]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - 6/sys/dev/bge/if_bge.c
Clone Kip's Xen on stable/6 tree so that I can work on improving FreeBSD/amd64
[FreeBSD/FreeBSD.git] / 6 / sys / dev / bge / if_bge.c
1 /*-
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36
37 /*
38  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
39  *
40  * The Broadcom BCM5700 is based on technology originally developed by
41  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
42  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
43  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45  * frames, highly configurable RX filtering, and 16 RX and TX queues
46  * (which, along with RX filter rules, can be used for QOS applications).
47  * Other features, such as TCP segmentation, may be available as part
48  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
49  * firmware images can be stored in hardware and need not be compiled
50  * into the driver.
51  *
52  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54  *
55  * The BCM5701 is a single-chip solution incorporating both the BCM5700
56  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57  * does not support external SSRAM.
58  *
59  * Broadcom also produces a variation of the BCM5700 under the "Altima"
60  * brand name, which is functionally similar but lacks PCI-X support.
61  *
62  * Without external SSRAM, you can only have at most 4 TX rings,
63  * and the use of the mini RX ring is disabled. This seems to imply
64  * that these features are simply not available on the BCM5701. As a
65  * result, this driver does not implement any support for the mini RX
66  * ring.
67  */
68
69 #ifdef HAVE_KERNEL_OPTION_HEADERS
70 #include "opt_device_polling.h"
71 #endif
72
73 #include <sys/param.h>
74 #include <sys/endian.h>
75 #include <sys/systm.h>
76 #include <sys/sockio.h>
77 #include <sys/mbuf.h>
78 #include <sys/malloc.h>
79 #include <sys/kernel.h>
80 #include <sys/module.h>
81 #include <sys/socket.h>
82 #include <sys/sysctl.h>
83
84 #include <net/if.h>
85 #include <net/if_arp.h>
86 #include <net/ethernet.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89
90 #include <net/bpf.h>
91
92 #include <net/if_types.h>
93 #include <net/if_vlan_var.h>
94
95 #include <netinet/in_systm.h>
96 #include <netinet/in.h>
97 #include <netinet/ip.h>
98
99 #include <machine/bus.h>
100 #include <machine/resource.h>
101 #include <sys/bus.h>
102 #include <sys/rman.h>
103
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106 #include "miidevs.h"
107 #include <dev/mii/brgphyreg.h>
108
109 #ifdef __sparc64__
110 #include <dev/ofw/ofw_bus.h>
111 #include <dev/ofw/openfirm.h>
112 #include <machine/ofw_machdep.h>
113 #include <machine/ver.h>
114 #endif
115
116 #include <dev/pci/pcireg.h>
117 #include <dev/pci/pcivar.h>
118
119 #include <dev/bge/if_bgereg.h>
120
121 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
122 #define ETHER_MIN_NOPAD         (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
123
124 MODULE_DEPEND(bge, pci, 1, 1, 1);
125 MODULE_DEPEND(bge, ether, 1, 1, 1);
126 MODULE_DEPEND(bge, miibus, 1, 1, 1);
127
128 /* "device miibus" required.  See GENERIC if you get errors here. */
129 #include "miibus_if.h"
130
131 /*
132  * Various supported device vendors/types and their names. Note: the
133  * spec seems to indicate that the hardware still has Alteon's vendor
134  * ID burned into it, though it will always be overriden by the vendor
135  * ID in the EEPROM. Just to be safe, we cover all possibilities.
