]> CyberLeo.Net >> Repos - FreeBSD/stable/8.git/blob - sys/vm/vm_reserv.c
MFC r297155
[FreeBSD/stable/8.git] / sys / vm / vm_reserv.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Superpage reservation management module
34  */
35
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38
39 #include "opt_vm.h"
40
41 #include <sys/param.h>
42 #include <sys/kernel.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/queue.h>
47 #include <sys/sbuf.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <vm/vm_object.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_phys.h>
56 #include <vm/vm_reserv.h>
57
58 /*
59  * The reservation system supports the speculative allocation of large physical
60  * pages ("superpages").  Speculative allocation enables the fully-automatic
61  * utilization of superpages by the virtual memory system.  In other words, no
62  * programmatic directives are required to use superpages.
63  */
64
65 #if VM_NRESERVLEVEL > 0
66
67 /*
68  * The number of small pages that are contained in a level 0 reservation
69  */
70 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
71
72 /*
73  * The number of bits by which a physical address is shifted to obtain the
74  * reservation number
75  */
76 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
77
78 /*
79  * The size of a level 0 reservation in bytes
80  */
81 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
82
83 /*
84  * Computes the index of the small page underlying the given (object, pindex)
85  * within the reservation's array of small pages.
86  */
87 #define VM_RESERV_INDEX(object, pindex) \
88     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
89
90 /*
91  * The reservation structure
92  *
93  * A reservation structure is constructed whenever a large physical page is
94  * speculatively allocated to an object.  The reservation provides the small
95  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
96  * within that object.  The reservation's "popcnt" tracks the number of these
97  * small physical pages that are in use at any given time.  When and if the
98  * reservation is not fully utilized, it appears in the queue of partially-
99  * populated reservations.  The reservation always appears on the containing
100  * object's list of reservations.
101  *
102  * A partially-populated reservation can be broken and reclaimed at any time.
103  */
104 struct vm_reserv {
105         TAILQ_ENTRY(vm_reserv) partpopq;
106         LIST_ENTRY(vm_reserv) objq;
107         vm_object_t     object;                 /* containing object */
108         vm_pindex_t     pindex;                 /* offset within object */
109         vm_page_t       pages;                  /* first page of a superpage */
110         int             popcnt;                 /* # of pages in use */
111         char            inpartpopq;
112 };
113
114 /*
115  * The reservation array
116  *
117  * This array is analoguous in function to vm_page_array.  It differs in the
118  * respect that it may contain a greater number of useful reservation
119  * structures than there are (physical) superpages.  These "invalid"
120  * reservation structures exist to trade-off space for time in the
121  * implementation of vm_reserv_from_page().  Invalid reservation structures are
122  * distinguishable from "valid" reservation structures by inspecting the
123  * reservation's "pages" field.  Invalid reservation structures have a NULL
124  * "pages" field.
125  *
126  * vm_reserv_from_page() maps a small (physical) page to an element of this
127  * array by computing a physical reservation number from the page's physical
128  * address.  The physical reservation number is used as the array index.
129  *
130  * An "active" reservation is a valid reservation structure that has a non-NULL
131  * "object" field and a non-zero "popcnt" field.  In other words, every active
132  * reservation belongs to a particular object.  Moreover, every active
133  * reservation has an entry in the containing object's list of reservations.  
134  */
135 static vm_reserv_t vm_reserv_array;
136
137 /*
138  * The partially-populated reservation queue
139  *
140  * This queue enables the fast recovery of an unused cached or free small page
141  * from a partially-populated reservation.  The reservation at the head of
142  * this queue is the least-recently-changed, partially-populated reservation.
143  *
144  * Access to this queue is synchronized by the free page queue lock.
145  */
146 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
147                             TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
148
149 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
150
151 static long vm_reserv_broken;
152 SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
153     &vm_reserv_broken, 0, "Cumulative number of broken reservations");
154
155 static long vm_reserv_freed;
156 SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
157     &vm_reserv_freed, 0, "Cumulative number of freed reservations");
158
159 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
160
161 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
162     sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
163
164 static long vm_reserv_reclaimed;
165 SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
166     &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
167
168 static void             vm_reserv_depopulate(vm_reserv_t rv);
169 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
170 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
171                             vm_pindex_t pindex);
172 static void             vm_reserv_populate(vm_reserv_t rv);
173 static void             vm_reserv_reclaim(vm_reserv_t rv);
174
175 /*
176  * Describes the current state of the partially-populated reservation queue.
