]> CyberLeo.Net >> Repos - FreeBSD/stable/10.git/blob - sys/vm/vm_phys.c
MFC 279949:
[FreeBSD/stable/10.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120         struct thread *td;
121
122         td = curthread;
123
124         td->td_dom_rr_idx++;
125         td->td_dom_rr_idx %= vm_ndomains;
126         return (td->td_dom_rr_idx);
127 #else
128         return (0);
129 #endif
130 }
131
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135         struct vm_phys_seg *s;
136         int idx;
137
138         while ((idx = ffsl(mask)) != 0) {
139                 idx--;  /* ffsl counts from 1 */
140                 mask &= ~(1UL << idx);
141                 s = &vm_phys_segs[idx];
142                 if (low < s->end && high > s->start)
143                         return (TRUE);
144         }
145         return (FALSE);
146 }
147
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155         struct sbuf sbuf;
156         struct vm_freelist *fl;
157         int dom, error, flind, oind, pind;
158
159         error = sysctl_wire_old_buffer(req, 0);
160         if (error != 0)
161                 return (error);
162         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163         for (dom = 0; dom < vm_ndomains; dom++) {
164                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165                 for (flind = 0; flind < vm_nfreelists; flind++) {
166                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167                             "\n  ORDER (SIZE)  |  NUMBER"
168                             "\n              ", flind);
169                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
170                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
171                         sbuf_printf(&sbuf, "\n--            ");
172                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
173                                 sbuf_printf(&sbuf, "-- --      ");
174                         sbuf_printf(&sbuf, "--\n");
175                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177                                     1 << (PAGE_SHIFT - 10 + oind));
178                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179                                 fl = vm_phys_free_queues[dom][flind][pind];
180                                         sbuf_printf(&sbuf, "  |  %6d",
181                                             fl[oind].lcnt);
182                                 }
183                                 sbuf_printf(&sbuf, "\n");
184                         }
185                 }
186         }
187         error = sbuf_finish(&sbuf);
188         sbuf_delete(&sbuf);
189         return (error);
190 }
191
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198         struct sbuf sbuf;
199         struct vm_phys_seg *seg;
200         int error, segind;
201
202         error = sysctl_wire_old_buffer(req, 0);
203         if (error != 0)
204                 return (error);
205         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206         for (segind = 0; segind < vm_phys_nsegs; segind++) {
207                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208                 seg = &vm_phys_segs[segind];
209                 sbuf_printf(&sbuf, "start:     %#jx\n",
210                     (uintmax_t)seg->start);
211                 sbuf_printf(&sbuf, "end:       %#jx\n",
212                     (uintmax_t)seg->end);
213                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215         }
216         error = sbuf_finish(&sbuf);
217         sbuf_delete(&sbuf);
218         return (error);
219 }
220
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224
225         m->order = order;
226         if (tail)
227                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228         else
229                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230         fl[order].lcnt++;
231 }
232
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236
237         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238         fl[order].lcnt--;
239         m->order = VM_NFREEORDER;
240 }
241
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248         struct vm_phys_seg *seg;
249
250         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
251             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
252         KASSERT(domain < vm_ndomains,
253             ("vm_phys_create_seg: invalid domain provided"));
254         seg = &vm_phys_segs[vm_phys_nsegs++];
255         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
256                 *seg = *(seg - 1);
257                 seg--;
258         }
259         seg->start = start;
260         seg->end = end;
261         seg->domain = domain;
262         seg->free_queues = &vm_phys_free_queues[domain][flind];
263 }
264
265 static void
266 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
267 {
268         int i;
269
270         if (mem_affinity == NULL) {
271                 _vm_phys_create_seg(start, end, flind, 0);
272                 return;
273         }
274
275         for (i = 0;; i++) {
276                 if (mem_affinity[i].end == 0)
277                         panic("Reached end of affinity info");
278                 if (mem_affinity[i].end <= start)
279                         continue;
280                 if (mem_affinity[i].start > start)
281                         panic("No affinity info for start %jx",
282                             (uintmax_t)start);
283                 if (mem_affinity[i].end >= end) {
284                         _vm_phys_create_seg(start, end, flind,
285                             mem_affinity[i].domain);
286                         break;
287                 }
288                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
289                     mem_affinity[i].domain);
290                 start = mem_affinity[i].end;
291         }
292 }
293
294 /*
295  * Add a physical memory segment.
