired, then the effect of this assignment is that
760                  * vm_page_free()'s call to vm_page_remove() will return
761                  * immediately without modifying the page or the object.
762                  */ 
763                 p->object = NULL;
764                 if (p->wire_count == 0) {
765                         vm_page_free(p);
766                         PCPU_INC(cnt.v_pfree);
767                 }
768                 vm_page_unlock(p);
769         }
770         /*
771          * If the object contained any pages, then reset it to an empty state.
772          * None of the object's fields, including "resident_page_count", were
773          * modified by the preceding loop.
774          */
775         if (object->resident_page_count != 0) {
776                 vm_radix_reclaim_allnodes(&object->rtree);
777                 TAILQ_INIT(&object->memq);
778                 object->resident_page_count = 0;
779                 if (object->type == OBJT_VNODE)
780                         vdrop(object->handle);
781         }
782
783 #if VM_NRESERVLEVEL > 0
784         if (__predict_false(!LIST_EMPTY(&object->rvq)))
785                 vm_reserv_break_all(object);
786 #endif
787         if (__predict_false(!vm_object_cache_is_empty(object)))
788                 vm_page_cache_free(object, 0, 0);
789
790         KASSERT(object->cred == NULL || object->type == OBJT_DEFAULT ||
791             object->type == OBJT_SWAP,
792             ("%s: non-swap obj %p has cred", __func__, object));
793
794         /*
795          * Let the pager know object is dead.
796          */
797         vm_pager_deallocate(object);
798         VM_OBJECT_WUNLOCK(object);
799
800         vm_object_destroy(object);
801 }
802
803 /*
804  * Make the page read-only so that we can clear the object flags.  However, if
805  * this is a nosync mmap then the object is likely to stay dirty so do not
806  * mess with the page and do not clear the object flags.  Returns TRUE if the
807  * page should be flushed, and FALSE otherwise.
808  */
809 static boolean_t
810 vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *clearobjflags)
811 {
812
813         /*
814          * If we have been asked to skip nosync pages and this is a
815          * nosync page, skip it.  Note that the object flags were not
816          * cleared in this case so we do not have to set them.
817          */
818         if ((flags & OBJPC_NOSYNC) != 0 && (p->oflags & VPO_NOSYNC) != 0) {
819                 *clearobjflags = FALSE;
820                 return (FALSE);
821         } else {
822                 pmap_remove_write(p);
823                 return (p->dirty != 0);
824         }
825 }
826
827 /*
828  *      vm_object_page_clean
829  *
830  *      Clean all dirty pages in the specified range of object.  Leaves page 
831  *      on whatever queue it is currently on.   If NOSYNC is set then do not
832  *      write out pages with VPO_NOSYNC set (originally comes from MAP_NOSYNC),
833  *      leaving the object dirty.
834  *
835  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
836  *      synchronous clustering mode implementation.
837  *
838  *      Odd semantics: if start == end, we clean everything.
839  *
840  *      The object must be locked.
841  *
842  *      Returns FALSE if some page from the range was not written, as
843  *      reported by the pager, and TRUE otherwise.
844  */
845 boolean_t
846 vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end,
847     int flags)
848 {
849         vm_page_t np, p;
850         vm_pindex_t pi, tend, tstart;
851         int curgeneration, n, pagerflags;
852         boolean_t clearobjflags, eio, res;
853
854         VM_OBJECT_ASSERT_WLOCKED(object);
855
856         /*
857          * The OBJ_MIGHTBEDIRTY flag is only set for OBJT_VNODE
858          * objects.  The check below prevents the function from
859          * operating on non-vnode objects.
860          */
861         if ((object->flags & OBJ_MIGHTBEDIRTY) == 0 ||
862             object->resident_page_count == 0)
863                 return (TRUE);
864
865         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ?
866             VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
867         pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0;
868
869         tstart = OFF_TO_IDX(start);
870         tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK);
871         clearobjflags = tstart == 0 && tend >= object->size;
872         res = TRUE;
873
874 rescan:
875         curgeneration = object->generation;
876
877         for (p = vm_page_find_least(object, tstart); p != NULL; p = np) {
878                 pi = p->pindex;
879                 if (pi >= tend)
880                         break;
881                 np = TAILQ_NEXT(p, listq);
882                 if (p->valid == 0)
883                         continue;
884                 if (vm_page_sleep_if_busy(p, "vpcwai")) {
885                         if (object->generation != curgeneration) {
886                                 if ((flags & OBJPC_SYNC) != 0)
887                                         goto rescan;
888                                 else
889                                         clearobjflags = FALSE;
890                         }
891                         np = vm_page_find_least(object, pi);
892                         continue;
893                 }
894                 if (!vm_object_page_remove_write(p, flags, &clearobjflags))
895                         continue;
896
897                 n = vm_object_page_collect_flush(object, p, pagerflags,
898                     flags, &clearobjflags, &eio);
899                 if (eio) {
900                         res = FALSE;
901                         clearobjflags = FALSE;
902                 }
903                 if (object->generation != curgeneration) {
904                         if ((flags & OBJPC_SYNC) != 0)
905                                 goto rescan;
906                         else
907                                 clearobjflags = FALSE;
908                 }
909
910                 /*
911                  * If the VOP_PUTPAGES() did a truncated write, so
912                  * that even the first page of the run is not fully
913                  * written, vm_pageout_flush() returns 0 as the run
914                  * length.  Since the condition that caused truncated
915                  * write may be permanent, e.g. exhausted free space,
916                  * accepting n == 0 would cause an infinite loop.
917                  *
918                  * Forwarding the iterator leaves the unwritten page
919                  * behind, but there is not much we can do there if
920                  * filesystem refuses to write it.
921                  */
922                 if (n == 0) {
923                         n = 1;
924                         clearobjflags = FALSE;
925                 }
926                 np = vm_page_find_least(object, pi + n);
927         }
928 #if 0
929         VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0);
930 #endif
931
932         if (clearobjflags)
933                 vm_object_clear_flag(object, OBJ_MIGHTBEDIRTY);
934         return (res);
935 }
936
937 static int
938 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags,
939     int flags, boolean_t *clearobjflags, boolean_t *eio)
940 {
941         vm_page_t ma[vm_pageout_page_count], p_first, tp;
942         int count, i, mreq, runlen;
943
944         vm_page_lock_assert(p, MA_NOTOWNED);
945         VM_OBJECT_ASSERT_WLOCKED(object);
946
947         count = 1;
948         mreq = 0;
949
950         for (tp = p; count < vm_pageout_page_count; count++) {
951                 tp = vm_page_next(tp);
952                 if (tp == NULL || vm_page_busied(tp))
953                         break;
954                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
955                         break;
956         }
957
958         for (p_first = p; count < vm_pageout_page_count; count++) {
959                 tp = vm_page_prev(p_first);
960                 if (tp == NULL || vm_page_busied(tp))
961                         break;
962                 if (!vm_object_page_remove_write(tp, flags, clearobjflags))
963                         break;
964                 p_first = tp;
965                 mreq++;
966         }
967
968         for (tp = p_first, i = 0; i < count; tp = TAILQ_NEXT(tp, listq), i++)
969                 ma[i] = tp;
970
971         vm_pageout_flush(ma, count, pagerflags, mreq, &runlen, eio);
972         return (runlen);
973 }
974
975 /*
976  * Note that there is absolutely no sense in writing out
977  * anonymous objects, so we track down the vnode object
978  * to write out.
979  * We invalidate (remove) all pages from the address space
980  * for semantic correctness.
981  *
982  * If the backing object is a device object with unmanaged pages, then any
983  * mappings to the specified range of pages must be removed before this
984  * function is called.
985  *
986  * Note: certain anonymous maps, such as MAP_NOSYNC maps,
987  * may start out with a NULL object.
988  */
989 boolean_t
990 vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size,
991     boolean_t syncio, boolean_t invalidate)
992 {
993         vm_object_t backing_object;
994         struct vnode *vp;
995         struct mount *mp;
996         int error, flags, fsync_after;
997         boolean_t res;
998
999         if (object == NULL)
1000                 return (TRUE);
1001         res = TRUE;
1002         error = 0;
1003         VM_OBJECT_WLOCK(object);
1004         while ((backing_object = object->backing_object) != NULL) {
1005                 VM_OBJECT_WLOCK(backing_object);
1006                 offset += object->backing_object_offset;
1007                 VM_OBJECT_WUNLOCK(object);
1008                 object = backing_object;
1009                 if (object->size < OFF_TO_IDX(offset + size))
1010                         size = IDX_TO_OFF(object->size) - offset;
1011         }
1012         /*
1013          * Flush pages if writing is allowed, invalidate them
1014          * if invalidation requested.  Pages undergoing I/O
1015          * will be ignored by vm_object_page_remove().