177  */
178 static int
179 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
180 {
181         struct sbuf sbuf;
182         vm_reserv_t rv;
183         char *cbuf;
184         const int cbufsize = (VM_NRESERVLEVEL + 1) * 81;
185         int counter, error, level, unused_pages;
186
187         cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
188         sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
189         sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
190         for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
191                 counter = 0;
192                 unused_pages = 0;
193                 mtx_lock(&vm_page_queue_free_mtx);
194                 TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
195                         counter++;
196                         unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
197                 }
198                 mtx_unlock(&vm_page_queue_free_mtx);
199                 sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
200                     unused_pages * ((int)PAGE_SIZE / 1024), counter);
201         }
202         sbuf_finish(&sbuf);
203         error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
204         sbuf_delete(&sbuf);
205         free(cbuf, M_TEMP);
206         return (error);
207 }
208
209 /*
210  * Reduces the given reservation's population count.  If the population count
211  * becomes zero, the reservation is destroyed.  Additionally, moves the
212  * reservation to the tail of the partially-populated reservations queue if the
213  * population count is non-zero.
214  *
215  * The free page queue lock must be held.
216  */
217 static void
218 vm_reserv_depopulate(vm_reserv_t rv)
219 {
220
221         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
222         KASSERT(rv->object != NULL,
223             ("vm_reserv_depopulate: reserv %p is free", rv));
224         KASSERT(rv->popcnt > 0,
225             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
226         if (rv->inpartpopq) {
227                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
228                 rv->inpartpopq = FALSE;
229         }
230         rv->popcnt--;
231         if (rv->popcnt == 0) {
232                 LIST_REMOVE(rv, objq);
233                 rv->object = NULL;
234                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
235                 vm_reserv_freed++;
236         } else {
237                 rv->inpartpopq = TRUE;
238                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
239         }
240 }
241
242 /*
243  * Returns the reservation to which the given page might belong.
244  */
245 static __inline vm_reserv_t
246 vm_reserv_from_page(vm_page_t m)
247 {
248
249         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
250 }
251
252 /*
253  * Returns TRUE if the given reservation contains the given page index and
254  * FALSE otherwise.
255  */
256 static __inline boolean_t
257 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
258 {
259
260         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
261 }
262
263 /*
264  * Increases the given reservation's population count.  Moves the reservation
265  * to the tail of the partially-populated reservation queue.
266  *
267  * The free page queue must be locked.
268  */
269 static void
270 vm_reserv_populate(vm_reserv_t rv)
271 {
272
273         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
274         KASSERT(rv->object != NULL,
275             ("vm_reserv_populate: reserv %p is free", rv));
276         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
277             ("vm_reserv_populate: reserv %p is already full", rv));
278         if (rv->inpartpopq) {
279                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
280                 rv->inpartpopq = FALSE;
281         }
282         rv->popcnt++;
283         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
284                 rv->inpartpopq = TRUE;
285                 TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
286         }
287 }
288
289 /*
290  * Allocates a page from an existing or newly-created reservation.
291  *
292  * The object and free page queue must be locked.
293  */
294 vm_page_t
295 vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex)
296 {
297         vm_page_t m, mpred, msucc;
298         vm_pindex_t first, leftcap, rightcap;
299         vm_reserv_t rv;
300
301         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
302
303         /*
304          * Is a reservation fundamentally not possible?
305          */
306         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
307         if (pindex < VM_RESERV_INDEX(object, pindex) ||
308             pindex >= object->size)
309                 return (NULL);
310
311         /*
312          * Look for an existing reservation.