296  */
297 void
298 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
299 {
300
301         KASSERT((start & PAGE_MASK) == 0,
302             ("vm_phys_define_seg: start is not page aligned"));
303         KASSERT((end & PAGE_MASK) == 0,
304             ("vm_phys_define_seg: end is not page aligned"));
305 #ifdef  VM_FREELIST_ISADMA
306         if (start < 16777216) {
307                 if (end > 16777216) {
308                         vm_phys_create_seg(start, 16777216,
309                             VM_FREELIST_ISADMA);
310                         vm_phys_create_seg(16777216, end, VM_FREELIST_DEFAULT);
311                 } else
312                         vm_phys_create_seg(start, end, VM_FREELIST_ISADMA);
313                 if (VM_FREELIST_ISADMA >= vm_nfreelists)
314                         vm_nfreelists = VM_FREELIST_ISADMA + 1;
315         } else
316 #endif
317 #ifdef  VM_FREELIST_HIGHMEM
318         if (end > VM_HIGHMEM_ADDRESS) {
319                 if (start < VM_HIGHMEM_ADDRESS) {
320                         vm_phys_create_seg(start, VM_HIGHMEM_ADDRESS,
321                             VM_FREELIST_DEFAULT);
322                         vm_phys_create_seg(VM_HIGHMEM_ADDRESS, end,
323                             VM_FREELIST_HIGHMEM);
324                 } else
325                         vm_phys_create_seg(start, end, VM_FREELIST_HIGHMEM);
326                 if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
327                         vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
328         } else
329 #endif
330         vm_phys_create_seg(start, end, VM_FREELIST_DEFAULT);
331 }
332
333 /*
334  * Initialize the physical memory allocator.
335  */
336 void
337 vm_phys_init(void)
338 {
339         struct vm_freelist *fl;
340         struct vm_phys_seg *seg;
341 #ifdef VM_PHYSSEG_SPARSE
342         long pages;
343 #endif
344         int dom, flind, oind, pind, segind;
345
346 #ifdef VM_PHYSSEG_SPARSE
347         pages = 0;
348 #endif
349         for (segind = 0; segind < vm_phys_nsegs; segind++) {
350                 seg = &vm_phys_segs[segind];
351 #ifdef VM_PHYSSEG_SPARSE
352                 seg->first_page = &vm_page_array[pages];
353                 pages += atop(seg->end - seg->start);
354 #else
355                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
356 #endif
357         }
358         for (dom = 0; dom < vm_ndomains; dom++) {
359                 for (flind = 0; flind < vm_nfreelists; flind++) {
360                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
361                                 fl = vm_phys_free_queues[dom][flind][pind];
362                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
363                                         TAILQ_INIT(&fl[oind].pl);
364                         }
365                 }
366         }
367         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
368 }
369
370 /*
371  * Split a contiguous, power of two-sized set of physical pages.
372  */
373 static __inline void
374 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
375 {
376         vm_page_t m_buddy;
377
378         while (oind > order) {
379                 oind--;
380                 m_buddy = &m[1 << oind];
381                 KASSERT(m_buddy->order == VM_NFREEORDER,
382                     ("vm_phys_split_pages: page %p has unexpected order %d",
383                     m_buddy, m_buddy->order));
384                 vm_freelist_add(fl, m_buddy, oind, 0);
385         }
386 }
387
388 /*
389  * Initialize a physical page and add it to the free lists.
