]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_phys.c
MFC r286886: Fixing typo as well as improving readability of a few comments.
[FreeBSD/stable/8.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_ddb.h"
36 #include "opt_vm.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/lock.h>
41 #include <sys/kernel.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/sbuf.h>
46 #include <sys/sysctl.h>
47 #include <sys/vmmeter.h>
48 #include <sys/vnode.h>
49
50 #include <ddb/ddb.h>
51
52 #include <vm/vm.h>
53 #include <vm/vm_param.h>
54 #include <vm/vm_kern.h>
55 #include <vm/vm_object.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_phys.h>
58 #include <vm/vm_reserv.h>
59
60 struct vm_freelist {
61         struct pglist pl;
62         int lcnt;
63 };
64
65 struct vm_phys_seg {
66         vm_paddr_t      start;
67         vm_paddr_t      end;
68         vm_page_t       first_page;
69         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
70 };
71
72 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
73
74 static int vm_phys_nsegs;
75
76 static struct vm_freelist
77     vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
78
79 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
80
81 static int cnt_prezero;
82 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
83     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
84
85 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
86 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
87     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
88
89 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
90 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
91     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
92
93 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
94 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
95 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
96     int order);
97
98 /*
99  * Outputs the state of the physical memory allocator, specifically,
100  * the amount of physical memory in each free list.
101  */
102 static int
103 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
104 {
105         struct sbuf sbuf;
106         struct vm_freelist *fl;
107         char *cbuf;
108         const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
109         int error, flind, oind, pind;
110
111         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
112         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
113         for (flind = 0; flind < vm_nfreelists; flind++) {
114                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
115                     "\n  ORDER (SIZE)  |  NUMBER"
116                     "\n              ", flind);
117                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
118                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
119                 sbuf_printf(&sbuf, "\n--            ");
120                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
121                         sbuf_printf(&sbuf, "-- --      ");
122                 sbuf_printf(&sbuf, "--\n");
123                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
124                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
125                             1 << (PAGE_SHIFT - 10 + oind));
126                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
127                                 fl = vm_phys_free_queues[flind][pind];
128                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
129                         }
130                         sbuf_printf(&sbuf, "\n");
131                 }
132         }
133         sbuf_finish(&sbuf);
134         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
135         sbuf_delete(&sbuf);
136         free(cbuf, M_TEMP);
137         return (error);
138 }
139
140 /*
141  * Outputs the set of physical memory segments.
142  */
143 static int
144 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
145 {
146         struct sbuf sbuf;
147         struct vm_phys_seg *seg;
148         char *cbuf;
149         const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
150         int error, segind;
151
152         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
153         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
154         for (segind = 0; segind < vm_phys_nsegs; segind++) {
155                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
156                 seg = &vm_phys_segs[segind];
157                 sbuf_printf(&sbuf, "start:     %#jx\n",
158                     (uintmax_t)seg->start);
159                 sbuf_printf(&sbuf, "end:       %#jx\n",
160                     (uintmax_t)seg->end);
161                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
162         }
163         sbuf_finish(&sbuf);
164         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
165         sbuf_delete(&sbuf);
166         free(cbuf, M_TEMP);
167         return (error);
168 }
169
170 /*
171  * Create a physical memory segment.
172  */
173 static void
174 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
175 {
176         struct vm_phys_seg *seg;
177 #ifdef VM_PHYSSEG_SPARSE
178         long pages;
179         int segind;
180
181         pages = 0;
182         for (segind = 0; segind < vm_phys_nsegs; segind++) {
183                 seg = &vm_phys_segs[segind];
184                 pages += atop(seg->end - seg->start);
185         }
186 #endif
187         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
188             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
189         seg = &vm_phys_segs[vm_phys_nsegs++];
190         seg->start = start;
191         seg->end = end;
192 #ifdef VM_PHYSSEG_SPARSE
193         seg->first_page = &vm_page_array[pages];
194 #else
195         seg->first_page = PHYS_TO_VM_PAGE(start);
196 #endif
197         seg->free_queues = &vm_phys_free_queues[flind];
198 }
199
200 /*
201  * Initialize the physical memory allocator.