1016          *
1017          * We cannot lock the vnode and then wait for paging
1018          * to complete without deadlocking against vm_fault.
1019          * Instead we simply call vm_object_page_remove() and
1020          * allow it to block internally on a page-by-page
1021          * basis when it encounters pages undergoing async
1022          * I/O.
1023          */
1024         if (object->type == OBJT_VNODE &&
1025             (object->flags & OBJ_MIGHTBEDIRTY) != 0) {
1026                 vp = object->handle;
1027                 VM_OBJECT_WUNLOCK(object);
1028                 (void) vn_start_write(vp, &mp, V_WAIT);
1029                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1030                 if (syncio && !invalidate && offset == 0 &&
1031                     OFF_TO_IDX(size) == object->size) {
1032                         /*
1033                          * If syncing the whole mapping of the file,
1034                          * it is faster to schedule all the writes in
1035                          * async mode, also allowing the clustering,
1036                          * and then wait for i/o to complete.
1037                          */
1038                         flags = 0;
1039                         fsync_after = TRUE;
1040                 } else {
1041                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1042                         flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0;
1043                         fsync_after = FALSE;
1044                 }
1045                 VM_OBJECT_WLOCK(object);
1046                 res = vm_object_page_clean(object, offset, offset + size,
1047                     flags);
1048                 VM_OBJECT_WUNLOCK(object);
1049                 if (fsync_after)
1050                         error = VOP_FSYNC(vp, MNT_WAIT, curthread);
1051                 VOP_UNLOCK(vp, 0);
1052                 vn_finished_write(mp);
1053                 if (error != 0)
1054                         res = FALSE;
1055                 VM_OBJECT_WLOCK(object);
1056         }
1057         if ((object->type == OBJT_VNODE ||
1058              object->type == OBJT_DEVICE) && invalidate) {
1059                 if (object->type == OBJT_DEVICE)
1060                         /*
1061                          * The option OBJPR_NOTMAPPED must be passed here
1062                          * because vm_object_page_remove() cannot remove
1063                          * unmanaged mappings.
1064                          */
1065                         flags = OBJPR_NOTMAPPED;
1066                 else if (old_msync)
1067                         flags = 0;
1068                 else
1069                         flags = OBJPR_CLEANONLY;
1070                 vm_object_page_remove(object, OFF_TO_IDX(offset),
1071                     OFF_TO_IDX(offset + size + PAGE_MASK), flags);
1072         }
1073         VM_OBJECT_WUNLOCK(object);
1074         return (res);
1075 }
1076
1077 /*
1078  *      vm_object_madvise:
1079  *
1080  *      Implements the madvise function at the object/page level.
1081  *
1082  *      MADV_WILLNEED   (any object)
1083  *
1084  *          Activate the specified pages if they are resident.
1085  *
1086  *      MADV_DONTNEED   (any object)
1087  *
1088  *          Deactivate the specified pages if they are resident.
1089  *
1090  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
1091  *                       OBJ_ONEMAPPING only)
1092  *
1093  *          Deactivate and clean the specified pages if they are
1094  *          resident.  This permits the process to reuse the pages
1095  *          without faulting or the kernel to reclaim the pages
1096  *          without I/O.
1097  */
1098 void
1099 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end,
1100     int advise)
1101 {
1102         vm_pindex_t tpindex;
1103         vm_object_t backing_object, tobject;
1104         vm_page_t m;
1105
1106         if (object == NULL)
1107                 return;
1108         VM_OBJECT_WLOCK(object);
1109         /*
1110          * Locate and adjust resident pages
1111          */
1112         for (; pindex < end; pindex += 1) {
1113 relookup:
1114                 tobject = object;
1115                 tpindex = pindex;
1116 shadowlookup:
1117                 /*
1118                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1119                  * and those pages must be OBJ_ONEMAPPING.
1120                  */
1121                 if (advise == MADV_FREE) {
1122                         if ((tobject->type != OBJT_DEFAULT &&
1123                              tobject->type != OBJT_SWAP) ||
1124                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1125                                 goto unlock_tobject;
1126                         }
1127                 } else if ((tobject->flags & OBJ_UNMANAGED) != 0)
1128                         goto unlock_tobject;
1129                 m = vm_page_lookup(tobject, tpindex);
1130                 if (m == NULL && advise == MADV_WILLNEED) {
1131                         /*
1132                          * If the page is cached, reactivate it.
1133                          */
1134                         m = vm_page_alloc(tobject, tpindex, VM_ALLOC_IFCACHED |
1135                             VM_ALLOC_NOBUSY);
1136                 }
1137                 if (m == NULL) {
1138                         /*
1139                          * There may be swap even if there is no backing page
1140                          */
1141                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1142                                 swap_pager_freespace(tobject, tpindex, 1);
1143                         /*
1144                          * next object
1145                          */
1146                         backing_object = tobject->backing_object;
1147                         if (backing_object == NULL)
1148                                 goto unlock_tobject;
1149                         VM_OBJECT_WLOCK(backing_object);
1150                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1151                         if (tobject != object)
1152                                 VM_OBJECT_WUNLOCK(tobject);
1153                         tobject = backing_object;
1154                         goto shadowlookup;
1155                 } else if (m->valid != VM_PAGE_BITS_ALL)
1156                         goto unlock_tobject;
1157                 /*
1158                  * If the page is not in a normal state, skip it.
1159                  */
1160                 vm_page_lock(m);
1161                 if (m->hold_count != 0 || m->wire_count != 0) {
1162                         vm_page_unlock(m);
1163                         goto unlock_tobject;
1164                 }
1165                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1166                     ("vm_object_madvise: page %p is fictitious", m));
1167                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1168                     ("vm_object_madvise: page %p is not managed", m));
1169                 if (vm_page_busied(m)) {
1170                         if (advise == MADV_WILLNEED) {
1171                                 /*
1172                                  * Reference the page before unlocking and
1173                                  * sleeping so that the page daemon is less
1174                                  * likely to reclaim it. 
1175                                  */
1176                                 vm_page_aflag_set(m, PGA_REFERENCED);
1177                         }
1178                         if (object != tobject)
1179                                 VM_OBJECT_WUNLOCK(object);
1180                         VM_OBJECT_WUNLOCK(tobject);
1181                         vm_page_busy_sleep(m, "madvpo");
1182                         VM_OBJECT_WLOCK(object);
1183                         goto relookup;
1184                 }
1185                 if (advise == MADV_WILLNEED) {
1186                         vm_page_activate(m);
1187                 } else {
1188                         vm_page_advise(m, advise);
1189                 }
1190                 vm_page_unlock(m);
1191                 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1192                         swap_pager_freespace(tobject, tpindex, 1);
1193 unlock_tobject:
1194                 if (tobject != object)
1195                         VM_OBJECT_WUNLOCK(tobject);
1196         }       
1197         VM_OBJECT_WUNLOCK(object);
1198 }
1199
1200 /*
1201  *      vm_object_shadow:
1202  *
1203  *      Create a new object which is backed by the
1204  *      specified existing object range.  The source
1205  *      object reference is deallocated.
1206  *
1207  *      The new object and offset into that object
1208  *      are returned in the source parameters.
1209  */
1210 void
1211 vm_object_shadow(
1212         vm_object_t *object,    /* IN/OUT */
1213         vm_ooffset_t *offset,   /* IN/OUT */
1214         vm_size_t length)
1215 {
1216         vm_object_t source;
1217         vm_object_t result;
1218
1219         source = *object;
1220
1221         /*
1222          * Don't create the new object if the old object isn't shared.
1223          */
1224         if (source != NULL) {
1225                 VM_OBJECT_WLOCK(source);
1226                 if (source->ref_count == 1 &&
1227                     source->handle == NULL &&
1228                     (source->type == OBJT_DEFAULT ||
1229                      source->type == OBJT_SWAP)) {
1230                         VM_OBJECT_WUNLOCK(source);
1231                         return;
1232                 }
1233                 VM_OBJECT_WUNLOCK(source);
1234         }
1235
1236         /*
1237          * Allocate a new object with the given length.
1238          */
1239         result = vm_object_allocate(OBJT_DEFAULT, atop(length));
1240
1241         /*
1242          * The new object shadows the source object, adding a reference to it.
1243          * Our caller changes his reference to point to the new object,
1244          * removing a reference to the source object.  Net result: no change
1245          * of reference count.
