]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_pageout.c
MFC r286886: Fixing typo as well as improving readability of a few comments.
[FreeBSD/stable/8.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 /*
219  * vm_pageout_fallback_object_lock:
220  * 
221  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
222  * known to have failed and page queue must be either PQ_ACTIVE or
223  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
224  * while locking the vm object.  Use marker page to detect page queue
225  * changes and maintain notion of next page on page queue.  Return
226  * TRUE if no changes were detected, FALSE otherwise.  vm object is
227  * locked on return.
228  * 
229  * This function depends on both the lock portion of struct vm_object
230  * and normal struct vm_page being type stable.
231  */
232 boolean_t
233 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
234 {
235         struct vm_page marker;
236         boolean_t unchanged;
237         u_short queue;
238         vm_object_t object;
239
240         /*
241          * Initialize our marker
242          */
243         bzero(&marker, sizeof(marker));
244         marker.flags = PG_FICTITIOUS | PG_MARKER;
245         marker.oflags = VPO_BUSY;
246         marker.queue = m->queue;
247         marker.wire_count = 1;
248
249         queue = m->queue;
250         object = m->object;
251         
252         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
253                            m, &marker, pageq);
254         vm_page_unlock_queues();
255         VM_OBJECT_LOCK(object);
256         vm_page_lock_queues();
257
258         /* Page queue might have changed. */
259         *next = TAILQ_NEXT(&marker, pageq);
260         unchanged = (m->queue == queue &&
261                      m->object == object &&
262                      &marker == TAILQ_NEXT(m, pageq));
263         TAILQ_REMOVE(&vm_page_queues[queue].pl,
264                      &marker, pageq);
265         return (unchanged);
266 }
267
268 /*
269  * vm_pageout_clean:
270  *
271  * Clean the page and remove it from the laundry.
272  * 
273  * We set the busy bit to cause potential page faults on this page to
274  * block.  Note the careful timing, however, the busy bit isn't set till
275  * late and we cannot do anything that will mess with the page.
276  */
277 static int
278 vm_pageout_clean(m)
279         vm_page_t m;
280 {
281         vm_object_t object;
282         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
283         int pageout_count;
284         int ib, is, page_base;
285         vm_pindex_t pindex = m->pindex;
286
287         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
288         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
289
290         /*
291          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
292          * with the new swapper, but we could have serious problems paging
293          * out other object types if there is insufficient memory.  
294          *
295          * Unfortunately, checking free memory here is far too late, so the
296          * check has been moved up a procedural level.
297          */
298
299         /*
300          * Can't clean the page if it's busy or held.
301          */
302         if ((m->hold_count != 0) ||
303             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
304                 return 0;
305         }
306
307         mc[vm_pageout_page_count] = pb = ps = m;
308         pageout_count = 1;
309         page_base = vm_pageout_page_count;
310         ib = 1;
311         is = 1;
312
313         /*
314          * Scan object for clusterable pages.
315          *
316          * We can cluster ONLY if: ->> the page is NOT
317          * clean, wired, busy, held, or mapped into a
318          * buffer, and one of the following:
319          * 1) The page is inactive, or a seldom used
320          *    active page.
321          * -or-
322          * 2) we force the issue.
323          *
324          * During heavy mmap/modification loads the pageout
325          * daemon can really fragment the underlying file
326          * due to flushing pages out of order and not trying
327          * align the clusters (which leave sporatic out-of-order
328          * holes).  To solve this problem we do the reverse scan
329          * first and attempt to align our cluster, then do a 
330          * forward scan if room remains.
331          */
332         object = m->object;
333 more:
334         while (ib && pageout_count < vm_pageout_page_count) {
335                 vm_page_t p;
336
337                 if (ib > pindex) {
338                         ib = 0;
339                         break;
340                 }
341
342                 if ((p = vm_page_prev(pb)) == NULL ||
343                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
344                         ib = 0;
345                         break;
346                 }
347                 vm_page_test_dirty(p);
348                 if (p->dirty == 0 ||
349                     p->queue != PQ_INACTIVE ||
350                     p->hold_count != 0) {       /* may be undergoing I/O */
351                         ib = 0;
352                         break;
353                 }
354                 mc[--page_base] = pb = p;
355                 ++pageout_count;
356                 ++ib;
357                 /*
358                  * alignment boundry, stop here and switch directions.  Do
359                  * not clear ib.
360                  */
361                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
362                         break;
363         }
364
365         while (pageout_count < vm_pageout_page_count && 
366             pindex + is < object->size) {
367                 vm_page_t p;
368
369                 if ((p = vm_page_next(ps)) == NULL ||
370                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
371                         break;
372                 vm_page_test_dirty(p);
373                 if (p->dirty == 0 ||
374                     p->queue != PQ_INACTIVE ||
375                     p->hold_count != 0) {       /* may be undergoing I/O */
376                         break;
377                 }
378                 mc[page_base + pageout_count] = ps = p;
379                 ++pageout_count;
380                 ++is;
381         }
382
383         /*
384          * If we exhausted our forward scan, continue with the reverse scan
385          * when possible, even past a page boundry.  This catches boundry
386          * conditions.
387          */
388         if (ib && pageout_count < vm_pageout_page_count)
389                 goto more;
390
391         /*
392          * we allow reads during pageouts...
393          */
394         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
395             NULL));
396 }
397
398 /*
399  * vm_pageout_flush() - launder the given pages
400  *
401  *      The given pages are laundered.  Note that we setup for the start of
402  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
403  *      reference count all in here rather then in the parent.  If we want
404  *      the parent to do more sophisticated things we may have to change
405  *      the ordering.
406  *
407  *      Returned runlen is the count of pages between mreq and first
408  *      page after mreq with status VM_PAGER_AGAIN.
409  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
410  *      for any page in runlen set.
411  */
412 int
413 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
414     boolean_t *eio)
415 {
416         vm_object_t object = mc[0]->object;
417         int pageout_status[count];
418         int numpagedout = 0;
419         int i, runlen;
420
421         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423         /*
424          * Initiate I/O.  Bump the vm_page_t->busy counter and
425          * mark the pages read-only.