202  */
203 void
204 vm_phys_init(void)
205 {
206         struct vm_freelist *fl;
207         int flind, i, oind, pind;
208
209         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
210 #ifdef  VM_FREELIST_ISADMA
211                 if (phys_avail[i] < 16777216) {
212                         if (phys_avail[i + 1] > 16777216) {
213                                 vm_phys_create_seg(phys_avail[i], 16777216,
214                                     VM_FREELIST_ISADMA);
215                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
216                                     VM_FREELIST_DEFAULT);
217                         } else {
218                                 vm_phys_create_seg(phys_avail[i],
219                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
220                         }
221                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
222                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
223                 } else
224 #endif
225 #ifdef  VM_FREELIST_HIGHMEM
226                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
227                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
228                                 vm_phys_create_seg(phys_avail[i],
229                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
230                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
231                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
232                         } else {
233                                 vm_phys_create_seg(phys_avail[i],
234                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
235                         }
236                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
237                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
238                 } else
239 #endif
240                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
241                     VM_FREELIST_DEFAULT);
242         }
243         for (flind = 0; flind < vm_nfreelists; flind++) {
244                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
245                         fl = vm_phys_free_queues[flind][pind];
246                         for (oind = 0; oind < VM_NFREEORDER; oind++)
247                                 TAILQ_INIT(&fl[oind].pl);
248                 }
249         }
250 }
251
252 /*
253  * Split a contiguous, power of two-sized set of physical pages.
254  */
255 static __inline void
256 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
257 {
258         vm_page_t m_buddy;
259
260         while (oind > order) {
261                 oind--;
262                 m_buddy = &m[1 << oind];
263                 KASSERT(m_buddy->order == VM_NFREEORDER,
264                     ("vm_phys_split_pages: page %p has unexpected order %d",
265                     m_buddy, m_buddy->order));
266                 m_buddy->order = oind;
267                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
268                 fl[oind].lcnt++;
269         }
270 }
271
272 /*
273  * Initialize a physical page and add it to the free lists.
274  */
275 void
276 vm_phys_add_page(vm_paddr_t pa)
277 {
278         vm_page_t m;
279
280         cnt.v_page_count++;
281         m = vm_phys_paddr_to_vm_page(pa);
282         m->phys_addr = pa;
283         m->segind = vm_phys_paddr_to_segind(pa);
284         m->flags = PG_FREE;
285         KASSERT(m->order == VM_NFREEORDER,
286             ("vm_phys_add_page: page %p has unexpected order %d",
287             m, m->order));
288         m->pool = VM_FREEPOOL_DEFAULT;
289         pmap_page_init(m);
290         mtx_lock(&vm_page_queue_free_mtx);
291         cnt.v_free_count++;
292         vm_phys_free_pages(m, 0);
293         mtx_unlock(&vm_page_queue_free_mtx);
294 }
295
296 /*
297  * Allocate a contiguous, power of two-sized set of physical pages
298  * from the free lists.
299  *
300  * The free page queues must be locked.
301  */
302 vm_page_t
303 vm_phys_alloc_pages(int pool, int order)
304 {
305         vm_page_t m;
306         int flind;
307
308         for (flind = 0; flind < vm_nfreelists; flind++) {
309                 m = vm_phys_alloc_freelist_pages(flind, pool, order);
310                 if (m != NULL)
311                         return (m);
312         }
313         return (NULL);
314 }
315
316 /*
317  * Find and dequeue a free page on the given free list, with the 
318  * specified pool and order
319  */
320 vm_page_t
321 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
322 {       
323         struct vm_freelist *fl;
324         struct vm_freelist *alt;
325         int oind, pind;
326         vm_page_t m;
327
328         KASSERT(flind < VM_NFREELIST,
329             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
330         KASSERT(pool < VM_NFREEPOOL,
331             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
332         KASSERT(order < VM_NFREEORDER,
333             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
334         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
335         fl = vm_phys_free_queues[flind][pool];
336         for (oind = order; oind < VM_NFREEORDER; oind++) {
337                 m = TAILQ_FIRST(&fl[oind].pl);
338                 if (m != NULL) {
339                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
340                         fl[oind].lcnt--;
341                         m->order = VM_NFREEORDER;
342                         vm_phys_split_pages(m, oind, fl, order);
343                         return (m);
344                 }
345         }
346
347         /*
348          * The given pool was empty.  Find the largest
349          * contiguous, power-of-two-sized set of pages in any
350          * pool.  Transfer these pages to the given pool, and
351          * use them to satisfy the allocation.