390  */
391 void
392 vm_phys_add_page(vm_paddr_t pa)
393 {
394         vm_page_t m;
395         struct vm_domain *vmd;
396
397         cnt.v_page_count++;
398         m = vm_phys_paddr_to_vm_page(pa);
399         m->phys_addr = pa;
400         m->queue = PQ_NONE;
401         m->segind = vm_phys_paddr_to_segind(pa);
402         vmd = vm_phys_domain(m);
403         vmd->vmd_page_count++;
404         vmd->vmd_segs |= 1UL << m->segind;
405         m->flags = PG_FREE;
406         KASSERT(m->order == VM_NFREEORDER,
407             ("vm_phys_add_page: page %p has unexpected order %d",
408             m, m->order));
409         m->pool = VM_FREEPOOL_DEFAULT;
410         pmap_page_init(m);
411         mtx_lock(&vm_page_queue_free_mtx);
412         vm_phys_freecnt_adj(m, 1);
413         vm_phys_free_pages(m, 0);
414         mtx_unlock(&vm_page_queue_free_mtx);
415 }
416
417 /*
418  * Allocate a contiguous, power of two-sized set of physical pages
419  * from the free lists.
420  *
421  * The free page queues must be locked.
422  */
423 vm_page_t
424 vm_phys_alloc_pages(int pool, int order)
425 {
426         vm_page_t m;
427         int dom, domain, flind;
428
429         KASSERT(pool < VM_NFREEPOOL,
430             ("vm_phys_alloc_pages: pool %d is out of range", pool));
431         KASSERT(order < VM_NFREEORDER,
432             ("vm_phys_alloc_pages: order %d is out of range", order));
433
434         for (dom = 0; dom < vm_ndomains; dom++) {
435                 domain = vm_rr_selectdomain();
436                 for (flind = 0; flind < vm_nfreelists; flind++) {
437                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
438                             order);
439                         if (m != NULL)
440                                 return (m);
441                 }
442         }
443         return (NULL);
444 }
445
446 /*
447  * Find and dequeue a free page on the given free list, with the 
448  * specified pool and order
449  */
450 vm_page_t
451 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
452 {
453         vm_page_t m;
454         int dom, domain;
455
456         KASSERT(flind < VM_NFREELIST,
457             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
458         KASSERT(pool < VM_NFREEPOOL,
459             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
460         KASSERT(order < VM_NFREEORDER,
461             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
462
463         for (dom = 0; dom < vm_ndomains; dom++) {
464                 domain = vm_rr_selectdomain();
465                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
466                 if (m != NULL)
467                         return (m);
468         }
469         return (NULL);
470 }
471
472 static vm_page_t
473 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
474 {       
475         struct vm_freelist *fl;
476         struct vm_freelist *alt;
477         int oind, pind;
478         vm_page_t m;
479
480         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
481         fl = &vm_phys_free_queues[domain][flind][pool][0];
482         for (oind = order; oind < VM_NFREEORDER; oind++) {
483                 m = TAILQ_FIRST(&fl[oind].pl);
484                 if (m != NULL) {
485                         vm_freelist_rem(fl, m, oind);
486                         vm_phys_split_pages(m, oind, fl, order);
487                         return (m);
488                 }
489         }
490
491         /*
492          * The given pool was empty.  Find the largest
493          * contiguous, power-of-two-sized set of pages in any
494          * pool.  Transfer these pages to the given pool, and
495          * use them to satisfy the allocation.
496          */
497         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
498                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
499                         alt = &vm_phys_free_queues[domain][flind][pind][0];
500                         m = TAILQ_FIRST(&alt[oind].pl);
501                         if (m != NULL) {
502                                 vm_freelist_rem(alt, m, oind);
503                                 vm_phys_set_pool(pool, m, oind);
504                                 vm_phys_split_pages(m, oind, fl, order);
505                                 return (m);
506                         }
507                 }
508         }
509         return (NULL);
510 }
511
512 /*
513  * Find the vm_page corresponding to the given physical address.