426          *
427          * We do not have to fixup the clean/dirty bits here... we can
428          * allow the pager to do it after the I/O completes.
429          *
430          * NOTE! mc[i]->dirty may be partial or fragmented due to an
431          * edge case with file fragments.
432          */
433         for (i = 0; i < count; i++) {
434                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
436                         mc[i], i, count));
437                 vm_page_io_start(mc[i]);
438                 pmap_remove_write(mc[i]);
439         }
440         vm_page_unlock_queues();
441         vm_object_pip_add(object, count);
442
443         vm_pager_put_pages(object, mc, count, flags, pageout_status);
444
445         runlen = count - mreq;
446         if (eio != NULL)
447                 *eio = FALSE;
448         vm_page_lock_queues();
449         for (i = 0; i < count; i++) {
450                 vm_page_t mt = mc[i];
451
452                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
453                     (mt->flags & PG_WRITEABLE) == 0,
454                     ("vm_pageout_flush: page %p is not write protected", mt));
455                 switch (pageout_status[i]) {
456                 case VM_PAGER_OK:
457                 case VM_PAGER_PEND:
458                         numpagedout++;
459                         break;
460                 case VM_PAGER_BAD:
461                         /*
462                          * Page outside of range of object. Right now we
463                          * essentially lose the changes by pretending it
464                          * worked.
465                          */
466                         vm_page_undirty(mt);
467                         break;
468                 case VM_PAGER_ERROR:
469                 case VM_PAGER_FAIL:
470                         /*
471                          * If page couldn't be paged out, then reactivate the
472                          * page so it doesn't clog the inactive list.  (We
473                          * will try paging out it again later).
474                          */
475                         vm_page_activate(mt);
476                         if (eio != NULL && i >= mreq && i - mreq < runlen)
477                                 *eio = TRUE;
478                         break;
479                 case VM_PAGER_AGAIN:
480                         if (i >= mreq && i - mreq < runlen)
481                                 runlen = i - mreq;
482                         break;
483                 }
484
485                 /*
486                  * If the operation is still going, leave the page busy to
487                  * block all other accesses. Also, leave the paging in
488                  * progress indicator set so that we don't attempt an object
489                  * collapse.
490                  */
491                 if (pageout_status[i] != VM_PAGER_PEND) {
492                         vm_object_pip_wakeup(object);
493                         vm_page_io_finish(mt);
494                         if (vm_page_count_severe())
495                                 vm_page_try_to_cache(mt);
496                 }
497         }
498         if (prunlen != NULL)
499                 *prunlen = runlen;
500         return (numpagedout);
501 }
502
503 #if !defined(NO_SWAPPING)
504 /*
505  *      vm_pageout_object_deactivate_pages
506  *
507  *      deactivate enough pages to satisfy the inactive target
508  *      requirements or if vm_page_proc_limit is set, then
509  *      deactivate all of the pages in the object and its
510  *      backing_objects.
511  *
512  *      The object and map must be locked.
513  */
514 static void
515 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
516         pmap_t pmap;
517         vm_object_t first_object;
518         long desired;
519 {
520         vm_object_t backing_object, object;
521         vm_page_t p, next;
522         int actcount, rcount, remove_mode;
523
524         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
525         if (first_object->type == OBJT_DEVICE ||
526             first_object->type == OBJT_SG ||
527             first_object->type == OBJT_PHYS)
528                 return;
529         for (object = first_object;; object = backing_object) {
530                 if (pmap_resident_count(pmap) <= desired)
531                         goto unlock_return;
532                 if (object->paging_in_progress)
533                         goto unlock_return;
534
535                 remove_mode = 0;
536                 if (object->shadow_count > 1)
537                         remove_mode = 1;
538                 /*
539                  * scan the objects entire memory queue
540                  */
541                 rcount = object->resident_page_count;
542                 p = TAILQ_FIRST(&object->memq);
543                 vm_page_lock_queues();
544                 while (p && (rcount-- > 0)) {
545                         if (pmap_resident_count(pmap) <= desired) {
546                                 vm_page_unlock_queues();
547                                 goto unlock_return;
548                         }
549                         next = TAILQ_NEXT(p, listq);
550                         cnt.v_pdpages++;
551                         if (p->wire_count != 0 ||
552                             p->hold_count != 0 ||
553                             p->busy != 0 ||
554                             (p->oflags & VPO_BUSY) ||
555                             (p->flags & PG_UNMANAGED) ||
556                             !pmap_page_exists_quick(pmap, p)) {
557                                 p = next;
558                                 continue;
559                         }
560                         actcount = pmap_ts_referenced(p);
561                         if (actcount) {
562                                 vm_page_flag_set(p, PG_REFERENCED);
563                         } else if (p->flags & PG_REFERENCED) {
564                                 actcount = 1;
565                         }
566                         if ((p->queue != PQ_ACTIVE) &&
567                                 (p->flags & PG_REFERENCED)) {
568                                 vm_page_activate(p);
569                                 p->act_count += actcount;
570                                 vm_page_flag_clear(p, PG_REFERENCED);
571                         } else if (p->queue == PQ_ACTIVE) {
572                                 if ((p->flags & PG_REFERENCED) == 0) {
573                                         p->act_count -= min(p->act_count, ACT_DECLINE);
574                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
575                                                 pmap_remove_all(p);
576                                                 vm_page_deactivate(p);
577                                         } else {
578                                                 vm_page_requeue(p);
579                                         }
580                                 } else {
581                                         vm_page_activate(p);
582                                         vm_page_flag_clear(p, PG_REFERENCED);
583                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
584                                                 p->act_count += ACT_ADVANCE;
585                                         vm_page_requeue(p);
586                                 }
587                         } else if (p->queue == PQ_INACTIVE) {
588                                 pmap_remove_all(p);
589                         }
590                         p = next;
591                 }
592                 vm_page_unlock_queues();
593                 if ((backing_object = object->backing_object) == NULL)
594                         goto unlock_return;
595                 VM_OBJECT_LOCK(backing_object);
596                 if (object != first_object)
597                         VM_OBJECT_UNLOCK(object);
598         }
599 unlock_return:
600         if (object != first_object)
601                 VM_OBJECT_UNLOCK(object);
602 }
603
604 /*
605  * deactivate some number of pages in a map, try to do it fairly, but
606  * that is really hard to do.