352          */
353         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
354                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
355                         alt = vm_phys_free_queues[flind][pind];
356                         m = TAILQ_FIRST(&alt[oind].pl);
357                         if (m != NULL) {
358                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
359                                 alt[oind].lcnt--;
360                                 m->order = VM_NFREEORDER;
361                                 vm_phys_set_pool(pool, m, oind);
362                                 vm_phys_split_pages(m, oind, fl, order);
363                                 return (m);
364                         }
365                 }
366         }
367         return (NULL);
368 }
369
370 /*
371  * Allocate physical memory from phys_avail[].
372  */
373 vm_paddr_t
374 vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
375 {
376         vm_paddr_t pa;
377         int i;
378
379         size = round_page(size);
380         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
381                 if (phys_avail[i + 1] - phys_avail[i] < size)
382                         continue;
383                 pa = phys_avail[i];
384                 phys_avail[i] += size;
385                 return (pa);
386         }
387         panic("vm_phys_bootstrap_alloc");
388 }
389
390 /*
391  * Find the vm_page corresponding to the given physical address.
392  */
393 vm_page_t
394 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
395 {
396         struct vm_phys_seg *seg;
397         int segind;
398
399         for (segind = 0; segind < vm_phys_nsegs; segind++) {
400                 seg = &vm_phys_segs[segind];
401                 if (pa >= seg->start && pa < seg->end)
402                         return (&seg->first_page[atop(pa - seg->start)]);
403         }
404         return (NULL);
405 }
406
407 /*
408  * Find the segment containing the given physical address.
409  */
410 static int
411 vm_phys_paddr_to_segind(vm_paddr_t pa)
412 {
413         struct vm_phys_seg *seg;
414         int segind;
415
416         for (segind = 0; segind < vm_phys_nsegs; segind++) {
417                 seg = &vm_phys_segs[segind];
418                 if (pa >= seg->start && pa < seg->end)
419                         return (segind);
420         }
421         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
422             (uintmax_t)pa);
423 }
424
425 /*
426  * Free a contiguous, power of two-sized set of physical pages.
427  *
428  * The free page queues must be locked.
429  */
430 void
431 vm_phys_free_pages(vm_page_t m, int order)
432 {
433         struct vm_freelist *fl;
434         struct vm_phys_seg *seg;
435         vm_paddr_t pa, pa_buddy;
436         vm_page_t m_buddy;
437
438         KASSERT(m->order == VM_NFREEORDER,
439             ("vm_phys_free_pages: page %p has unexpected order %d",
440             m, m->order));
441         KASSERT(m->pool < VM_NFREEPOOL,
442             ("vm_phys_free_pages: page %p has unexpected pool %d",
443             m, m->pool));
444         KASSERT(order < VM_NFREEORDER,
445             ("vm_phys_free_pages: order %d is out of range", order));
446         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
447         pa = VM_PAGE_TO_PHYS(m);
448         seg = &vm_phys_segs[m->segind];
449         while (order < VM_NFREEORDER - 1) {
450                 pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
451                 if (pa_buddy < seg->start ||
452                     pa_buddy >= seg->end)
453                         break;
454                 m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
455                 if (m_buddy->order != order)
456                         break;
457                 fl = (*seg->free_queues)[m_buddy->pool];
458                 TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
459                 fl[m_buddy->order].lcnt--;
460                 m_buddy->order = VM_NFREEORDER;
461                 if (m_buddy->pool != m->pool)
462                         vm_phys_set_pool(m->pool, m_buddy, order);
463                 order++;
464                 pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
465                 m = &seg->first_page[atop(pa - seg->start)];
466         }
467         m->order = order;
468         fl = (*seg->free_queues)[m->pool];
469         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
470         fl[order].lcnt++;
471 }
472
473 /*
474  * Set the pool for a contiguous, power of two-sized set of physical pages. 
475  */
476 void
477 vm_phys_set_pool(int pool, vm_page_t m, int order)
478 {
479         vm_page_t m_tmp;
480
481         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
482                 m_tmp->pool = pool;
483 }
484
485 /*
486  * Search for the given physical page "m" in the free lists.  If the search
487  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
488  * FALSE, indicating that "m" is not in the free lists.
489  *
490  * The free page queues must be locked.
491  */
492 boolean_t
493 vm_phys_unfree_page(vm_page_t m)
494 {
495         struct vm_freelist *fl;
496         struct vm_phys_seg *seg;
497         vm_paddr_t pa, pa_half;
498         vm_page_t m_set, m_tmp;
499         int order;
500
501         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
502
503         /*
504          * First, find the contiguous, power of two-sized set of free
505          * physical pages containing the given physical page "m" and
506          * assign it to "m_set".