313          */
314         msucc = NULL;
315         mpred = object->root;
316         while (mpred != NULL) {
317                 KASSERT(mpred->pindex != pindex,
318                     ("vm_reserv_alloc_page: pindex already allocated"));
319                 rv = vm_reserv_from_page(mpred);
320                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex)) {
321                         m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
322                         /* Handle vm_page_rename(m, new_object, ...). */
323                         if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
324                                 return (NULL);
325                         vm_reserv_populate(rv);
326                         return (m);
327                 } else if (mpred->pindex < pindex) {
328                         if (msucc != NULL ||
329                             (msucc = TAILQ_NEXT(mpred, listq)) == NULL)
330                                 break;
331                         KASSERT(msucc->pindex != pindex,
332                             ("vm_reserv_alloc_page: pindex already allocated"));
333                         rv = vm_reserv_from_page(msucc);
334                         if (rv->object == object &&
335                             vm_reserv_has_pindex(rv, pindex)) {
336                                 m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
337                                 /* Handle vm_page_rename(m, new_object, ...). */
338                                 if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
339                                         return (NULL);
340                                 vm_reserv_populate(rv);
341                                 return (m);
342                         } else if (pindex < msucc->pindex)
343                                 break;
344                 } else if (msucc == NULL) {
345                         msucc = mpred;
346                         mpred = TAILQ_PREV(msucc, pglist, listq);
347                         continue;
348                 }
349                 msucc = NULL;
350                 mpred = object->root = vm_page_splay(pindex, object->root);
351         }
352
353         /*
354          * Determine the first index to the left that can be used.
355          */
356         if (mpred == NULL)
357                 leftcap = 0;
358         else if ((rv = vm_reserv_from_page(mpred))->object != object)
359                 leftcap = mpred->pindex + 1;
360         else
361                 leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
362
363         /*
364          * Determine the first index to the right that cannot be used.
365          */
366         if (msucc == NULL)
367                 rightcap = pindex + VM_LEVEL_0_NPAGES;
368         else if ((rv = vm_reserv_from_page(msucc))->object != object)
369                 rightcap = msucc->pindex;
370         else
371                 rightcap = rv->pindex;
372
373         /*
374          * Determine if a reservation fits between the first index to
375          * the left that can be used and the first index to the right
376          * that cannot be used. 
377          */
378         first = pindex - VM_RESERV_INDEX(object, pindex);
379         if (first < leftcap || first + VM_LEVEL_0_NPAGES > rightcap)
380                 return (NULL);
381
382         /*
383          * Would a new reservation extend past the end of the given object? 
384          */
385         if (object->size < first + VM_LEVEL_0_NPAGES) {
386                 /*
387                  * Don't allocate a new reservation if the object is a vnode or
388                  * backed by another object that is a vnode. 
389                  */
390                 if (object->type == OBJT_VNODE ||
391                     (object->backing_object != NULL &&
392                     object->backing_object->type == OBJT_VNODE))
393                         return (NULL);
394                 /* Speculate that the object may grow. */
395         }
396
397         /*
398          * Allocate a new reservation.
399          */
400         m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
401         if (m != NULL) {
402                 rv = vm_reserv_from_page(m);
403                 KASSERT(rv->pages == m,
404                     ("vm_reserv_alloc_page: reserv %p's pages is corrupted",
405                     rv));
406                 KASSERT(rv->object == NULL,
407                     ("vm_reserv_alloc_page: reserv %p isn't free", rv));
408                 LIST_INSERT_HEAD(&object->rvq, rv, objq);
409                 rv->object = object;
410                 rv->pindex = first;
411                 KASSERT(rv->popcnt == 0,
412                     ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted",
413                     rv));
414                 KASSERT(!rv->inpartpopq,
415                     ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE",
416                     rv));
417                 vm_reserv_populate(rv);
418                 m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
419         }
420         return (m);
421 }
422
423 /*
424  * Breaks all reservations belonging to the given object.
425  */
426 void
427 vm_reserv_break_all(vm_object_t object)
428 {
429         vm_reserv_t rv;
430         int i;
431
432         mtx_lock(&vm_page_queue_free_mtx);
433         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
434                 KASSERT(rv->object == object,
435                     ("vm_reserv_break_all: reserv %p is corrupted", rv));
436                 if (rv->inpartpopq) {
437                         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
438                         rv->inpartpopq = FALSE;
439                 }
440                 LIST_REMOVE(rv, objq);
441                 rv->object = NULL;
442                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
443                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
444                                 vm_phys_free_pages(&rv->pages[i], 0);
445                         else
446                                 rv->popcnt--;
447                 }
448                 KASSERT(rv->popcnt == 0,
449                     ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
450                     rv));
451                 vm_reserv_broken++;
452         }
453         mtx_unlock(&vm_page_queue_free_mtx);
454 }
455
456 /*
457  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
458  * page is freed and FALSE otherwise.