607  */
608 static void
609 vm_pageout_map_deactivate_pages(map, desired)
610         vm_map_t map;
611         long desired;
612 {
613         vm_map_entry_t tmpe;
614         vm_object_t obj, bigobj;
615         int nothingwired;
616
617         if (!vm_map_trylock(map))
618                 return;
619
620         bigobj = NULL;
621         nothingwired = TRUE;
622
623         /*
624          * first, search out the biggest object, and try to free pages from
625          * that.
626          */
627         tmpe = map->header.next;
628         while (tmpe != &map->header) {
629                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
630                         obj = tmpe->object.vm_object;
631                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
632                                 if (obj->shadow_count <= 1 &&
633                                     (bigobj == NULL ||
634                                      bigobj->resident_page_count < obj->resident_page_count)) {
635                                         if (bigobj != NULL)
636                                                 VM_OBJECT_UNLOCK(bigobj);
637                                         bigobj = obj;
638                                 } else
639                                         VM_OBJECT_UNLOCK(obj);
640                         }
641                 }
642                 if (tmpe->wired_count > 0)
643                         nothingwired = FALSE;
644                 tmpe = tmpe->next;
645         }
646
647         if (bigobj != NULL) {
648                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
649                 VM_OBJECT_UNLOCK(bigobj);
650         }
651         /*
652          * Next, hunt around for other pages to deactivate.  We actually
653          * do this search sort of wrong -- .text first is not the best idea.
654          */
655         tmpe = map->header.next;
656         while (tmpe != &map->header) {
657                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
658                         break;
659                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
660                         obj = tmpe->object.vm_object;
661                         if (obj != NULL) {
662                                 VM_OBJECT_LOCK(obj);
663                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
664                                 VM_OBJECT_UNLOCK(obj);
665                         }
666                 }
667                 tmpe = tmpe->next;
668         }
669
670         /*
671          * Remove all mappings if a process is swapped out, this will free page
672          * table pages.
673          */
674         if (desired == 0 && nothingwired) {
675                 tmpe = map->header.next;
676                 while (tmpe != &map->header) {
677                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
678                         tmpe = tmpe->next;
679                 }
680         }
681         vm_map_unlock(map);
682 }
683 #endif          /* !defined(NO_SWAPPING) */
684
685 /*
686  *      vm_pageout_scan does the dirty work for the pageout daemon.
687  */
688 static void
689 vm_pageout_scan(int pass)
690 {
691         vm_page_t m, next;
692         struct vm_page marker;
693         int page_shortage, maxscan, pcount;
694         int addl_page_shortage, addl_page_shortage_init;
695         vm_object_t object;
696         int actcount;
697         int vnodes_skipped = 0;
698         int maxlaunder;
699
700         /*
701          * Decrease registered cache sizes.
702          */
703         EVENTHANDLER_INVOKE(vm_lowmem, 0);
704         /*
705          * We do this explicitly after the caches have been drained above.
706          */
707         uma_reclaim();
708
709         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
710
711         /*
712          * Calculate the number of pages we want to either free or move
713          * to the cache.
714          */
715         page_shortage = vm_paging_target() + addl_page_shortage_init;
716
717         /*
718          * Initialize our marker
719          */
720         bzero(&marker, sizeof(marker));
721         marker.flags = PG_FICTITIOUS | PG_MARKER;
722         marker.oflags = VPO_BUSY;
723         marker.queue = PQ_INACTIVE;
724         marker.wire_count = 1;
725
726         /*
727          * Start scanning the inactive queue for pages we can move to the
728          * cache or free.  The scan will stop when the target is reached or
729          * we have scanned the entire inactive queue.  Note that m->act_count
730          * is not used to form decisions for the inactive queue, only for the
731          * active queue.
732          *
733          * maxlaunder limits the number of dirty pages we flush per scan.
734          * For most systems a smaller value (16 or 32) is more robust under
735          * extreme memory and disk pressure because any unnecessary writes
736          * to disk can result in extreme performance degredation.  However,
737          * systems with excessive dirty pages (especially when MAP_NOSYNC is
738          * used) will die horribly with limited laundering.  If the pageout
739          * daemon cannot clean enough pages in the first pass, we let it go
740          * all out in succeeding passes.
741          */
742         if ((maxlaunder = vm_max_launder) <= 1)
743                 maxlaunder = 1;
744         if (pass)
745                 maxlaunder = 10000;
746         vm_page_lock_queues();
747 rescan0:
748         addl_page_shortage = addl_page_shortage_init;
749         maxscan = cnt.v_inactive_count;
750
751         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
752              m != NULL && maxscan-- > 0 && page_shortage > 0;
753              m = next) {
754
755                 cnt.v_pdpages++;
756
757                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
758                         goto rescan0;
759                 }
760
761                 next = TAILQ_NEXT(m, pageq);
762                 object = m->object;
763
764                 /*
765                  * skip marker pages
766                  */
767                 if (m->flags & PG_MARKER)
768                         continue;
769
770                 /*
771                  * A held page may be undergoing I/O, so skip it.
772                  */
773                 if (m->hold_count) {
774                         vm_page_requeue(m);
775                         addl_page_shortage++;
776                         continue;
777                 }
778                 /*
779                  * Don't mess with busy pages, keep in the front of the
780                  * queue, most likely are being paged out.