507          */
508         seg = &vm_phys_segs[m->segind];
509         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
510             order < VM_NFREEORDER - 1; ) {
511                 order++;
512                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
513                 if (pa >= seg->start)
514                         m_set = &seg->first_page[atop(pa - seg->start)];
515                 else
516                         return (FALSE);
517         }
518         if (m_set->order < order)
519                 return (FALSE);
520         if (m_set->order == VM_NFREEORDER)
521                 return (FALSE);
522         KASSERT(m_set->order < VM_NFREEORDER,
523             ("vm_phys_unfree_page: page %p has unexpected order %d",
524             m_set, m_set->order));
525
526         /*
527          * Next, remove "m_set" from the free lists.  Finally, extract
528          * "m" from "m_set" using an iterative algorithm: While "m_set"
529          * is larger than a page, shrink "m_set" by returning the half
530          * of "m_set" that does not contain "m" to the free lists.
531          */
532         fl = (*seg->free_queues)[m_set->pool];
533         order = m_set->order;
534         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
535         fl[order].lcnt--;
536         m_set->order = VM_NFREEORDER;
537         while (order > 0) {
538                 order--;
539                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
540                 if (m->phys_addr < pa_half)
541                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
542                 else {
543                         m_tmp = m_set;
544                         m_set = &seg->first_page[atop(pa_half - seg->start)];
545                 }
546                 m_tmp->order = order;
547                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
548                 fl[order].lcnt++;
549         }
550         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
551         return (TRUE);
552 }
553
554 /*
555  * Try to zero one physical page.  Used by an idle priority thread.
556  */
557 boolean_t
558 vm_phys_zero_pages_idle(void)
559 {
560         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
561         static int flind, oind, pind;
562         vm_page_t m, m_tmp;
563
564         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
565         for (;;) {
566                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
567                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
568                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
569                                         vm_phys_unfree_page(m_tmp);
570                                         cnt.v_free_count--;
571                                         mtx_unlock(&vm_page_queue_free_mtx);
572                                         pmap_zero_page_idle(m_tmp);
573                                         m_tmp->flags |= PG_ZERO;
574                                         mtx_lock(&vm_page_queue_free_mtx);
575                                         cnt.v_free_count++;
576                                         vm_phys_free_pages(m_tmp, 0);
577                                         vm_page_zero_count++;
578                                         cnt_prezero++;
579                                         return (TRUE);
580                                 }
581                         }
582                 }
583                 oind++;
584                 if (oind == VM_NFREEORDER) {
585                         oind = 0;
586                         pind++;
587                         if (pind == VM_NFREEPOOL) {
588                                 pind = 0;
589                                 flind++;
590                                 if (flind == vm_nfreelists)
591                                         flind = 0;
592                         }
593                         fl = vm_phys_free_queues[flind][pind];
594                 }
595         }
596 }
597
598 /*
599  * Allocate a contiguous set of physical pages of the given size
600  * "npages" from the free lists.  All of the physical pages must be at
601  * or above the given physical address "low" and below the given
602  * physical address "high".  The given value "alignment" determines the
603  * alignment of the first physical page in the set.  If the given value
604  * "boundary" is non-zero, then the set of physical pages cannot cross
605  * any physical address boundary that is a multiple of that value.  Both
606  * "alignment" and "boundary" must be a power of two.
607  */
608 vm_page_t
609 vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
610     unsigned long alignment, unsigned long boundary)
611 {
612         struct vm_freelist *fl;
613         struct vm_phys_seg *seg;
614         struct vnode *vp;
615         vm_paddr_t pa, pa_last, size;
616         vm_page_t deferred_vdrop_list, m, m_ret;
617         int flind, i, oind, order, pind;
618
619         size = npages << PAGE_SHIFT;
620         KASSERT(size != 0,
621             ("vm_phys_alloc_contig: size must not be 0"));
622         KASSERT((alignment & (alignment - 1)) == 0,
623             ("vm_phys_alloc_contig: alignment must be a power of 2"));
624         KASSERT((boundary & (boundary - 1)) == 0,
625             ("vm_phys_alloc_contig: boundary must be a power of 2"));
626         deferred_vdrop_list = NULL;
627         /* Compute the queue that is the best fit for npages. */
628         for (order = 0; (1 << order) < npages; order++);
629         mtx_lock(&vm_page_queue_free_mtx);
630 #if VM_NRESERVLEVEL > 0
631 retry:
632 #endif
633         for (flind = 0; flind < vm_nfreelists; flind++) {
634                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
635                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
636                                 fl = vm_phys_free_queues[flind][pind];
637                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
638                                         /*
639                                          * A free list may contain physical pages
640                                          * from one or more segments.