1246          *
1247          * Try to optimize the result object's page color when shadowing
1248          * in order to maintain page coloring consistency in the combined 
1249          * shadowed object.
1250          */
1251         result->backing_object = source;
1252         /*
1253          * Store the offset into the source object, and fix up the offset into
1254          * the new object.
1255          */
1256         result->backing_object_offset = *offset;
1257         if (source != NULL) {
1258                 VM_OBJECT_WLOCK(source);
1259                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1260                 source->shadow_count++;
1261 #if VM_NRESERVLEVEL > 0
1262                 result->flags |= source->flags & OBJ_COLORED;
1263                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) &
1264                     ((1 << (VM_NFREEORDER - 1)) - 1);
1265 #endif
1266                 VM_OBJECT_WUNLOCK(source);
1267         }
1268
1269
1270         /*
1271          * Return the new things
1272          */
1273         *offset = 0;
1274         *object = result;
1275 }
1276
1277 /*
1278  *      vm_object_split:
1279  *
1280  * Split the pages in a map entry into a new object.  This affords
1281  * easier removal of unused pages, and keeps object inheritance from
1282  * being a negative impact on memory usage.
1283  */
1284 void
1285 vm_object_split(vm_map_entry_t entry)
1286 {
1287         vm_page_t m, m_next;
1288         vm_object_t orig_object, new_object, source;
1289         vm_pindex_t idx, offidxstart;
1290         vm_size_t size;
1291
1292         orig_object = entry->object.vm_object;
1293         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1294                 return;
1295         if (orig_object->ref_count <= 1)
1296                 return;
1297         VM_OBJECT_WUNLOCK(orig_object);
1298
1299         offidxstart = OFF_TO_IDX(entry->offset);
1300         size = atop(entry->end - entry->start);
1301
1302         /*
1303          * If swap_pager_copy() is later called, it will convert new_object
1304          * into a swap object.
1305          */
1306         new_object = vm_object_allocate(OBJT_DEFAULT, size);
1307
1308         /*
1309          * At this point, the new object is still private, so the order in
1310          * which the original and new objects are locked does not matter.
1311          */
1312         VM_OBJECT_WLOCK(new_object);
1313         VM_OBJECT_WLOCK(orig_object);
1314         source = orig_object->backing_object;
1315         if (source != NULL) {
1316                 VM_OBJECT_WLOCK(source);
1317                 if ((source->flags & OBJ_DEAD) != 0) {
1318                         VM_OBJECT_WUNLOCK(source);
1319                         VM_OBJECT_WUNLOCK(orig_object);
1320                         VM_OBJECT_WUNLOCK(new_object);
1321                         vm_object_deallocate(new_object);
1322                         VM_OBJECT_WLOCK(orig_object);
1323                         return;
1324                 }
1325                 LIST_INSERT_HEAD(&source->shadow_head,
1326                                   new_object, shadow_list);
1327                 source->shadow_count++;
1328                 vm_object_reference_locked(source);     /* for new_object */
1329                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
1330                 VM_OBJECT_WUNLOCK(source);
1331                 new_object->backing_object_offset = 
1332                         orig_object->backing_object_offset + entry->offset;
1333                 new_object->backing_object = source;
1334         }
1335         if (orig_object->cred != NULL) {
1336                 new_object->cred = orig_object->cred;
1337                 crhold(orig_object->cred);
1338                 new_object->charge = ptoa(size);
1339                 KASSERT(orig_object->charge >= ptoa(size),
1340                     ("orig_object->charge < 0"));
1341                 orig_object->charge -= ptoa(size);
1342         }
1343 retry:
1344         m = vm_page_find_least(orig_object, offidxstart);
1345         for (; m != NULL && (idx = m->pindex - offidxstart) < size;
1346             m = m_next) {
1347                 m_next = TAILQ_NEXT(m, listq);
1348
1349                 /*
1350                  * We must wait for pending I/O to complete before we can
1351                  * rename the page.
1352                  *
1353                  * We do not have to VM_PROT_NONE the page as mappings should
1354                  * not be changed by this operation.
1355                  */
1356                 if (vm_page_busied(m)) {
1357                         VM_OBJECT_WUNLOCK(new_object);
1358                         vm_page_lock(m);
1359                         VM_OBJECT_WUNLOCK(orig_object);
1360                         vm_page_busy_sleep(m, "spltwt");
1361                         VM_OBJECT_WLOCK(orig_object);
1362                         VM_OBJECT_WLOCK(new_object);
1363                         goto retry;
1364                 }
1365
1366                 /* vm_page_rename() will handle dirty and cache. */
1367                 if (vm_page_rename(m, new_object, idx)) {
1368                         VM_OBJECT_WUNLOCK(new_object);
1369                         VM_OBJECT_WUNLOCK(orig_object);
1370                         VM_WAIT;
1371                         VM_OBJECT_WLOCK(orig_object);
1372                         VM_OBJECT_WLOCK(new_object);
1373                         goto retry;
1374                 }
1375 #if VM_NRESERVLEVEL > 0
1376                 /*
1377                  * If some of the reservation's allocated pages remain with
1378                  * the original object, then transferring the reservation to
1379                  * the new object is neither particularly beneficial nor
1380                  * particularly harmful as compared to leaving the reservation
1381                  * with the original object.  If, however, all of the
1382                  * reservation's allocated pages are transferred to the new
1383                  * object, then transferring the reservation is typically
1384                  * beneficial.  Determining which of these two cases applies
1385                  * would be more costly than unconditionally renaming the
1386                  * reservation.
1387                  */
1388                 vm_reserv_rename(m, new_object, orig_object, offidxstart);
1389 #endif
1390                 if (orig_object->type == OBJT_SWAP)
1391                         vm_page_xbusy(m);
1392         }
1393         if (orig_object->type == OBJT_SWAP) {
1394                 /*
1395                  * swap_pager_copy() can sleep, in which case the orig_object's
1396                  * and new_object's locks are released and reacquired. 
1397                  */
1398                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
1399                 TAILQ_FOREACH(m, &new_object->memq, listq)
1400                         vm_page_xunbusy(m);
1401
1402                 /*
1403                  * Transfer any cached pages from orig_object to new_object.
1404                  * If swap_pager_copy() found swapped out pages within the
1405                  * specified range of orig_object, then it changed
1406                  * new_object's type to OBJT_SWAP when it transferred those
1407                  * pages to new_object.  Otherwise, new_object's type
1408                  * should still be OBJT_DEFAULT and orig_object should not
1409                  * contain any cached pages within the specified range.
1410                  */
1411                 if (__predict_false(!vm_object_cache_is_empty(orig_object)))
1412                         vm_page_cache_transfer(orig_object, offidxstart,
1413                             new_object);
1414         }
1415         VM_OBJECT_WUNLOCK(orig_object);
1416         VM_OBJECT_WUNLOCK(new_object);
1417         entry->object.vm_object = new_object;
1418         entry->offset = 0LL;
1419         vm_object_deallocate(orig_object);
1420         VM_OBJECT_WLOCK(new_object);
1421 }
1422
1423 #define OBSC_TEST_ALL_SHADOWED  0x0001
1424 #define OBSC_COLLAPSE_NOWAIT    0x0002
1425 #define OBSC_COLLAPSE_WAIT      0x0004
1426
1427 static int
1428 vm_object_backing_scan(vm_object_t object, int op)
1429 {
1430         int r = 1;
1431         vm_page_t p;
1432         vm_object_t backing_object;
1433         vm_pindex_t backing_offset_index;
1434
1435         VM_OBJECT_ASSERT_WLOCKED(object);
1436         VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
1437
1438         backing_object = object->backing_object;
1439         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1440
1441         /*
1442          * Initial conditions
1443          */
1444         if (op & OBSC_TEST_ALL_SHADOWED) {
1445                 /*
1446                  * We do not want to have to test for the existence of cache
1447                  * or swap pages in the backing object.  XXX but with the
1448                  * new swapper this would be pretty easy to do.
1449                  *
1450                  * XXX what about anonymous MAP_SHARED memory that hasn't
1451                  * been ZFOD faulted yet?  If we do not test for this, the
1452                  * shadow test may succeed! XXX
1453                  */
1454                 if (backing_object->type != OBJT_DEFAULT) {
1455                         return (0);
1456                 }
1457         }
1458         if (op & OBSC_COLLAPSE_WAIT) {
1459                 vm_object_set_flag(backing_object, OBJ_DEAD);
1460         }
1461
1462         /*
1463          * Our scan
1464          */
1465         p = TAILQ_FIRST(&backing_object->memq);
1466         while (p) {
1467                 vm_page_t next = TAILQ_NEXT(p, listq);
1468                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1469
1470                 if (op & OBSC_TEST_ALL_SHADOWED) {
1471                         vm_page_t pp;
1472
1473                         /*
1474                          * Ignore pages outside the parent object's range
1475                          * and outside the parent object's mapping of the 
1476                          * backing object.