781                  */
782                 if (!VM_OBJECT_TRYLOCK(object) &&
783                     (!vm_pageout_fallback_object_lock(m, &next) ||
784                      m->hold_count != 0)) {
785                         VM_OBJECT_UNLOCK(object);
786                         addl_page_shortage++;
787                         continue;
788                 }
789                 if (m->busy || (m->oflags & VPO_BUSY)) {
790                         VM_OBJECT_UNLOCK(object);
791                         addl_page_shortage++;
792                         continue;
793                 }
794
795                 /*
796                  * If the object is not being used, we ignore previous 
797                  * references.
798                  */
799                 if (object->ref_count == 0) {
800                         vm_page_flag_clear(m, PG_REFERENCED);
801                         KASSERT(!pmap_page_is_mapped(m),
802                             ("vm_pageout_scan: page %p is mapped", m));
803
804                 /*
805                  * Otherwise, if the page has been referenced while in the 
806                  * inactive queue, we bump the "activation count" upwards, 
807                  * making it less likely that the page will be added back to 
808                  * the inactive queue prematurely again.  Here we check the 
809                  * page tables (or emulated bits, if any), given the upper 
810                  * level VM system not knowing anything about existing 
811                  * references.
812                  */
813                 } else if (((m->flags & PG_REFERENCED) == 0) &&
814                         (actcount = pmap_ts_referenced(m))) {
815                         vm_page_activate(m);
816                         VM_OBJECT_UNLOCK(object);
817                         m->act_count += (actcount + ACT_ADVANCE);
818                         continue;
819                 }
820
821                 /*
822                  * If the upper level VM system knows about any page 
823                  * references, we activate the page.  We also set the 
824                  * "activation count" higher than normal so that we will less 
825                  * likely place pages back onto the inactive queue again.
826                  */
827                 if ((m->flags & PG_REFERENCED) != 0) {
828                         vm_page_flag_clear(m, PG_REFERENCED);
829                         actcount = pmap_ts_referenced(m);
830                         vm_page_activate(m);
831                         VM_OBJECT_UNLOCK(object);
832                         m->act_count += (actcount + ACT_ADVANCE + 1);
833                         continue;
834                 }
835
836                 /*
837                  * If the upper level VM system does not believe that the page
838                  * is fully dirty, but it is mapped for write access, then we
839                  * consult the pmap to see if the page's dirty status should
840                  * be updated.
841                  */
842                 if (m->dirty != VM_PAGE_BITS_ALL &&
843                     (m->flags & PG_WRITEABLE) != 0) {
844                         /*
845                          * Avoid a race condition: Unless write access is
846                          * removed from the page, another processor could
847                          * modify it before all access is removed by the call
848                          * to vm_page_cache() below.  If vm_page_cache() finds
849                          * that the page has been modified when it removes all
850                          * access, it panics because it cannot cache dirty
851                          * pages.  In principle, we could eliminate just write
852                          * access here rather than all access.  In the expected
853                          * case, when there are no last instant modifications
854                          * to the page, removing all access will be cheaper
855                          * overall.
856                          */
857                         if (pmap_is_modified(m))
858                                 vm_page_dirty(m);
859                         else if (m->dirty == 0)
860                                 pmap_remove_all(m);
861                 }
862
863                 if (m->valid == 0) {
864                         /*
865                          * Invalid pages can be easily freed
866                          */
867                         vm_page_free(m);
868                         cnt.v_dfree++;
869                         --page_shortage;
870                 } else if (m->dirty == 0) {
871                         /*
872                          * Clean pages can be placed onto the cache queue.
873                          * This effectively frees them.
874                          */
875                         vm_page_cache(m);
876                         --page_shortage;
877                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
878                         /*
879                          * Dirty pages need to be paged out, but flushing
880                          * a page is extremely expensive verses freeing
881                          * a clean page.  Rather then artificially limiting
882                          * the number of pages we can flush, we instead give
883                          * dirty pages extra priority on the inactive queue
884                          * by forcing them to be cycled through the queue
885                          * twice before being flushed, after which the
886                          * (now clean) page will cycle through once more
887                          * before being freed.  This significantly extends
888                          * the thrash point for a heavily loaded machine.
889                          */
890                         vm_page_flag_set(m, PG_WINATCFLS);
891                         vm_page_requeue(m);
892                 } else if (maxlaunder > 0) {
893                         /*
894                          * We always want to try to flush some dirty pages if
895                          * we encounter them, to keep the system stable.
896                          * Normally this number is small, but under extreme
897                          * pressure where there are insufficient clean pages
898                          * on the inactive queue, we may have to go all out.
899                          */
900                         int swap_pageouts_ok, vfslocked = 0;
901                         struct vnode *vp = NULL;
902                         struct mount *mp = NULL;
903
904                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
905                                 swap_pageouts_ok = 1;
906                         } else {
907                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
908                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
909                                 vm_page_count_min());
910                                                                                 
911                         }
912
913                         /*
914                          * We don't bother paging objects that are "dead".  
915                          * Those objects are in a "rundown" state.
916                          */
917                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
918                                 VM_OBJECT_UNLOCK(object);
919                                 vm_page_requeue(m);
920                                 continue;
921                         }
922
923                         /*
924                          * Following operations may unlock
925                          * vm_page_queue_mtx, invalidating the 'next'
926                          * pointer.  To prevent an inordinate number
927                          * of restarts we use our marker to remember
928                          * our place.
929                          *
930                          */
931                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
932                                            m, &marker, pageq);
933                         /*
934                          * The object is already known NOT to be dead.   It
935                          * is possible for the vget() to block the whole
936                          * pageout daemon, but the new low-memory handling
937                          * code should prevent it.
938                          *
939                          * The previous code skipped locked vnodes and, worse,
940                          * reordered pages in the queue.  This results in
941                          * completely non-deterministic operation and, on a
942                          * busy system, can lead to extremely non-optimal
943                          * pageouts.  For example, it can cause clean pages
944                          * to be freed and dirty pages to be moved to the end
945                          * of the queue.  Since dirty pages are also moved to
946                          * the end of the queue once-cleaned, this gives
947                          * way too large a weighting to defering the freeing
948                          * of dirty pages.