641                                          */
642                                         seg = &vm_phys_segs[m_ret->segind];
643                                         if (seg->start > high ||
644                                             low >= seg->end)
645                                                 continue;
646
647                                         /*
648                                          * Is the size of this allocation request
649                                          * larger than the largest block size?
650                                          */
651                                         if (order >= VM_NFREEORDER) {
652                                                 /*
653                                                  * Determine if a sufficient number
654                                                  * of subsequent blocks to satisfy
655                                                  * the allocation request are free.
656                                                  */
657                                                 pa = VM_PAGE_TO_PHYS(m_ret);
658                                                 pa_last = pa + size;
659                                                 for (;;) {
660                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
661                                                         if (pa >= pa_last)
662                                                                 break;
663                                                         if (pa < seg->start ||
664                                                             pa >= seg->end)
665                                                                 break;
666                                                         m = &seg->first_page[atop(pa - seg->start)];
667                                                         if (m->order != VM_NFREEORDER - 1)
668                                                                 break;
669                                                 }
670                                                 /* If not, continue to the next block. */
671                                                 if (pa < pa_last)
672                                                         continue;
673                                         }
674
675                                         /*
676                                          * Determine if the blocks are within the given range,
677                                          * satisfy the given alignment, and do not cross the
678                                          * given boundary.
679                                          */
680                                         pa = VM_PAGE_TO_PHYS(m_ret);
681                                         if (pa >= low &&
682                                             pa + size <= high &&
683                                             (pa & (alignment - 1)) == 0 &&
684                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
685                                                 goto done;
686                                 }
687                         }
688                 }
689         }
690 #if VM_NRESERVLEVEL > 0
691         if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
692                 goto retry;
693 #endif
694         mtx_unlock(&vm_page_queue_free_mtx);
695         return (NULL);
696 done:
697         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
698                 fl = (*seg->free_queues)[m->pool];
699                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
700                 fl[m->order].lcnt--;
701                 m->order = VM_NFREEORDER;
702         }
703         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
704                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
705         fl = (*seg->free_queues)[m_ret->pool];
706         vm_phys_split_pages(m_ret, oind, fl, order);
707         for (i = 0; i < npages; i++) {
708                 m = &m_ret[i];
709                 vp = vm_page_alloc_init(m);
710                 if (vp != NULL) {
711                         /*
712                          * Enqueue the vnode for deferred vdrop().
713                          *
714                          * Unmanaged pages don't use "pageq", so it
715                          * can be safely abused to construct a short-
716                          * lived queue of vnodes.
717                          */
718                         m->pageq.tqe_prev = (void *)vp;
719                         m->pageq.tqe_next = deferred_vdrop_list;
720                         deferred_vdrop_list = m;
721                 }
722         }
723         for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
724                 m = &m_ret[i];
725                 KASSERT(m->order == VM_NFREEORDER,
726                     ("vm_phys_alloc_contig: page %p has unexpected order %d",
727                     m, m->order));
728                 vm_phys_free_pages(m, 0);
729         }
730         mtx_unlock(&vm_page_queue_free_mtx);
731         while (deferred_vdrop_list != NULL) {
732                 vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
733                 deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
734         }
735         return (m_ret);
736 }
737
738 #ifdef DDB
739 /*
740  * Show the number of physical pages in each of the free lists.
741  */
742 DB_SHOW_COMMAND(freepages, db_show_freepages)
743 {
744         struct vm_freelist *fl;
745         int flind, oind, pind;
746
747         for (flind = 0; flind < vm_nfreelists; flind++) {
748                 db_printf("FREE LIST %d:\n"
749                     "\n  ORDER (SIZE)  |  NUMBER"
750                     "\n              ", flind);
751                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
752                         db_printf("  |  POOL %d", pind);
753                 db_printf("\n--            ");
754                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
755                         db_printf("-- --      ");
756                 db_printf("--\n");
757                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
758                         db_printf("  %2.2d (%6.6dK)", oind,
759                             1 << (PAGE_SHIFT - 10 + oind));
760                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
761                                 fl = vm_phys_free_queues[flind][pind];
762                                 db_printf("  |  %6.6d", fl[oind].lcnt);
763                         }
764                         db_printf("\n");
765                 }
766                 db_printf("\n");
767         }
768 }
769 #endif