1477                          *
1478                          * note that we do not busy the backing object's
1479                          * page.
1480                          */
1481                         if (
1482                             p->pindex < backing_offset_index ||
1483                             new_pindex >= object->size
1484                         ) {
1485                                 p = next;
1486                                 continue;
1487                         }
1488
1489                         /*
1490                          * See if the parent has the page or if the parent's
1491                          * object pager has the page.  If the parent has the
1492                          * page but the page is not valid, the parent's
1493                          * object pager must have the page.
1494                          *
1495                          * If this fails, the parent does not completely shadow
1496                          * the object and we might as well give up now.
1497                          */
1498
1499                         pp = vm_page_lookup(object, new_pindex);
1500                         if (
1501                             (pp == NULL || pp->valid == 0) &&
1502                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1503                         ) {
1504                                 r = 0;
1505                                 break;
1506                         }
1507                 }
1508
1509                 /*
1510                  * Check for busy page
1511                  */
1512                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1513                         vm_page_t pp;
1514
1515                         if (op & OBSC_COLLAPSE_NOWAIT) {
1516                                 if (!p->valid || vm_page_busied(p)) {
1517                                         p = next;
1518                                         continue;
1519                                 }
1520                         } else if (op & OBSC_COLLAPSE_WAIT) {
1521                                 if (vm_page_busied(p)) {
1522                                         VM_OBJECT_WUNLOCK(object);
1523                                         vm_page_lock(p);
1524                                         VM_OBJECT_WUNLOCK(backing_object);
1525                                         vm_page_busy_sleep(p, "vmocol");
1526                                         VM_OBJECT_WLOCK(object);
1527                                         VM_OBJECT_WLOCK(backing_object);
1528                                         /*
1529                                          * If we slept, anything could have
1530                                          * happened.  Since the object is
1531                                          * marked dead, the backing offset
1532                                          * should not have changed so we
1533                                          * just restart our scan.
1534                                          */
1535                                         p = TAILQ_FIRST(&backing_object->memq);
1536                                         continue;
1537                                 }
1538                         }
1539
1540                         KASSERT(
1541                             p->object == backing_object,
1542                             ("vm_object_backing_scan: object mismatch")
1543                         );
1544
1545                         if (
1546                             p->pindex < backing_offset_index ||
1547                             new_pindex >= object->size
1548                         ) {
1549                                 if (backing_object->type == OBJT_SWAP)
1550                                         swap_pager_freespace(backing_object, 
1551                                             p->pindex, 1);
1552
1553                                 /*
1554                                  * Page is out of the parent object's range, we 
1555                                  * can simply destroy it. 
1556                                  */
1557                                 vm_page_lock(p);
1558                                 KASSERT(!pmap_page_is_mapped(p),
1559                                     ("freeing mapped page %p", p));
1560                                 if (p->wire_count == 0)
1561                                         vm_page_free(p);
1562                                 else
1563                                         vm_page_remove(p);
1564                                 vm_page_unlock(p);
1565                                 p = next;
1566                                 continue;
1567                         }
1568
1569                         pp = vm_page_lookup(object, new_pindex);
1570                         if (
1571                             (op & OBSC_COLLAPSE_NOWAIT) != 0 &&
1572                             (pp != NULL && pp->valid == 0)
1573                         ) {
1574                                 if (backing_object->type == OBJT_SWAP)
1575                                         swap_pager_freespace(backing_object, 
1576                                             p->pindex, 1);
1577
1578                                 /*
1579                                  * The page in the parent is not (yet) valid.
1580                                  * We don't know anything about the state of
1581                                  * the original page.  It might be mapped,
1582                                  * so we must avoid the next if here.
1583                                  *
1584                                  * This is due to a race in vm_fault() where
1585                                  * we must unbusy the original (backing_obj)
1586                                  * page before we can (re)lock the parent.
1587                                  * Hence we can get here.
1588                                  */
1589                                 p = next;
1590                                 continue;
1591                         }
1592                         if (
1593                             pp != NULL ||
1594                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1595                         ) {
1596                                 if (backing_object->type == OBJT_SWAP)
1597                                         swap_pager_freespace(backing_object, 
1598                                             p->pindex, 1);
1599
1600                                 /*
1601                                  * page already exists in parent OR swap exists
1602                                  * for this location in the parent.  Destroy 
1603                                  * the original page from the backing object.
1604                                  *
1605                                  * Leave the parent's page alone
1606                                  */
1607                                 vm_page_lock(p);
1608                                 KASSERT(!pmap_page_is_mapped(p),
1609                                     ("freeing mapped page %p", p));
1610                                 if (p->wire_count == 0)
1611                                         vm_page_free(p);
1612                                 else
1613                                         vm_page_remove(p);
1614                                 vm_page_unlock(p);
1615                                 p = next;
1616                                 continue;
1617                         }
1618
1619                         /*
1620                          * Page does not exist in parent, rename the
1621                          * page from the backing object to the main object. 
1622                          *
1623                          * If the page was mapped to a process, it can remain 
1624                          * mapped through the rename.
1625                          * vm_page_rename() will handle dirty and cache.
1626                          */
1627                         if (vm_page_rename(p, object, new_pindex)) {
1628                                 if (op & OBSC_COLLAPSE_NOWAIT) {
1629                                         p = next;
1630                                         continue;
1631                                 }
1632                                 VM_OBJECT_WUNLOCK(backing_object);
1633                                 VM_OBJECT_WUNLOCK(object);
1634                                 VM_WAIT;
1635                                 VM_OBJECT_WLOCK(object);
1636                                 VM_OBJECT_WLOCK(backing_object);
1637                                 p = TAILQ_FIRST(&backing_object->memq);
1638                                 continue;
1639                         }
1640
1641                         /* Use the old pindex to free the right page. */
1642                         if (backing_object->type == OBJT_SWAP)
1643                                 swap_pager_freespace(backing_object,
1644                                     new_pindex + backing_offset_index, 1);
1645
1646 #if VM_NRESERVLEVEL > 0
1647                         /*
1648                          * Rename the reservation.
1649                          */
1650                         vm_reserv_rename(p, object, backing_object,
1651                             backing_offset_index);
1652 #endif
1653                 }
1654                 p = next;
1655         }
1656         return (r);
1657 }
1658
1659
1660 /*
1661  * this version of collapse allows the operation to occur earlier and
1662  * when paging_in_progress is true for an object...  This is not a complete
1663  * operation, but should plug 99.9% of the rest of the leaks.
1664  */
1665 static void
1666 vm_object_qcollapse(vm_object_t object)
1667 {
1668         vm_object_t backing_object = object->backing_object;
1669
1670         VM_OBJECT_ASSERT_WLOCKED(object);
1671         VM_OBJECT_ASSERT_WLOCKED(backing_object);
1672
1673         if (backing_object->ref_count != 1)
1674                 return;
1675
1676         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1677 }
1678
1679 /*
1680  *      vm_object_collapse:
1681  *
1682  *      Collapse an object with the object backing it.
1683  *      Pages in the backing object are moved into the
1684  *      parent, and the backing object is deallocated.
1685  */
1686 void
1687 vm_object_collapse(vm_object_t object)
1688 {
1689         VM_OBJECT_ASSERT_WLOCKED(object);
1690         
1691         while (TRUE) {
1692                 vm_object_t backing_object;
1693
1694                 /*
1695                  * Verify that the conditions are right for collapse:
1696                  *
1697                  * The object exists and the backing object exists.
1698                  */
1699                 if ((backing_object = object->backing_object) == NULL)
1700                         break;
1701
1702                 /*
1703                  * we check the backing object first, because it is most likely
1704                  * not collapsable.