949                          *
950                          * We can't wait forever for the vnode lock, we might
951                          * deadlock due to a vn_read() getting stuck in
952                          * vm_wait while holding this vnode.  We skip the 
953                          * vnode if we can't get it in a reasonable amount
954                          * of time.
955                          */
956                         if (object->type == OBJT_VNODE) {
957                                 vp = object->handle;
958                                 if (vp->v_type == VREG &&
959                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
960                                         mp = NULL;
961                                         ++pageout_lock_miss;
962                                         if (object->flags & OBJ_MIGHTBEDIRTY)
963                                                 vnodes_skipped++;
964                                         goto unlock_and_continue;
965                                 }
966                                 KASSERT(mp != NULL,
967                                     ("vp %p with NULL v_mount", vp));
968                                 vm_page_unlock_queues();
969                                 vm_object_reference_locked(object);
970                                 VM_OBJECT_UNLOCK(object);
971                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
972                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
973                                     curthread)) {
974                                         VM_OBJECT_LOCK(object);
975                                         vm_page_lock_queues();
976                                         ++pageout_lock_miss;
977                                         if (object->flags & OBJ_MIGHTBEDIRTY)
978                                                 vnodes_skipped++;
979                                         vp = NULL;
980                                         goto unlock_and_continue;
981                                 }
982                                 VM_OBJECT_LOCK(object);
983                                 vm_page_lock_queues();
984                                 /*
985                                  * The page might have been moved to another
986                                  * queue during potential blocking in vget()
987                                  * above.  The page might have been freed and
988                                  * reused for another vnode.
989                                  */
990                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
991                                     m->object != object ||
992                                     TAILQ_NEXT(m, pageq) != &marker) {
993                                         if (object->flags & OBJ_MIGHTBEDIRTY)
994                                                 vnodes_skipped++;
995                                         goto unlock_and_continue;
996                                 }
997         
998                                 /*
999                                  * The page may have been busied during the
1000                                  * blocking in vget().  We don't move the
1001                                  * page back onto the end of the queue so that
1002                                  * statistics are more correct if we don't.
1003                                  */
1004                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1005                                         goto unlock_and_continue;
1006                                 }
1007
1008                                 /*
1009                                  * If the page has become held it might
1010                                  * be undergoing I/O, so skip it
1011                                  */
1012                                 if (m->hold_count) {
1013                                         vm_page_requeue(m);
1014                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1015                                                 vnodes_skipped++;
1016                                         goto unlock_and_continue;
1017                                 }
1018                         }
1019
1020                         /*
1021                          * If a page is dirty, then it is either being washed
1022                          * (but not yet cleaned) or it is still in the
1023                          * laundry.  If it is still in the laundry, then we
1024                          * start the cleaning operation. 
1025                          *
1026                          * decrement page_shortage on success to account for
1027                          * the (future) cleaned page.  Otherwise we could wind
1028                          * up laundering or cleaning too many pages.
1029                          */
1030                         if (vm_pageout_clean(m) != 0) {
1031                                 --page_shortage;
1032                                 --maxlaunder;
1033                         }
1034 unlock_and_continue:
1035                         VM_OBJECT_UNLOCK(object);
1036                         if (mp != NULL) {
1037                                 vm_page_unlock_queues();
1038                                 if (vp != NULL)
1039                                         vput(vp);
1040                                 VFS_UNLOCK_GIANT(vfslocked);
1041                                 vm_object_deallocate(object);
1042                                 vn_finished_write(mp);
1043                                 vm_page_lock_queues();
1044                         }
1045                         next = TAILQ_NEXT(&marker, pageq);
1046                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1047                                      &marker, pageq);
1048                         continue;
1049                 }
1050                 VM_OBJECT_UNLOCK(object);
1051         }
1052
1053         /*
1054          * Compute the number of pages we want to try to move from the
1055          * active queue to the inactive queue.
1056          */
1057         page_shortage = vm_paging_target() +
1058                 cnt.v_inactive_target - cnt.v_inactive_count;
1059         page_shortage += addl_page_shortage;
1060
1061         /*
1062          * Scan the active queue for things we can deactivate. We nominally
1063          * track the per-page activity counter and use it to locate
1064          * deactivation candidates.
1065          */
1066         pcount = cnt.v_active_count;
1067         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1068
1069         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1070
1071                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1072                     ("vm_pageout_scan: page %p isn't active", m));
1073
1074                 next = TAILQ_NEXT(m, pageq);
1075                 object = m->object;
1076                 if ((m->flags & PG_MARKER) != 0) {
1077                         m = next;
1078                         continue;
1079                 }
1080                 if (!VM_OBJECT_TRYLOCK(object) &&
1081                     !vm_pageout_fallback_object_lock(m, &next)) {
1082                         VM_OBJECT_UNLOCK(object);
1083                         m = next;
1084                         continue;
1085                 }
1086
1087                 /*
1088                  * Don't deactivate pages that are busy.
1089                  */
1090                 if ((m->busy != 0) ||
1091                     (m->oflags & VPO_BUSY) ||
1092                     (m->hold_count != 0)) {
1093                         VM_OBJECT_UNLOCK(object);
1094                         vm_page_requeue(m);
1095                         m = next;
1096                         continue;
1097                 }
1098
1099                 /*
1100                  * The count for pagedaemon pages is done after checking the
1101                  * page for eligibility...
1102                  */
1103                 cnt.v_pdpages++;
1104
1105                 /*
1106                  * Check to see "how much" the page has been used.
1107                  */
1108                 actcount = 0;
1109                 if (object->ref_count != 0) {
1110                         if (m->flags & PG_REFERENCED) {
1111                                 actcount += 1;
1112                         }
1113                         actcount += pmap_ts_referenced(m);
1114                         if (actcount) {
1115                                 m->act_count += ACT_ADVANCE + actcount;
1116                                 if (m->act_count > ACT_MAX)
1117                                         m->act_count = ACT_MAX;
1118                         }
1119                 }
1120
1121                 /*
1122                  * Since we have "tested" this bit, we need to clear it now.