459  *
460  * The free page queue lock must be held.
461  */
462 boolean_t
463 vm_reserv_free_page(vm_page_t m)
464 {
465         vm_reserv_t rv;
466
467         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
468         rv = vm_reserv_from_page(m);
469         if (rv->object == NULL)
470                 return (FALSE);
471         if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
472                 vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
473                     VM_LEVEL_0_ORDER);
474         vm_reserv_depopulate(rv);
475         return (TRUE);
476 }
477
478 /*
479  * Initializes the reservation management system.  Specifically, initializes
480  * the reservation array.
481  *
482  * Requires that vm_page_array and first_page are initialized!
483  */
484 void
485 vm_reserv_init(void)
486 {
487         vm_paddr_t paddr;
488         int i;
489
490         /*
491          * Initialize the reservation array.  Specifically, initialize the
492          * "pages" field for every element that has an underlying superpage.
493          */
494         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
495                 paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
496                 while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
497                         vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
498                             PHYS_TO_VM_PAGE(paddr);
499                         paddr += VM_LEVEL_0_SIZE;
500                 }
501         }
502 }
503
504 /*
505  * Returns a reservation level if the given page belongs to a fully-populated
506  * reservation and -1 otherwise.
507  */
508 int
509 vm_reserv_level_iffullpop(vm_page_t m)
510 {
511         vm_reserv_t rv;
512
513         rv = vm_reserv_from_page(m);
514         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
515 }
516
517 /*
518  * Prepare for the reactivation of a cached page.
519  *
520  * First, suppose that the given page "m" was allocated individually, i.e., not
521  * as part of a reservation, and cached.  Then, suppose a reservation
522  * containing "m" is allocated by the same object.  Although "m" and the
523  * reservation belong to the same object, "m"'s pindex may not match the
524  * reservation's.
525  *
526  * The free page queue must be locked.
527  */
528 boolean_t
529 vm_reserv_reactivate_page(vm_page_t m)
530 {
531         vm_reserv_t rv;
532         int i, m_index;
533
534         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
535         rv = vm_reserv_from_page(m);
536         if (rv->object == NULL)
537                 return (FALSE);
538         KASSERT((m->flags & PG_CACHED) != 0,
539             ("vm_reserv_uncache_page: page %p is not cached", m));
540         if (m->object == rv->object &&
541             m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
542                 vm_reserv_populate(rv);
543         else {
544                 KASSERT(rv->inpartpopq,
545                     ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
546                     rv));
547                 TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
548                 rv->inpartpopq = FALSE;
549                 LIST_REMOVE(rv, objq);
550                 rv->object = NULL;
551                 /* Don't vm_phys_free_pages(m, 0). */
552                 m_index = m - rv->pages;
553                 for (i = 0; i < m_index; i++) {
554                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
555                                 vm_phys_free_pages(&rv->pages[i], 0);
556                         else
557                                 rv->popcnt--;
558                 }
559                 for (i++; i < VM_LEVEL_0_NPAGES; i++) {
560                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
561                                 vm_phys_free_pages(&rv->pages[i], 0);
562                         else
563                                 rv->popcnt--;
564                 }
565                 KASSERT(rv->popcnt == 0,
566                     ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
567                     rv));
568                 vm_reserv_broken++;
569         }
570         return (TRUE);
571 }
572
573 /*
574  * Breaks the given partially-populated reservation, releasing its cached and
575  * free pages to the physical memory allocator.
576  *
577  * The free page queue lock must be held.