514  */
515 vm_page_t
516 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
517 {
518         struct vm_phys_seg *seg;
519         int segind;
520
521         for (segind = 0; segind < vm_phys_nsegs; segind++) {
522                 seg = &vm_phys_segs[segind];
523                 if (pa >= seg->start && pa < seg->end)
524                         return (&seg->first_page[atop(pa - seg->start)]);
525         }
526         return (NULL);
527 }
528
529 vm_page_t
530 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
531 {
532         struct vm_phys_fictitious_seg *seg;
533         vm_page_t m;
534         int segind;
535
536         m = NULL;
537         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
538                 seg = &vm_phys_fictitious_segs[segind];
539                 if (pa >= seg->start && pa < seg->end) {
540                         m = &seg->first_page[atop(pa - seg->start)];
541                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
542                             ("%p not fictitious", m));
543                         break;
544                 }
545         }
546         return (m);
547 }
548
549 int
550 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
551     vm_memattr_t memattr)
552 {
553         struct vm_phys_fictitious_seg *seg;
554         vm_page_t fp;
555         long i, page_count;
556         int segind;
557 #ifdef VM_PHYSSEG_DENSE
558         long pi;
559         boolean_t malloced;
560 #endif
561
562         page_count = (end - start) / PAGE_SIZE;
563
564 #ifdef VM_PHYSSEG_DENSE
565         pi = atop(start);
566         if (pi >= first_page && pi < vm_page_array_size + first_page) {
567                 if (atop(end) >= vm_page_array_size + first_page)
568                         return (EINVAL);
569                 fp = &vm_page_array[pi - first_page];
570                 malloced = FALSE;
571         } else
572 #endif
573         {
574                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
575                     M_WAITOK | M_ZERO);
576 #ifdef VM_PHYSSEG_DENSE
577                 malloced = TRUE;
578 #endif
579         }
580         for (i = 0; i < page_count; i++) {
581                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
582                 fp[i].oflags &= ~VPO_UNMANAGED;
583                 fp[i].busy_lock = VPB_UNBUSIED;
584         }
585         mtx_lock(&vm_phys_fictitious_reg_mtx);
586         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
587                 seg = &vm_phys_fictitious_segs[segind];
588                 if (seg->start == 0 && seg->end == 0) {
589                         seg->start = start;
590                         seg->end = end;
591                         seg->first_page = fp;
592                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
593                         return (0);
594                 }
595         }
596         mtx_unlock(&vm_phys_fictitious_reg_mtx);
597 #ifdef VM_PHYSSEG_DENSE
598         if (malloced)
599 #endif
600                 free(fp, M_FICT_PAGES);
601         return (EBUSY);
602 }
603
604 void
605 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
606 {
607         struct vm_phys_fictitious_seg *seg;
608         vm_page_t fp;
609         int segind;
610 #ifdef VM_PHYSSEG_DENSE
611         long pi;
612 #endif
613
614 #ifdef VM_PHYSSEG_DENSE
615         pi = atop(start);
616 #endif
617
618         mtx_lock(&vm_phys_fictitious_reg_mtx);
619         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
620                 seg = &vm_phys_fictitious_segs[segind];
621                 if (seg->start == start && seg->end == end) {
622                         seg->start = seg->end = 0;
623                         fp = seg->first_page;
624                         seg->first_page = NULL;
625                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
626 #ifdef VM_PHYSSEG_DENSE
627                         if (pi < first_page || atop(end) >= vm_page_array_size)
628 #endif
629                                 free(fp, M_FICT_PAGES);
630                         return;
631                 }
632         }
633         mtx_unlock(&vm_phys_fictitious_reg_mtx);
634         KASSERT(0, ("Unregistering not registered fictitious range"));
635 }
636
637 /*
638  * Find the segment containing the given physical address.
639  */
640 static int
641 vm_phys_paddr_to_segind(vm_paddr_t pa)
642 {
643         struct vm_phys_seg *seg;
644         int segind;
645
646         for (segind = 0; segind < vm_phys_nsegs; segind++) {
647                 seg = &vm_phys_segs[segind];
648                 if (pa >= seg->start && pa < seg->end)
649                         return (segind);
650         }
651         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
652             (uintmax_t)pa);
653 }
654
655 /*
656  * Free a contiguous, power of two-sized set of physical pages.