1705                  */
1706                 VM_OBJECT_WLOCK(backing_object);
1707                 if (backing_object->handle != NULL ||
1708                     (backing_object->type != OBJT_DEFAULT &&
1709                      backing_object->type != OBJT_SWAP) ||
1710                     (backing_object->flags & OBJ_DEAD) ||
1711                     object->handle != NULL ||
1712                     (object->type != OBJT_DEFAULT &&
1713                      object->type != OBJT_SWAP) ||
1714                     (object->flags & OBJ_DEAD)) {
1715                         VM_OBJECT_WUNLOCK(backing_object);
1716                         break;
1717                 }
1718
1719                 if (
1720                     object->paging_in_progress != 0 ||
1721                     backing_object->paging_in_progress != 0
1722                 ) {
1723                         vm_object_qcollapse(object);
1724                         VM_OBJECT_WUNLOCK(backing_object);
1725                         break;
1726                 }
1727                 /*
1728                  * We know that we can either collapse the backing object (if
1729                  * the parent is the only reference to it) or (perhaps) have
1730                  * the parent bypass the object if the parent happens to shadow
1731                  * all the resident pages in the entire backing object.
1732                  *
1733                  * This is ignoring pager-backed pages such as swap pages.
1734                  * vm_object_backing_scan fails the shadowing test in this
1735                  * case.
1736                  */
1737                 if (backing_object->ref_count == 1) {
1738                         /*
1739                          * If there is exactly one reference to the backing
1740                          * object, we can collapse it into the parent.  
1741                          */
1742                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1743
1744 #if VM_NRESERVLEVEL > 0
1745                         /*
1746                          * Break any reservations from backing_object.
1747                          */
1748                         if (__predict_false(!LIST_EMPTY(&backing_object->rvq)))
1749                                 vm_reserv_break_all(backing_object);
1750 #endif
1751
1752                         /*
1753                          * Move the pager from backing_object to object.
1754                          */
1755                         if (backing_object->type == OBJT_SWAP) {
1756                                 /*
1757                                  * swap_pager_copy() can sleep, in which case
1758                                  * the backing_object's and object's locks are
1759                                  * released and reacquired.
1760                                  * Since swap_pager_copy() is being asked to
1761                                  * destroy the source, it will change the
1762                                  * backing_object's type to OBJT_DEFAULT.
1763                                  */
1764                                 swap_pager_copy(
1765                                     backing_object,
1766                                     object,
1767                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1768
1769                                 /*
1770                                  * Free any cached pages from backing_object.
1771                                  */
1772                                 if (__predict_false(
1773                                     !vm_object_cache_is_empty(backing_object)))
1774                                         vm_page_cache_free(backing_object, 0, 0);
1775                         }
1776                         /*
1777                          * Object now shadows whatever backing_object did.
1778                          * Note that the reference to 
1779                          * backing_object->backing_object moves from within 
1780                          * backing_object to within object.
1781                          */
1782                         LIST_REMOVE(object, shadow_list);
1783                         backing_object->shadow_count--;
1784                         if (backing_object->backing_object) {
1785                                 VM_OBJECT_WLOCK(backing_object->backing_object);
1786                                 LIST_REMOVE(backing_object, shadow_list);
1787                                 LIST_INSERT_HEAD(
1788                                     &backing_object->backing_object->shadow_head,
1789                                     object, shadow_list);
1790                                 /*
1791                                  * The shadow_count has not changed.
1792                                  */
1793                                 VM_OBJECT_WUNLOCK(backing_object->backing_object);
1794                         }
1795                         object->backing_object = backing_object->backing_object;
1796                         object->backing_object_offset +=
1797                             backing_object->backing_object_offset;
1798
1799                         /*
1800                          * Discard backing_object.
1801                          *
1802                          * Since the backing object has no pages, no pager left,
1803                          * and no object references within it, all that is
1804                          * necessary is to dispose of it.
1805                          */
1806                         KASSERT(backing_object->ref_count == 1, (
1807 "backing_object %p was somehow re-referenced during collapse!",
1808                             backing_object));
1809                         backing_object->type = OBJT_DEAD;
1810                         backing_object->ref_count = 0;
1811                         VM_OBJECT_WUNLOCK(backing_object);
1812                         vm_object_destroy(backing_object);
1813
1814                         object_collapses++;
1815                 } else {
1816                         vm_object_t new_backing_object;
1817
1818                         /*
1819                          * If we do not entirely shadow the backing object,
1820                          * there is nothing we can do so we give up.
1821                          */
1822                         if (object->resident_page_count != object->size &&
1823                             vm_object_backing_scan(object,
1824                             OBSC_TEST_ALL_SHADOWED) == 0) {
1825                                 VM_OBJECT_WUNLOCK(backing_object);
1826                                 break;
1827                         }
1828
1829                         /*
1830                          * Make the parent shadow the next object in the
1831                          * chain.  Deallocating backing_object will not remove
1832                          * it, since its reference count is at least 2.
1833                          */
1834                         LIST_REMOVE(object, shadow_list);
1835                         backing_object->shadow_count--;
1836
1837                         new_backing_object = backing_object->backing_object;
1838                         if ((object->backing_object = new_backing_object) != NULL) {
1839                                 VM_OBJECT_WLOCK(new_backing_object);
1840                                 LIST_INSERT_HEAD(
1841                                     &new_backing_object->shadow_head,
1842                                     object,
1843                                     shadow_list
1844                                 );
1845                                 new_backing_object->shadow_count++;
1846                                 vm_object_reference_locked(new_backing_object);
1847                                 VM_OBJECT_WUNLOCK(new_backing_object);
1848                                 object->backing_object_offset +=
1849                                         backing_object->backing_object_offset;
1850                         }
1851
1852                         /*
1853                          * Drop the reference count on backing_object. Since
1854                          * its ref_count was at least 2, it will not vanish.
1855                          */
1856                         backing_object->ref_count--;
1857                         VM_OBJECT_WUNLOCK(backing_object);
1858                         object_bypasses++;
1859                 }
1860
1861                 /*
1862                  * Try again with this object's new backing object.
1863                  */
1864         }
1865 }
1866
1867 /*
1868  *      vm_object_page_remove:
1869  *
1870  *      For the given object, either frees or invalidates each of the
1871  *      specified pages.  In general, a page is freed.  However, if a page is
1872  *      wired for any reason other than the existence of a managed, wired
1873  *      mapping, then it may be invalidated but not removed from the object.
1874  *      Pages are specified by the given range ["start", "end") and the option
1875  *      OBJPR_CLEANONLY.  As a special case, if "end" is zero, then the range
1876  *      extends from "start" to the end of the object.  If the option
1877  *      OBJPR_CLEANONLY is specified, then only the non-dirty pages within the
1878  *      specified range are affected.  If the option OBJPR_NOTMAPPED is
1879  *      specified, then the pages within the specified range must have no
1880  *      mappings.  Otherwise, if this option is not specified, any mappings to
1881  *      the specified pages are removed before the pages are freed or
1882  *      invalidated.
1883  *
1884  *      In general, this operation should only be performed on objects that
1885  *      contain managed pages.  There are, however, two exceptions.  First, it
1886  *      is performed on the kernel and kmem objects by vm_map_entry_delete().
1887  *      Second, it is used by msync(..., MS_INVALIDATE) to invalidate device-
1888  *      backed pages.  In both of these cases, the option OBJPR_CLEANONLY must
1889  *      not be specified and the option OBJPR_NOTMAPPED must be specified.
1890  *
1891  *      The object must be locked.
1892  */
1893 void
1894 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1895     int options)
1896 {
1897         vm_page_t p, next;
1898
1899         VM_OBJECT_ASSERT_WLOCKED(object);
1900         KASSERT((object->flags & OBJ_UNMANAGED) == 0 ||
1901             (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED,
1902             ("vm_object_page_remove: illegal options for object %p", object));
1903         if (object->resident_page_count == 0)
1904                 goto skipmemq;
1905         vm_object_pip_add(object, 1);
1906 again:
1907         p = vm_page_find_least(object, start);
1908
1909         /*
1910          * Here, the variable "p" is either (1) the page with the least pindex
1911          * greater than or equal to the parameter "start" or (2) NULL. 
1912          */
1913         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
1914                 next = TAILQ_NEXT(p, listq);
1915
1916                 /*
1917                  * If the page is wired for any reason besides the existence
1918                  * of managed, wired mappings, then it cannot be freed.  For
1919                  * example, fictitious pages, which represent device memory,
1920                  * are inherently wired and cannot be freed.  They can,
1921                  * however, be invalidated if the option OBJPR_CLEANONLY is
1922                  * not specified.