1123                  */
1124                 vm_page_flag_clear(m, PG_REFERENCED);
1125
1126                 /*
1127                  * Only if an object is currently being used, do we use the
1128                  * page activation count stats.
1129                  */
1130                 if (actcount && (object->ref_count != 0)) {
1131                         vm_page_requeue(m);
1132                 } else {
1133                         m->act_count -= min(m->act_count, ACT_DECLINE);
1134                         if (vm_pageout_algorithm ||
1135                             object->ref_count == 0 ||
1136                             m->act_count == 0) {
1137                                 page_shortage--;
1138                                 if (object->ref_count == 0) {
1139                                         pmap_remove_all(m);
1140                                         if (m->dirty == 0)
1141                                                 vm_page_cache(m);
1142                                         else
1143                                                 vm_page_deactivate(m);
1144                                 } else {
1145                                         vm_page_deactivate(m);
1146                                 }
1147                         } else {
1148                                 vm_page_requeue(m);
1149                         }
1150                 }
1151                 VM_OBJECT_UNLOCK(object);
1152                 m = next;
1153         }
1154         vm_page_unlock_queues();
1155 #if !defined(NO_SWAPPING)
1156         /*
1157          * Idle process swapout -- run once per second.
1158          */
1159         if (vm_swap_idle_enabled) {
1160                 static long lsec;
1161                 if (time_second != lsec) {
1162                         vm_req_vmdaemon(VM_SWAP_IDLE);
1163                         lsec = time_second;
1164                 }
1165         }
1166 #endif
1167                 
1168         /*
1169          * If we didn't get enough free pages, and we have skipped a vnode
1170          * in a writeable object, wakeup the sync daemon.  And kick swapout
1171          * if we did not get enough free pages.
1172          */
1173         if (vm_paging_target() > 0) {
1174                 if (vnodes_skipped && vm_page_count_min())
1175                         (void) speedup_syncer();
1176 #if !defined(NO_SWAPPING)
1177                 if (vm_swap_enabled && vm_page_count_target())
1178                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1179 #endif
1180         }
1181
1182         /*
1183          * If we are critically low on one of RAM or swap and low on
1184          * the other, kill the largest process.  However, we avoid
1185          * doing this on the first pass in order to give ourselves a
1186          * chance to flush out dirty vnode-backed pages and to allow
1187          * active pages to be moved to the inactive queue and reclaimed.
1188          */
1189         if (pass != 0 &&
1190             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1191              (swap_pager_full && vm_paging_target() > 0)))
1192                 vm_pageout_oom(VM_OOM_MEM);
1193 }
1194
1195
1196 void
1197 vm_pageout_oom(int shortage)
1198 {
1199         struct proc *p, *bigproc;
1200         vm_offset_t size, bigsize;
1201         struct thread *td;
1202         struct vmspace *vm;
1203
1204         /*
1205          * We keep the process bigproc locked once we find it to keep anyone
1206          * from messing with it; however, there is a possibility of
1207          * deadlock if process B is bigproc and one of it's child processes
1208          * attempts to propagate a signal to B while we are waiting for A's
1209          * lock while walking this list.  To avoid this, we don't block on
1210          * the process lock but just skip a process if it is already locked.
1211          */
1212         bigproc = NULL;
1213         bigsize = 0;
1214         sx_slock(&allproc_lock);
1215         FOREACH_PROC_IN_SYSTEM(p) {
1216                 int breakout;
1217
1218                 if (PROC_TRYLOCK(p) == 0)
1219                         continue;
1220                 /*
1221                  * If this is a system, protected or killed process, skip it.
1222                  */
1223                 if (p->p_state != PRS_NORMAL ||
1224                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1225                     (p->p_pid == 1) || P_KILLED(p) ||
1226                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1227                         PROC_UNLOCK(p);
1228                         continue;
1229                 }
1230                 /*
1231                  * If the process is in a non-running type state,
1232                  * don't touch it.  Check all the threads individually.
1233                  */
1234                 breakout = 0;
1235                 FOREACH_THREAD_IN_PROC(p, td) {
1236                         thread_lock(td);
1237                         if (!TD_ON_RUNQ(td) &&
1238                             !TD_IS_RUNNING(td) &&
1239                             !TD_IS_SLEEPING(td)) {
1240                                 thread_unlock(td);
1241                                 breakout = 1;
1242                                 break;
1243                         }
1244                         thread_unlock(td);
1245                 }
1246                 if (breakout) {
1247                         PROC_UNLOCK(p);
1248                         continue;
1249                 }
1250                 /*
1251                  * get the process size
1252                  */
1253                 vm = vmspace_acquire_ref(p);
1254                 if (vm == NULL) {
1255                         PROC_UNLOCK(p);
1256                         continue;
1257                 }
1258                 if (!vm_map_trylock_read(&vm->vm_map)) {
1259                         vmspace_free(vm);
1260                         PROC_UNLOCK(p);
1261                         continue;
1262                 }
1263                 size = vmspace_swap_count(vm);
1264                 vm_map_unlock_read(&vm->vm_map);
1265                 if (shortage == VM_OOM_MEM)
1266                         size += vmspace_resident_count(vm);
1267                 vmspace_free(vm);
1268                 /*
1269                  * if the this process is bigger than the biggest one
1270                  * remember it.
1271                  */
1272                 if (size > bigsize) {
1273                         if (bigproc != NULL)
1274                                 PROC_UNLOCK(bigproc);
1275                         bigproc = p;
1276                         bigsize = size;
1277                 } else
1278                         PROC_UNLOCK(p);
1279         }
1280         sx_sunlock(&allproc_lock);
1281         if (bigproc != NULL) {
1282                 killproc(bigproc, "out of swap space");
1283                 sched_nice(bigproc, PRIO_MIN);
1284                 PROC_UNLOCK(bigproc);
1285                 wakeup(&cnt.v_free_count);
1286         }
1287 }
1288
1289 /*
1290  * This routine tries to maintain the pseudo LRU active queue,
1291  * so that during long periods of time where there is no paging,
1292  * that some statistic accumulation still occurs.  This code
1293  * helps the situation where paging just starts to occur.