657  *
658  * The free page queues must be locked.
659  */
660 void
661 vm_phys_free_pages(vm_page_t m, int order)
662 {
663         struct vm_freelist *fl;
664         struct vm_phys_seg *seg;
665         vm_paddr_t pa;
666         vm_page_t m_buddy;
667
668         KASSERT(m->order == VM_NFREEORDER,
669             ("vm_phys_free_pages: page %p has unexpected order %d",
670             m, m->order));
671         KASSERT(m->pool < VM_NFREEPOOL,
672             ("vm_phys_free_pages: page %p has unexpected pool %d",
673             m, m->pool));
674         KASSERT(order < VM_NFREEORDER,
675             ("vm_phys_free_pages: order %d is out of range", order));
676         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
677         seg = &vm_phys_segs[m->segind];
678         if (order < VM_NFREEORDER - 1) {
679                 pa = VM_PAGE_TO_PHYS(m);
680                 do {
681                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
682                         if (pa < seg->start || pa >= seg->end)
683                                 break;
684                         m_buddy = &seg->first_page[atop(pa - seg->start)];
685                         if (m_buddy->order != order)
686                                 break;
687                         fl = (*seg->free_queues)[m_buddy->pool];
688                         vm_freelist_rem(fl, m_buddy, order);
689                         if (m_buddy->pool != m->pool)
690                                 vm_phys_set_pool(m->pool, m_buddy, order);
691                         order++;
692                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
693                         m = &seg->first_page[atop(pa - seg->start)];
694                 } while (order < VM_NFREEORDER - 1);
695         }
696         fl = (*seg->free_queues)[m->pool];
697         vm_freelist_add(fl, m, order, 1);
698 }
699
700 /*
701  * Free a contiguous, arbitrarily sized set of physical pages.
702  *
703  * The free page queues must be locked.
704  */
705 void
706 vm_phys_free_contig(vm_page_t m, u_long npages)
707 {
708         u_int n;
709         int order;
710
711         /*
712          * Avoid unnecessary coalescing by freeing the pages in the largest
713          * possible power-of-two-sized subsets.
714          */
715         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
716         for (;; npages -= n) {
717                 /*
718                  * Unsigned "min" is used here so that "order" is assigned
719                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
720                  * or the low-order bits of its physical address are zero
721                  * because the size of a physical address exceeds the size of
722                  * a long.
723                  */
724                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
725                     VM_NFREEORDER - 1);
726                 n = 1 << order;
727                 if (npages < n)
728                         break;
729                 vm_phys_free_pages(m, order);
730                 m += n;
731         }
732         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
733         for (; npages > 0; npages -= n) {
734                 order = flsl(npages) - 1;
735                 n = 1 << order;
736                 vm_phys_free_pages(m, order);
737                 m += n;
738         }
739 }
740
741 /*
742  * Set the pool for a contiguous, power of two-sized set of physical pages. 
743  */
744 void
745 vm_phys_set_pool(int pool, vm_page_t m, int order)
746 {
747         vm_page_t m_tmp;
748
749         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
750                 m_tmp->pool = pool;
751 }
752
753 /*
754  * Search for the given physical page "m" in the free lists.  If the search
755  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
756  * FALSE, indicating that "m" is not in the free lists.
757  *
758  * The free page queues must be locked.
759  */
760 boolean_t
761 vm_phys_unfree_page(vm_page_t m)
762 {
763         struct vm_freelist *fl;
764         struct vm_phys_seg *seg;
765         vm_paddr_t pa, pa_half;
766         vm_page_t m_set, m_tmp;
767         int order;
768
769         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
770
771         /*
772          * First, find the contiguous, power of two-sized set of free
773          * physical pages containing the given physical page "m" and
774          * assign it to "m_set".