1923                  */
1924                 vm_page_lock(p);
1925                 if (vm_page_xbusied(p)) {
1926                         VM_OBJECT_WUNLOCK(object);
1927                         vm_page_busy_sleep(p, "vmopax");
1928                         VM_OBJECT_WLOCK(object);
1929                         goto again;
1930                 }
1931                 if (p->wire_count != 0) {
1932                         if ((options & OBJPR_NOTMAPPED) == 0)
1933                                 pmap_remove_all(p);
1934                         if ((options & OBJPR_CLEANONLY) == 0) {
1935                                 p->valid = 0;
1936                                 vm_page_undirty(p);
1937                         }
1938                         goto next;
1939                 }
1940                 if (vm_page_busied(p)) {
1941                         VM_OBJECT_WUNLOCK(object);
1942                         vm_page_busy_sleep(p, "vmopar");
1943                         VM_OBJECT_WLOCK(object);
1944                         goto again;
1945                 }
1946                 KASSERT((p->flags & PG_FICTITIOUS) == 0,
1947                     ("vm_object_page_remove: page %p is fictitious", p));
1948                 if ((options & OBJPR_CLEANONLY) != 0 && p->valid != 0) {
1949                         if ((options & OBJPR_NOTMAPPED) == 0)
1950                                 pmap_remove_write(p);
1951                         if (p->dirty)
1952                                 goto next;
1953                 }
1954                 if ((options & OBJPR_NOTMAPPED) == 0)
1955                         pmap_remove_all(p);
1956                 vm_page_free(p);
1957 next:
1958                 vm_page_unlock(p);
1959         }
1960         vm_object_pip_wakeup(object);
1961 skipmemq:
1962         if (__predict_false(!vm_object_cache_is_empty(object)))
1963                 vm_page_cache_free(object, start, end);
1964 }
1965
1966 /*
1967  *      vm_object_page_cache:
1968  *
1969  *      For the given object, attempt to move the specified clean
1970  *      pages to the cache queue.  If a page is wired for any reason,
1971  *      then it will not be changed.  Pages are specified by the given
1972  *      range ["start", "end").  As a special case, if "end" is zero,
1973  *      then the range extends from "start" to the end of the object.
1974  *      Any mappings to the specified pages are removed before the
1975  *      pages are moved to the cache queue.
1976  *
1977  *      This operation should only be performed on objects that
1978  *      contain non-fictitious, managed pages.
1979  *
1980  *      The object must be locked.
1981  */
1982 void
1983 vm_object_page_cache(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1984 {
1985         struct mtx *mtx, *new_mtx;
1986         vm_page_t p, next;
1987
1988         VM_OBJECT_ASSERT_WLOCKED(object);
1989         KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0,
1990             ("vm_object_page_cache: illegal object %p", object));
1991         if (object->resident_page_count == 0)
1992                 return;
1993         p = vm_page_find_least(object, start);
1994
1995         /*
1996          * Here, the variable "p" is either (1) the page with the least pindex
1997          * greater than or equal to the parameter "start" or (2) NULL. 
1998          */
1999         mtx = NULL;
2000         for (; p != NULL && (p->pindex < end || end == 0); p = next) {
2001                 next = TAILQ_NEXT(p, listq);
2002
2003                 /*
2004                  * Avoid releasing and reacquiring the same page lock.
2005                  */
2006                 new_mtx = vm_page_lockptr(p);
2007                 if (mtx != new_mtx) {
2008                         if (mtx != NULL)
2009                                 mtx_unlock(mtx);
2010                         mtx = new_mtx;
2011                         mtx_lock(mtx);
2012                 }
2013                 vm_page_try_to_cache(p);
2014         }
2015         if (mtx != NULL)
2016                 mtx_unlock(mtx);
2017 }
2018
2019 /*
2020  *      Populate the specified range of the object with valid pages.  Returns
2021  *      TRUE if the range is successfully populated and FALSE otherwise.
2022  *
2023  *      Note: This function should be optimized to pass a larger array of
2024  *      pages to vm_pager_get_pages() before it is applied to a non-
2025  *      OBJT_DEVICE object.
2026  *
2027  *      The object must be locked.
2028  */
2029 boolean_t
2030 vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
2031 {
2032         vm_page_t m, ma[1];
2033         vm_pindex_t pindex;
2034         int rv;
2035
2036         VM_OBJECT_ASSERT_WLOCKED(object);
2037         for (pindex = start; pindex < end; pindex++) {
2038                 m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
2039                 if (m->valid != VM_PAGE_BITS_ALL) {
2040                         ma[0] = m;
2041                         rv = vm_pager_get_pages(object, ma, 1, 0);
2042                         m = vm_page_lookup(object, pindex);
2043                         if (m == NULL)
2044                                 break;
2045                         if (rv != VM_PAGER_OK) {
2046                                 vm_page_lock(m);
2047                                 vm_page_free(m);
2048                                 vm_page_unlock(m);
2049                                 break;
2050                         }
2051                 }
2052                 /*
2053                  * Keep "m" busy because a subsequent iteration may unlock
2054                  * the object.
2055                  */
2056         }
2057         if (pindex > start) {
2058                 m = vm_page_lookup(object, start);
2059                 while (m != NULL && m->pindex < pindex) {
2060                         vm_page_xunbusy(m);
2061                         m = TAILQ_NEXT(m, listq);
2062                 }
2063         }
2064         return (pindex == end);
2065 }
2066
2067 /*
2068  *      Routine:        vm_object_coalesce
2069  *      Function:       Coalesces two objects backing up adjoining
2070  *                      regions of memory into a single object.
2071  *
2072  *      returns TRUE if objects were combined.
2073  *
2074  *      NOTE:   Only works at the moment if the second object is NULL -
2075  *              if it's not, which object do we lock first?
2076  *
2077  *      Parameters:
2078  *              prev_object     First object to coalesce
2079  *              prev_offset     Offset into prev_object
2080  *              prev_size       Size of reference to prev_object
2081  *              next_size       Size of reference to the second object
2082  *              reserved        Indicator that extension region has
2083  *                              swap accounted for
2084  *
2085  *      Conditions:
2086  *      The object must *not* be locked.
2087  */
2088 boolean_t
2089 vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset,
2090     vm_size_t prev_size, vm_size_t next_size, boolean_t reserved)
2091 {
2092         vm_pindex_t next_pindex;
2093
2094         if (prev_object == NULL)
2095                 return (TRUE);
2096         VM_OBJECT_WLOCK(prev_object);
2097         if ((prev_object->type != OBJT_DEFAULT &&
2098             prev_object->type != OBJT_SWAP) ||
2099             (prev_object->flags & OBJ_TMPFS_NODE) != 0) {
2100                 VM_OBJECT_WUNLOCK(prev_object);
2101                 return (FALSE);
2102         }
2103
2104         /*
2105          * Try to collapse the object first
2106          */
2107         vm_object_collapse(prev_object);
2108
2109         /*
2110          * Can't coalesce if: . more than one reference . paged out . shadows
2111          * another object . has a copy elsewhere (any of which mean that the
2112          * pages not mapped to prev_entry may be in use anyway)
2113          */
2114         if (prev_object->backing_object != NULL) {
2115                 VM_OBJECT_WUNLOCK(prev_object);
2116                 return (FALSE);
2117         }
2118
2119         prev_size >>= PAGE_SHIFT;
2120         next_size >>= PAGE_SHIFT;
2121         next_pindex = OFF_TO_IDX(prev_offset) + prev_size;
2122
2123         if ((prev_object->ref_count > 1) &&
2124             (prev_object->size != next_pindex)) {
2125                 VM_OBJECT_WUNLOCK(prev_object);
2126                 return (FALSE);
2127         }
2128
2129         /*
2130          * Account for the charge.
2131          */
2132         if (prev_object->cred != NULL) {
2133
2134                 /*
2135                  * If prev_object was charged, then this mapping,
2136                  * althought not charged now, may become writable
2137                  * later. Non-NULL cred in the object would prevent
2138                  * swap reservation during enabling of the write
2139                  * access, so reserve swap now. Failed reservation
2140                  * cause allocation of the separate object for the map
2141                  * entry, and swap reservation for this entry is
2142                  * managed in appropriate time.
2143                  */
2144                 if (!reserved && !swap_reserve_by_cred(ptoa(next_size),
2145                     prev_object->cred)) {
2146                         return (FALSE);
2147                 }
2148                 prev_object->charge += ptoa(next_size);
2149         }
2150
2151         /*
2152          * Remove any pages that may still be in the object from a previous
2153          * deallocation.