578  */
579 static void
580 vm_reserv_reclaim(vm_reserv_t rv)
581 {
582         int i;
583
584         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
585         KASSERT(rv->inpartpopq,
586             ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
587         TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
588         rv->inpartpopq = FALSE;
589         KASSERT(rv->object != NULL,
590             ("vm_reserv_reclaim: reserv %p is free", rv));
591         LIST_REMOVE(rv, objq);
592         rv->object = NULL;
593         for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
594                 if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
595                         vm_phys_free_pages(&rv->pages[i], 0);
596                 else
597                         rv->popcnt--;
598         }
599         KASSERT(rv->popcnt == 0,
600             ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
601         vm_reserv_reclaimed++;
602 }
603
604 /*
605  * Breaks the reservation at the head of the partially-populated reservation
606  * queue, releasing its cached and free pages to the physical memory
607  * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
608  *
609  * The free page queue lock must be held.
610  */
611 boolean_t
612 vm_reserv_reclaim_inactive(void)
613 {
614         vm_reserv_t rv;
615
616         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
617         if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
618                 vm_reserv_reclaim(rv);
619                 return (TRUE);
620         }
621         return (FALSE);
622 }
623
624 /*
625  * Searches the partially-populated reservation queue for the least recently
626  * active reservation with unused pages, i.e., cached or free, that satisfy the
627  * given request for contiguous physical memory.  If a satisfactory reservation
628  * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
629  * otherwise.
630  *
631  * The free page queue lock must be held.
632  */
633 boolean_t
634 vm_reserv_reclaim_contig(vm_paddr_t size, vm_paddr_t low, vm_paddr_t high,
635     unsigned long alignment, unsigned long boundary)
636 {
637         vm_paddr_t pa, pa_length;
638         vm_reserv_t rv;
639         int i;
640
641         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
642         if (size > VM_LEVEL_0_SIZE - PAGE_SIZE)
643                 return (FALSE);
644         TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
645                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
646                 if (pa + PAGE_SIZE - size < low) {
647                         /* this entire reservation is too low; go to next */
648                         continue;
649                 }
650                 pa_length = 0;
651                 for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
652                         if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
653                                 pa_length += PAGE_SIZE;
654                                 if (pa_length == PAGE_SIZE) {
655                                         pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
656                                         if (pa + size > high) {
657                                                 /* skip to next reservation */
658                                                 break;
659                                         } else if (pa < low ||
660                                             (pa & (alignment - 1)) != 0 ||
661                                             ((pa ^ (pa + size - 1)) &
662                                             ~(boundary - 1)) != 0)
663                                                 pa_length = 0;
664                                 }
665                                 if (pa_length >= size) {
666                                         vm_reserv_reclaim(rv);
667                                         return (TRUE);
668                                 }
669                         } else
670                                 pa_length = 0;
671         }
672         return (FALSE);
673 }
674
675 /*
676  * Transfers the reservation underlying the given page to a new object.
677  *
678  * The object must be locked.
679  */
680 void
681 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
682     vm_pindex_t old_object_offset)
683 {
684         vm_reserv_t rv;
685
686         VM_OBJECT_LOCK_ASSERT(new_object, MA_OWNED);
687         rv = vm_reserv_from_page(m);
688         if (rv->object == old_object) {
689                 mtx_lock(&vm_page_queue_free_mtx);
690                 if (rv->object == old_object) {
691                         LIST_REMOVE(rv, objq);
692                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
693                         rv->object = new_object;
694                         rv->pindex -= old_object_offset;
695                 }
696                 mtx_unlock(&vm_page_queue_free_mtx);
697         }
698 }
699
700 /*
701  * Allocates the virtual and physical memory required by the reservation
702  * management system's data structures, in particular, the reservation array.
703  */
704 vm_paddr_t
705 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
706 {
707         vm_paddr_t new_end;
708         size_t size;
709
710         /*
711          * Calculate the size (in bytes) of the reservation array.  Round up
712          * from "high_water" because every small page is mapped to an element
713          * in the reservation array based on its physical address.  Thus, the
714          * number of elements in the reservation array can be greater than the
715          * number of superpages. 
716          */
717         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
718
719         /*
720          * Allocate and map the physical memory for the reservation array.  The
721          * next available virtual address is returned by reference.
722          */
723         new_end = end - round_page(size);
724         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
725             VM_PROT_READ | VM_PROT_WRITE);
726         bzero(vm_reserv_array, size);
727
728         /*
729          * Return the next available physical address.
730          */
731         return (new_end);
732 }
733
734 #endif  /* VM_NRESERVLEVEL > 0 */