775          */
776         seg = &vm_phys_segs[m->segind];
777         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
778             order < VM_NFREEORDER - 1; ) {
779                 order++;
780                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
781                 if (pa >= seg->start)
782                         m_set = &seg->first_page[atop(pa - seg->start)];
783                 else
784                         return (FALSE);
785         }
786         if (m_set->order < order)
787                 return (FALSE);
788         if (m_set->order == VM_NFREEORDER)
789                 return (FALSE);
790         KASSERT(m_set->order < VM_NFREEORDER,
791             ("vm_phys_unfree_page: page %p has unexpected order %d",
792             m_set, m_set->order));
793
794         /*
795          * Next, remove "m_set" from the free lists.  Finally, extract
796          * "m" from "m_set" using an iterative algorithm: While "m_set"
797          * is larger than a page, shrink "m_set" by returning the half
798          * of "m_set" that does not contain "m" to the free lists.
799          */
800         fl = (*seg->free_queues)[m_set->pool];
801         order = m_set->order;
802         vm_freelist_rem(fl, m_set, order);
803         while (order > 0) {
804                 order--;
805                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
806                 if (m->phys_addr < pa_half)
807                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
808                 else {
809                         m_tmp = m_set;
810                         m_set = &seg->first_page[atop(pa_half - seg->start)];
811                 }
812                 vm_freelist_add(fl, m_tmp, order, 0);
813         }
814         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
815         return (TRUE);
816 }
817
818 /*
819  * Try to zero one physical page.  Used by an idle priority thread.
820  */
821 boolean_t
822 vm_phys_zero_pages_idle(void)
823 {
824         static struct vm_freelist *fl;
825         static int flind, oind, pind;
826         vm_page_t m, m_tmp;
827         int domain;
828
829         domain = vm_rr_selectdomain();
830         fl = vm_phys_free_queues[domain][0][0];
831         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
832         for (;;) {
833                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
834                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
835                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
836                                         vm_phys_unfree_page(m_tmp);
837                                         vm_phys_freecnt_adj(m, -1);
838                                         mtx_unlock(&vm_page_queue_free_mtx);
839                                         pmap_zero_page_idle(m_tmp);
840                                         m_tmp->flags |= PG_ZERO;
841                                         mtx_lock(&vm_page_queue_free_mtx);
842                                         vm_phys_freecnt_adj(m, 1);
843                                         vm_phys_free_pages(m_tmp, 0);
844                                         vm_page_zero_count++;
845                                         cnt_prezero++;
846                                         return (TRUE);
847                                 }
848                         }
849                 }
850                 oind++;
851                 if (oind == VM_NFREEORDER) {
852                         oind = 0;
853                         pind++;
854                         if (pind == VM_NFREEPOOL) {
855                                 pind = 0;
856                                 flind++;
857                                 if (flind == vm_nfreelists)
858                                         flind = 0;
859                         }
860                         fl = vm_phys_free_queues[domain][flind][pind];
861                 }
862         }
863 }
864
865 /*
866  * Allocate a contiguous set of physical pages of the given size
867  * "npages" from the free lists.  All of the physical pages must be at
868  * or above the given physical address "low" and below the given
869  * physical address "high".  The given value "alignment" determines the
870  * alignment of the first physical page in the set.  If the given value
871  * "boundary" is non-zero, then the set of physical pages cannot cross
872  * any physical address boundary that is a multiple of that value.  Both
873  * "alignment" and "boundary" must be a power of two.
874  */
875 vm_page_t
876 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
877     u_long alignment, vm_paddr_t boundary)
878 {
879         struct vm_freelist *fl;
880         struct vm_phys_seg *seg;
881         vm_paddr_t pa, pa_last, size;
882         vm_page_t m, m_ret;
883         u_long npages_end;
884         int dom, domain, flind, oind, order, pind;
885
886         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
887         size = npages << PAGE_SHIFT;
888         KASSERT(size != 0,
889             ("vm_phys_alloc_contig: size must not be 0"));
890         KASSERT((alignment & (alignment - 1)) == 0,
891             ("vm_phys_alloc_contig: alignment must be a power of 2"));
892         KASSERT((boundary & (boundary - 1)) == 0,
893             ("vm_phys_alloc_contig: boundary must be a power of 2"));
894         /* Compute the queue that is the best fit for npages. */
895         for (order = 0; (1 << order) < npages; order++);
896         dom = 0;
897 restartdom:
898         domain = vm_rr_selectdomain();
899         for (flind = 0; flind < vm_nfreelists; flind++) {
900                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
901                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
902                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
903                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
904                                         /*
905                                          * A free list may contain physical pages
906                                          * from one or more segments.