2154          */
2155         if (next_pindex < prev_object->size) {
2156                 vm_object_page_remove(prev_object, next_pindex, next_pindex +
2157                     next_size, 0);
2158                 if (prev_object->type == OBJT_SWAP)
2159                         swap_pager_freespace(prev_object,
2160                                              next_pindex, next_size);
2161 #if 0
2162                 if (prev_object->cred != NULL) {
2163                         KASSERT(prev_object->charge >=
2164                             ptoa(prev_object->size - next_pindex),
2165                             ("object %p overcharged 1 %jx %jx", prev_object,
2166                                 (uintmax_t)next_pindex, (uintmax_t)next_size));
2167                         prev_object->charge -= ptoa(prev_object->size -
2168                             next_pindex);
2169                 }
2170 #endif
2171         }
2172
2173         /*
2174          * Extend the object if necessary.
2175          */
2176         if (next_pindex + next_size > prev_object->size)
2177                 prev_object->size = next_pindex + next_size;
2178
2179         VM_OBJECT_WUNLOCK(prev_object);
2180         return (TRUE);
2181 }
2182
2183 void
2184 vm_object_set_writeable_dirty(vm_object_t object)
2185 {
2186
2187         VM_OBJECT_ASSERT_WLOCKED(object);
2188         if (object->type != OBJT_VNODE) {
2189                 if ((object->flags & OBJ_TMPFS_NODE) != 0) {
2190                         KASSERT(object->type == OBJT_SWAP, ("non-swap tmpfs"));
2191                         vm_object_set_flag(object, OBJ_TMPFS_DIRTY);
2192                 }
2193                 return;
2194         }
2195         object->generation++;
2196         if ((object->flags & OBJ_MIGHTBEDIRTY) != 0)
2197                 return;
2198         vm_object_set_flag(object, OBJ_MIGHTBEDIRTY);
2199 }
2200
2201 /*
2202  *      vm_object_unwire:
2203  *
2204  *      For each page offset within the specified range of the given object,
2205  *      find the highest-level page in the shadow chain and unwire it.  A page
2206  *      must exist at every page offset, and the highest-level page must be
2207  *      wired.
2208  */
2209 void
2210 vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length,
2211     uint8_t queue)
2212 {
2213         vm_object_t tobject;
2214         vm_page_t m, tm;
2215         vm_pindex_t end_pindex, pindex, tpindex;
2216         int depth, locked_depth;
2217
2218         KASSERT((offset & PAGE_MASK) == 0,
2219             ("vm_object_unwire: offset is not page aligned"));
2220         KASSERT((length & PAGE_MASK) == 0,
2221             ("vm_object_unwire: length is not a multiple of PAGE_SIZE"));
2222         /* The wired count of a fictitious page never changes. */
2223         if ((object->flags & OBJ_FICTITIOUS) != 0)
2224                 return;
2225         pindex = OFF_TO_IDX(offset);
2226         end_pindex = pindex + atop(length);
2227         locked_depth = 1;
2228         VM_OBJECT_RLOCK(object);
2229         m = vm_page_find_least(object, pindex);
2230         while (pindex < end_pindex) {
2231                 if (m == NULL || pindex < m->pindex) {
2232                         /*
2233                          * The first object in the shadow chain doesn't
2234                          * contain a page at the current index.  Therefore,
2235                          * the page must exist in a backing object.
2236                          */
2237                         tobject = object;
2238                         tpindex = pindex;
2239                         depth = 0;
2240                         do {
2241                                 tpindex +=
2242                                     OFF_TO_IDX(tobject->backing_object_offset);
2243                                 tobject = tobject->backing_object;
2244                                 KASSERT(tobject != NULL,
2245                                     ("vm_object_unwire: missing page"));
2246                                 if ((tobject->flags & OBJ_FICTITIOUS) != 0)
2247                                         goto next_page;
2248                                 depth++;
2249                                 if (depth == locked_depth) {
2250                                         locked_depth++;
2251                                         VM_OBJECT_RLOCK(tobject);
2252                                 }
2253                         } while ((tm = vm_page_lookup(tobject, tpindex)) ==
2254                             NULL);
2255                 } else {
2256                         tm = m;
2257                         m = TAILQ_NEXT(m, listq);
2258                 }
2259                 vm_page_lock(tm);
2260                 vm_page_unwire(tm, queue);
2261                 vm_page_unlock(tm);
2262 next_page:
2263                 pindex++;
2264         }
2265         /* Release the accumulated object locks. */
2266         for (depth = 0; depth < locked_depth; depth++) {
2267                 tobject = object->backing_object;
2268                 VM_OBJECT_RUNLOCK(object);
2269                 object = tobject;
2270         }
2271 }
2272
2273 struct vnode *
2274 vm_object_vnode(vm_object_t object)
2275 {
2276
2277         VM_OBJECT_ASSERT_LOCKED(object);
2278         if (object->type == OBJT_VNODE)
2279                 return (object->handle);
2280         if (object->type == OBJT_SWAP && (object->flags & OBJ_TMPFS) != 0)
2281                 return (object->un_pager.swp.swp_tmpfs);
2282         return (NULL);
2283 }
2284
2285 static int
2286 sysctl_vm_object_list(SYSCTL_HANDLER_ARGS)
2287 {
2288         struct kinfo_vmobject kvo;
2289         char *fullpath, *freepath;
2290         struct vnode *vp;
2291         struct vattr va;
2292         vm_object_t obj;
2293         vm_page_t m;
2294         int count, error;
2295
2296         if (req->oldptr == NULL) {
2297                 /*
2298                  * If an old buffer has not been provided, generate an
2299                  * estimate of the space needed for a subsequent call.
2300                  */
2301                 mtx_lock(&vm_object_list_mtx);
2302                 count = 0;
2303                 TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2304                         if (obj->type == OBJT_DEAD)
2305                                 continue;
2306                         count++;
2307                 }
2308                 mtx_unlock(&vm_object_list_mtx);
2309                 return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) *
2310                     count * 11 / 10));
2311         }
2312
2313         error = 0;
2314
2315         /*
2316          * VM objects are type stable and are never removed from the
2317          * list once added.  This allows us to safely read obj->object_list
2318          * after reacquiring the VM object lock.
2319          */
2320         mtx_lock(&vm_object_list_mtx);
2321         TAILQ_FOREACH(obj, &vm_object_list, object_list) {
2322                 if (obj->type == OBJT_DEAD)
2323                         continue;
2324                 VM_OBJECT_RLOCK(obj);
2325                 if (obj->type == OBJT_DEAD) {
2326                         VM_OBJECT_RUNLOCK(obj);
2327                         continue;
2328                 }
2329                 mtx_unlock(&vm_object_list_mtx);
2330                 kvo.kvo_size = ptoa(obj->size);
2331                 kvo.kvo_resident = obj->resident_page_count;
2332                 kvo.kvo_ref_count = obj->ref_count;
2333                 kvo.kvo_shadow_count = obj->shadow_count;
2334                 kvo.kvo_memattr = obj->memattr;
2335                 kvo.kvo_active = 0;
2336                 kvo.kvo_inactive = 0;
2337                 TAILQ_FOREACH(m, &obj->memq, listq) {
2338                         /*
2339                          * A page may belong to the object but be
2340                          * dequeued and set to PQ_NONE while the
2341                          * object lock is not held.  This makes the
2342                          * reads of m->queue below racy, and we do not
2343                          * count pages set to PQ_NONE.  However, this
2344                          * sysctl is only meant to give an
2345                          * approximation of the system anyway.