1294  */
1295 static void
1296 vm_pageout_page_stats()
1297 {
1298         vm_object_t object;
1299         vm_page_t m,next;
1300         int pcount,tpcount;             /* Number of pages to check */
1301         static int fullintervalcount = 0;
1302         int page_shortage;
1303
1304         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1305         page_shortage = 
1306             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1307             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1308
1309         if (page_shortage <= 0)
1310                 return;
1311
1312         pcount = cnt.v_active_count;
1313         fullintervalcount += vm_pageout_stats_interval;
1314         if (fullintervalcount < vm_pageout_full_stats_interval) {
1315                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1316                     cnt.v_page_count;
1317                 if (pcount > tpcount)
1318                         pcount = tpcount;
1319         } else {
1320                 fullintervalcount = 0;
1321         }
1322
1323         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1324         while ((m != NULL) && (pcount-- > 0)) {
1325                 int actcount;
1326
1327                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1328                     ("vm_pageout_page_stats: page %p isn't active", m));
1329
1330                 next = TAILQ_NEXT(m, pageq);
1331                 object = m->object;
1332
1333                 if ((m->flags & PG_MARKER) != 0) {
1334                         m = next;
1335                         continue;
1336                 }
1337                 if (!VM_OBJECT_TRYLOCK(object) &&
1338                     !vm_pageout_fallback_object_lock(m, &next)) {
1339                         VM_OBJECT_UNLOCK(object);
1340                         m = next;
1341                         continue;
1342                 }
1343
1344                 /*
1345                  * Don't deactivate pages that are busy.
1346                  */
1347                 if ((m->busy != 0) ||
1348                     (m->oflags & VPO_BUSY) ||
1349                     (m->hold_count != 0)) {
1350                         VM_OBJECT_UNLOCK(object);
1351                         vm_page_requeue(m);
1352                         m = next;
1353                         continue;
1354                 }
1355
1356                 actcount = 0;
1357                 if (m->flags & PG_REFERENCED) {
1358                         vm_page_flag_clear(m, PG_REFERENCED);
1359                         actcount += 1;
1360                 }
1361
1362                 actcount += pmap_ts_referenced(m);
1363                 if (actcount) {
1364                         m->act_count += ACT_ADVANCE + actcount;
1365                         if (m->act_count > ACT_MAX)
1366                                 m->act_count = ACT_MAX;
1367                         vm_page_requeue(m);
1368                 } else {
1369                         if (m->act_count == 0) {
1370                                 /*
1371                                  * We turn off page access, so that we have
1372                                  * more accurate RSS stats.  We don't do this
1373                                  * in the normal page deactivation when the
1374                                  * system is loaded VM wise, because the
1375                                  * cost of the large number of page protect
1376                                  * operations would be higher than the value
1377                                  * of doing the operation.
1378                                  */
1379                                 pmap_remove_all(m);
1380                                 vm_page_deactivate(m);
1381                         } else {
1382                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1383                                 vm_page_requeue(m);
1384                         }
1385                 }
1386                 VM_OBJECT_UNLOCK(object);
1387                 m = next;
1388         }
1389 }
1390
1391 /*
1392  *      vm_pageout is the high level pageout daemon.
1393  */
1394 static void
1395 vm_pageout()
1396 {
1397         int error, pass;
1398
1399         /*
1400          * Initialize some paging parameters.
1401          */
1402         cnt.v_interrupt_free_min = 2;
1403         if (cnt.v_page_count < 2000)
1404                 vm_pageout_page_count = 8;
1405
1406         /*
1407          * v_free_reserved needs to include enough for the largest
1408          * swap pager structures plus enough for any pv_entry structs
1409          * when paging. 
1410          */
1411         if (cnt.v_page_count > 1024)
1412                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1413         else
1414                 cnt.v_free_min = 4;
1415         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1416             cnt.v_interrupt_free_min;
1417         cnt.v_free_reserved = vm_pageout_page_count +
1418             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1419         cnt.v_free_severe = cnt.v_free_min / 2;
1420         cnt.v_free_min += cnt.v_free_reserved;
1421         cnt.v_free_severe += cnt.v_free_reserved;
1422
1423         /*
1424          * v_free_target and v_cache_min control pageout hysteresis.  Note
1425          * that these are more a measure of the VM cache queue hysteresis
1426          * then the VM free queue.  Specifically, v_free_target is the
1427          * high water mark (free+cache pages).
1428          *
1429          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1430          * low water mark, while v_free_min is the stop.  v_cache_min must
1431          * be big enough to handle memory needs while the pageout daemon
1432          * is signalled and run to free more pages.
1433          */
1434         if (cnt.v_free_count > 6144)
1435                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1436         else
1437                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1438
1439         if (cnt.v_free_count > 2048) {
1440                 cnt.v_cache_min = cnt.v_free_target;
1441                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1442                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1443         } else {
1444                 cnt.v_cache_min = 0;
1445                 cnt.v_cache_max = 0;
1446                 cnt.v_inactive_target = cnt.v_free_count / 4;
1447         }
1448         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1449                 cnt.v_inactive_target = cnt.v_free_count / 3;
1450
1451         /* XXX does not really belong here */
1452         if (vm_page_max_wired == 0)
1453                 vm_page_max_wired = cnt.v_free_count / 3;
1454
1455         if (vm_pageout_stats_max == 0)
1456                 vm_pageout_stats_max = cnt.v_free_target;
1457
1458         /*
1459          * Set interval in seconds for stats scan.
1460          */
1461         if (vm_pageout_stats_interval == 0)
1462                 vm_pageout_stats_interval = 5;
1463         if (vm_pageout_full_stats_interval == 0)
1464                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1465
1466         swap_pager_swap_init();
1467         pass = 0;
1468         /*
1469          * The pageout daemon is never done, so loop forever.