907                                          */
908                                         seg = &vm_phys_segs[m_ret->segind];
909                                         if (seg->start > high ||
910                                             low >= seg->end)
911                                                 continue;
912
913                                         /*
914                                          * Is the size of this allocation request
915                                          * larger than the largest block size?
916                                          */
917                                         if (order >= VM_NFREEORDER) {
918                                                 /*
919                                                  * Determine if a sufficient number
920                                                  * of subsequent blocks to satisfy
921                                                  * the allocation request are free.
922                                                  */
923                                                 pa = VM_PAGE_TO_PHYS(m_ret);
924                                                 pa_last = pa + size;
925                                                 for (;;) {
926                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
927                                                         if (pa >= pa_last)
928                                                                 break;
929                                                         if (pa < seg->start ||
930                                                             pa >= seg->end)
931                                                                 break;
932                                                         m = &seg->first_page[atop(pa - seg->start)];
933                                                         if (m->order != VM_NFREEORDER - 1)
934                                                                 break;
935                                                 }
936                                                 /* If not, continue to the next block. */
937                                                 if (pa < pa_last)
938                                                         continue;
939                                         }
940
941                                         /*
942                                          * Determine if the blocks are within the given range,
943                                          * satisfy the given alignment, and do not cross the
944                                          * given boundary.
945                                          */
946                                         pa = VM_PAGE_TO_PHYS(m_ret);
947                                         if (pa >= low &&
948                                             pa + size <= high &&
949                                             (pa & (alignment - 1)) == 0 &&
950                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
951                                                 goto done;
952                                 }
953                         }
954                 }
955         }
956         if (++dom < vm_ndomains)
957                 goto restartdom;
958         return (NULL);
959 done:
960         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
961                 fl = (*seg->free_queues)[m->pool];
962                 vm_freelist_rem(fl, m, m->order);
963         }
964         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
965                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
966         fl = (*seg->free_queues)[m_ret->pool];
967         vm_phys_split_pages(m_ret, oind, fl, order);
968         /* Return excess pages to the free lists. */
969         npages_end = roundup2(npages, 1 << imin(oind, order));
970         if (npages < npages_end)
971                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
972         return (m_ret);
973 }
974
975 #ifdef DDB
976 /*
977  * Show the number of physical pages in each of the free lists.
978  */
979 DB_SHOW_COMMAND(freepages, db_show_freepages)
980 {
981         struct vm_freelist *fl;
982         int flind, oind, pind, dom;
983
984         for (dom = 0; dom < vm_ndomains; dom++) {
985                 db_printf("DOMAIN: %d\n", dom);
986                 for (flind = 0; flind < vm_nfreelists; flind++) {
987                         db_printf("FREE LIST %d:\n"
988                             "\n  ORDER (SIZE)  |  NUMBER"
989                             "\n              ", flind);
990                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
991                                 db_printf("  |  POOL %d", pind);
992                         db_printf("\n--            ");
993                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
994                                 db_printf("-- --      ");
995                         db_printf("--\n");
996                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
997                                 db_printf("  %2.2d (%6.6dK)", oind,
998                                     1 << (PAGE_SHIFT - 10 + oind));
999                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1000                                 fl = vm_phys_free_queues[dom][flind][pind];
1001                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1002                                 }
1003                                 db_printf("\n");
1004                         }
1005                         db_printf("\n");
1006                 }
1007                 db_printf("\n");
1008         }
1009 }
1010 #endif