2346                          */
2347                         if (m->queue == PQ_ACTIVE)
2348                                 kvo.kvo_active++;
2349                         else if (m->queue == PQ_INACTIVE)
2350                                 kvo.kvo_inactive++;
2351                 }
2352
2353                 kvo.kvo_vn_fileid = 0;
2354                 kvo.kvo_vn_fsid = 0;
2355                 freepath = NULL;
2356                 fullpath = "";
2357                 vp = NULL;
2358                 switch (obj->type) {
2359                 case OBJT_DEFAULT:
2360                         kvo.kvo_type = KVME_TYPE_DEFAULT;
2361                         break;
2362                 case OBJT_VNODE:
2363                         kvo.kvo_type = KVME_TYPE_VNODE;
2364                         vp = obj->handle;
2365                         vref(vp);
2366                         break;
2367                 case OBJT_SWAP:
2368                         kvo.kvo_type = KVME_TYPE_SWAP;
2369                         break;
2370                 case OBJT_DEVICE:
2371                         kvo.kvo_type = KVME_TYPE_DEVICE;
2372                         break;
2373                 case OBJT_PHYS:
2374                         kvo.kvo_type = KVME_TYPE_PHYS;
2375                         break;
2376                 case OBJT_DEAD:
2377                         kvo.kvo_type = KVME_TYPE_DEAD;
2378                         break;
2379                 case OBJT_SG:
2380                         kvo.kvo_type = KVME_TYPE_SG;
2381                         break;
2382                 case OBJT_MGTDEVICE:
2383                         kvo.kvo_type = KVME_TYPE_MGTDEVICE;
2384                         break;
2385                 default:
2386                         kvo.kvo_type = KVME_TYPE_UNKNOWN;
2387                         break;
2388                 }
2389                 VM_OBJECT_RUNLOCK(obj);
2390                 if (vp != NULL) {
2391                         vn_fullpath(curthread, vp, &fullpath, &freepath);
2392                         vn_lock(vp, LK_SHARED | LK_RETRY);
2393                         if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) {
2394                                 kvo.kvo_vn_fileid = va.va_fileid;
2395                                 kvo.kvo_vn_fsid = va.va_fsid;
2396                         }
2397                         vput(vp);
2398                 }
2399
2400                 strlcpy(kvo.kvo_path, fullpath, sizeof(kvo.kvo_path));
2401                 if (freepath != NULL)
2402                         free(freepath, M_TEMP);
2403
2404                 /* Pack record size down */
2405                 kvo.kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) +
2406                     strlen(kvo.kvo_path) + 1;
2407                 kvo.kvo_structsize = roundup(kvo.kvo_structsize,
2408                     sizeof(uint64_t));
2409                 error = SYSCTL_OUT(req, &kvo, kvo.kvo_structsize);
2410                 mtx_lock(&vm_object_list_mtx);
2411                 if (error)
2412                         break;
2413         }
2414         mtx_unlock(&vm_object_list_mtx);
2415         return (error);
2416 }
2417 SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP |
2418     CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject",
2419     "List of VM objects");
2420
2421 #include "opt_ddb.h"
2422 #ifdef DDB
2423 #include <sys/kernel.h>
2424
2425 #include <sys/cons.h>
2426
2427 #include <ddb/ddb.h>
2428
2429 static int
2430 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2431 {
2432         vm_map_t tmpm;
2433         vm_map_entry_t tmpe;
2434         vm_object_t obj;
2435         int entcount;
2436
2437         if (map == 0)
2438                 return 0;
2439
2440         if (entry == 0) {
2441                 tmpe = map->header.next;
2442                 entcount = map->nentries;
2443                 while (entcount-- && (tmpe != &map->header)) {
2444                         if (_vm_object_in_map(map, object, tmpe)) {
2445                                 return 1;
2446                         }
2447                         tmpe = tmpe->next;
2448                 }
2449         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2450                 tmpm = entry->object.sub_map;
2451                 tmpe = tmpm->header.next;
2452                 entcount = tmpm->nentries;
2453                 while (entcount-- && tmpe != &tmpm->header) {
2454                         if (_vm_object_in_map(tmpm, object, tmpe)) {
2455                                 return 1;
2456                         }
2457                         tmpe = tmpe->next;
2458                 }
2459         } else if ((obj = entry->object.vm_object) != NULL) {
2460                 for (; obj; obj = obj->backing_object)
2461                         if (obj == object) {
2462                                 return 1;
2463                         }
2464         }
2465         return 0;
2466 }
2467
2468 static int
2469 vm_object_in_map(vm_object_t object)
2470 {
2471         struct proc *p;
2472
2473         /* sx_slock(&allproc_lock); */
2474         FOREACH_PROC_IN_SYSTEM(p) {
2475                 if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
2476                         continue;
2477                 if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) {
2478                         /* sx_sunlock(&allproc_lock); */
2479                         return 1;
2480                 }
2481         }
2482         /* sx_sunlock(&allproc_lock); */
2483         if (_vm_object_in_map(kernel_map, object, 0))
2484                 return 1;
2485         return 0;
2486 }
2487
2488 DB_SHOW_COMMAND(vmochk, vm_object_check)
2489 {
2490         vm_object_t object;
2491
2492         /*
2493          * make sure that internal objs are in a map somewhere
2494          * and none have zero ref counts.
2495          */
2496         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2497                 if (object->handle == NULL &&
2498                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2499                         if (object->ref_count == 0) {
2500                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
2501                                         (long)object->size);
2502                         }
2503                         if (!vm_object_in_map(object)) {
2504                                 db_printf(
2505                         "vmochk: internal obj is not in a map: "
2506                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
2507                                     object->ref_count, (u_long)object->size, 
2508                                     (u_long)object->size,
2509                                     (void *)object->backing_object);
2510                         }
2511                 }
2512         }
2513 }
2514
2515 /*
2516  *      vm_object_print:        [ debug ]
2517  */
2518 DB_SHOW_COMMAND(object, vm_object_print_static)
2519 {
2520         /* XXX convert args. */
2521         vm_object_t object = (vm_object_t)addr;
2522         boolean_t full = have_addr;
2523
2524         vm_page_t p;
2525
2526         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2527 #define count   was_count
2528
2529         int count;
2530
2531         if (object == NULL)
2532                 return;
2533
2534         db_iprintf(
2535             "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n",
2536             object, (int)object->type, (uintmax_t)object->size,
2537             object->resident_page_count, object->ref_count, object->flags,
2538             object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge);
2539         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n",
2540             object->shadow_count, 
2541             object->backing_object ? object->backing_object->ref_count : 0,
2542             object->backing_object, (uintmax_t)object->backing_object_offset);
2543
2544         if (!full)
2545                 return;
2546
2547         db_indent += 2;
2548         count = 0;
2549         TAILQ_FOREACH(p, &object->memq, listq) {
2550                 if (count == 0)
2551                         db_iprintf("memory:=");
2552                 else if (count == 6) {
2553                         db_printf("\n");
2554                         db_iprintf(" ...");
2555                         count = 0;
2556                 } else
2557                         db_printf(",");
2558                 count++;
2559
2560                 db_printf("(off=0x%jx,page=0x%jx)",
2561                     (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p));
2562         }
2563         if (count != 0)
2564                 db_printf("\n");
2565         db_indent -= 2;
2566 }
2567
2568 /* XXX. */
2569 #undef count
2570
2571 /* XXX need this non-static entry for calling from vm_map_print. */
2572 void
2573 vm_object_print(
2574         /* db_expr_t */ long addr,
2575         boolean_t have_addr,
2576         /* db_expr_t */ long count,
2577         char *modif)
2578 {
2579         vm_object_print_static(addr, have_addr, count, modif);
2580 }
2581
2582 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
2583 {
2584         vm_object_t object;
2585         vm_pindex_t fidx;
2586         vm_paddr_t pa;
2587         vm_page_t m, prev_m;
2588         int rcount, nl, c;
2589
2590         nl = 0;
2591         TAILQ_FOREACH(object, &vm_object_list, object_list) {
2592                 db_printf("new object: %p\n", (void *)object);
2593                 if (nl > 18) {
2594                         c = cngetc();
2595                         if (c != ' ')
2596                                 return;
2597                         nl = 0;
2598                 }
2599                 nl++;
2600                 rcount = 0;
2601                 fidx = 0;
2602                 pa = -1;
2603                 TAILQ_FOREACH(m, &object->memq, listq) {
2604                         if (m->pindex > 128)
2605                                 break;
2606                         if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL &&
2607                             prev_m->pindex + 1 != m->pindex) {
2608                                 if (rcount) {
2609                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2610                                                 (long)fidx, rcount, (long)pa);
2611                                         if (nl > 18) {
2612                                                 c = cngetc();
2613                                                 if (c != ' ')
2614                                                         return;
2615                                                 nl = 0;
2616                                         }
2617                                         nl++;
2618                                         rcount = 0;
2619                                 }
2620                         }                               
2621                         if (rcount &&
2622                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
2623                                 ++rcount;
2624                                 continue;
2625                         }
2626                         if (rcount) {
2627                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2628                                         (long)fidx, rcount, (long)pa);
2629                                 if (nl > 18) {
2630                                         c = cngetc();
2631                                         if (c != ' ')
2632                                                 return;
2633                                         nl = 0;
2634                                 }
2635                                 nl++;
2636                         }
2637                         fidx = m->pindex;
2638                         pa = VM_PAGE_TO_PHYS(m);
2639                         rcount = 1;
2640                 }
2641                 if (rcount) {
2642                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2643                                 (long)fidx, rcount, (long)pa);
2644                         if (nl > 18) {
2645                                 c = cngetc();
2646                                 if (c != ' ')
2647                                         return;
2648                                 nl = 0;
2649                         }
2650                         nl++;
2651                 }
2652         }
2653 }
2654 #endif /* DDB */