1470          */
1471         while (TRUE) {
1472                 /*
1473                  * If we have enough free memory, wakeup waiters.  Do
1474                  * not clear vm_pages_needed until we reach our target,
1475                  * otherwise we may be woken up over and over again and
1476                  * waste a lot of cpu.
1477                  */
1478                 mtx_lock(&vm_page_queue_free_mtx);
1479                 if (vm_pages_needed && !vm_page_count_min()) {
1480                         if (!vm_paging_needed())
1481                                 vm_pages_needed = 0;
1482                         wakeup(&cnt.v_free_count);
1483                 }
1484                 if (vm_pages_needed) {
1485                         /*
1486                          * Still not done, take a second pass without waiting
1487                          * (unlimited dirty cleaning), otherwise sleep a bit
1488                          * and try again.
1489                          */
1490                         ++pass;
1491                         if (pass > 1)
1492                                 msleep(&vm_pages_needed,
1493                                     &vm_page_queue_free_mtx, PVM, "psleep",
1494                                     hz / 2);
1495                 } else {
1496                         /*
1497                          * Good enough, sleep & handle stats.  Prime the pass
1498                          * for the next run.
1499                          */
1500                         if (pass > 1)
1501                                 pass = 1;
1502                         else
1503                                 pass = 0;
1504                         error = msleep(&vm_pages_needed,
1505                             &vm_page_queue_free_mtx, PVM, "psleep",
1506                             vm_pageout_stats_interval * hz);
1507                         if (error && !vm_pages_needed) {
1508                                 mtx_unlock(&vm_page_queue_free_mtx);
1509                                 pass = 0;
1510                                 vm_page_lock_queues();
1511                                 vm_pageout_page_stats();
1512                                 vm_page_unlock_queues();
1513                                 continue;
1514                         }
1515                 }
1516                 if (vm_pages_needed)
1517                         cnt.v_pdwakeups++;
1518                 mtx_unlock(&vm_page_queue_free_mtx);
1519                 vm_pageout_scan(pass);
1520         }
1521 }
1522
1523 /*
1524  * Unless the free page queue lock is held by the caller, this function
1525  * should be regarded as advisory.  Specifically, the caller should
1526  * not msleep() on &cnt.v_free_count following this function unless
1527  * the free page queue lock is held until the msleep() is performed.
1528  */
1529 void
1530 pagedaemon_wakeup()
1531 {
1532
1533         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1534                 vm_pages_needed = 1;
1535                 wakeup(&vm_pages_needed);
1536         }
1537 }
1538
1539 #if !defined(NO_SWAPPING)
1540 static void
1541 vm_req_vmdaemon(int req)
1542 {
1543         static int lastrun = 0;
1544
1545         mtx_lock(&vm_daemon_mtx);
1546         vm_pageout_req_swapout |= req;
1547         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1548                 wakeup(&vm_daemon_needed);
1549                 lastrun = ticks;
1550         }
1551         mtx_unlock(&vm_daemon_mtx);
1552 }
1553
1554 static void
1555 vm_daemon()
1556 {
1557         struct rlimit rsslim;
1558         struct proc *p;
1559         struct thread *td;
1560         struct vmspace *vm;
1561         int breakout, swapout_flags;
1562
1563         while (TRUE) {
1564                 mtx_lock(&vm_daemon_mtx);
1565                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1566                 swapout_flags = vm_pageout_req_swapout;
1567                 vm_pageout_req_swapout = 0;
1568                 mtx_unlock(&vm_daemon_mtx);
1569                 if (swapout_flags)
1570                         swapout_procs(swapout_flags);
1571
1572                 /*
1573                  * scan the processes for exceeding their rlimits or if
1574                  * process is swapped out -- deactivate pages
1575                  */
1576                 sx_slock(&allproc_lock);
1577                 FOREACH_PROC_IN_SYSTEM(p) {
1578                         vm_pindex_t limit, size;
1579
1580                         /*
1581                          * if this is a system process or if we have already
1582                          * looked at this process, skip it.
1583                          */
1584                         PROC_LOCK(p);
1585                         if (p->p_state != PRS_NORMAL ||
1586                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1587                                 PROC_UNLOCK(p);
1588                                 continue;
1589                         }
1590                         /*
1591                          * if the process is in a non-running type state,
1592                          * don't touch it.
1593                          */
1594                         breakout = 0;
1595                         FOREACH_THREAD_IN_PROC(p, td) {
1596                                 thread_lock(td);
1597                                 if (!TD_ON_RUNQ(td) &&
1598                                     !TD_IS_RUNNING(td) &&
1599                                     !TD_IS_SLEEPING(td)) {
1600                                         thread_unlock(td);
1601                                         breakout = 1;
1602                                         break;
1603                                 }
1604                                 thread_unlock(td);
1605                         }
1606                         if (breakout) {
1607                                 PROC_UNLOCK(p);
1608                                 continue;
1609                         }
1610                         /*
1611                          * get a limit
1612                          */
1613                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1614                         limit = OFF_TO_IDX(
1615                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1616
1617                         /*
1618                          * let processes that are swapped out really be
1619                          * swapped out set the limit to nothing (will force a
1620                          * swap-out.)
1621                          */
1622                         if ((p->p_flag & P_INMEM) == 0)
1623                                 limit = 0;      /* XXX */
1624                         vm = vmspace_acquire_ref(p);
1625                         PROC_UNLOCK(p);
1626                         if (vm == NULL)
1627                                 continue;
1628
1629                         size = vmspace_resident_count(vm);
1630                         if (limit >= 0 && size >= limit) {
1631                                 vm_pageout_map_deactivate_pages(
1632                                     &vm->vm_map, limit);
1633                         }
1634                         vmspace_free(vm);
1635                 }
1636                 sx_sunlock(&allproc_lock);
1637         }
1638 }
1639 #endif                  /* !defined(NO_SWAPPING) */