136  */
137 static struct bge_type {
138         uint16_t        bge_vid;
139         uint16_t        bge_did;
140 } bge_devs[] = {
141         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5700 },
142         { ALTEON_VENDORID,      ALTEON_DEVICEID_BCM5701 },
143
144         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1000 },
145         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC1002 },
146         { ALTIMA_VENDORID,      ALTIMA_DEVICE_AC9100 },
147
148         { APPLE_VENDORID,       APPLE_DEVICE_BCM5701 },
149
150         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5700 },
151         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5701 },
152         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702 },
153         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702_ALT },
154         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5702X },
155         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703 },
156         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703_ALT },
157         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5703X },
158         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704C },
159         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S },
160         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5704S_ALT },
161         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705 },
162         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705F },
163         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705K },
164         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M },
165         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5705M_ALT },
166         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714C },
167         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5714S },
168         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715 },
169         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5715S },
170         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5720 },
171         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5721 },
172         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5722 },
173         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750 },
174         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5750M },
175         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751 },
176         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751F },
177         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5751M },
178         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752 },
179         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5752M },
180         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753 },
181         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753F },
182         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5753M },
183         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754 },
184         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5754M },
185         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755 },
186         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5755M },
187         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780 },
188         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5780S },
189         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5781 },
190         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5782 },
191         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5786 },
192         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787 },
193         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5787M },
194         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5788 },
195         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5789 },
196         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901 },
197         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5901A2 },
198         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5903M },
199         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906 },
200         { BCOM_VENDORID,        BCOM_DEVICEID_BCM5906M },
201
202         { SK_VENDORID,          SK_DEVICEID_ALTIMA },
203
204         { TC_VENDORID,          TC_DEVICEID_3C996 },
205
206         { 0, 0 }
207 };
208
209 static const struct bge_vendor {
210         uint16_t        v_id;
211         const char      *v_name;
212 } bge_vendors[] = {
213         { ALTEON_VENDORID,      "Alteon" },
214         { ALTIMA_VENDORID,      "Altima" },
215         { APPLE_VENDORID,       "Apple" },
216         { BCOM_VENDORID,        "Broadcom" },
217         { SK_VENDORID,          "SysKonnect" },
218         { TC_VENDORID,          "3Com" },
219
220         { 0, NULL }
221 };
222         
223 static const struct bge_revision {
224         uint32_t        br_chipid;
225         const char      *br_name;
226 } bge_revisions[] = {
227         { BGE_CHIPID_BCM5700_A0,        "BCM5700 A0" },
228         { BGE_CHIPID_BCM5700_A1,        "BCM5700 A1" },
229         { BGE_CHIPID_BCM5700_B0,        "BCM5700 B0" },
230         { BGE_CHIPID_BCM5700_B1,        "BCM5700 B1" },
231         { BGE_CHIPID_BCM5700_B2,        "BCM5700 B2" },
232         { BGE_CHIPID_BCM5700_B3,        "BCM5700 B3" },
233         { BGE_CHIPID_BCM5700_ALTIMA,    "BCM5700 Altima" },
234         { BGE_CHIPID_BCM5700_C0,        "BCM5700 C0" },
235         { BGE_CHIPID_BCM5701_A0,        "BCM5701 A0" },
236         { BGE_CHIPID_BCM5701_B0,        "BCM5701 B0" },
237         { BGE_CHIPID_BCM5701_B2,        "BCM5701 B2" },
238         { BGE_CHIPID_BCM5701_B5,        "BCM5701 B5" },
239         { BGE_CHIPID_BCM5703_A0,        "BCM5703 A0" },
240         { BGE_CHIPID_BCM5703_A1,        "BCM5703 A1" },
241         { BGE_CHIPID_BCM5703_A2,        "BCM5703 A2" },
242         { BGE_CHIPID_BCM5703_A3,        "BCM5703 A3" },
243         { BGE_CHIPID_BCM5703_B0,        "BCM5703 B0" },
244         { BGE_CHIPID_BCM5704_A0,        "BCM5704 A0" },
245         { BGE_CHIPID_BCM5704_A1,        "BCM5704 A1" },
246         { BGE_CHIPID_BCM5704_A2,        "BCM5704 A2" },
247         { BGE_CHIPID_BCM5704_A3,        "BCM5704 A3" },
248         { BGE_CHIPID_BCM5704_B0,        "BCM5704 B0" },
249         { BGE_CHIPID_BCM5705_A0,        "BCM5705 A0" },
250         { BGE_CHIPID_BCM5705_A1,        "BCM5705 A1" },
251         { BGE_CHIPID_BCM5705_A2,        "BCM5705 A2" },
252         { BGE_CHIPID_BCM5705_A3,        "BCM5705 A3" },
253         { BGE_CHIPID_BCM5750_A0,        "BCM5750 A0" },
254         { BGE_CHIPID_BCM5750_A1,        "BCM5750 A1" },
255         { BGE_CHIPID_BCM5750_A3,        "BCM5750 A3" },
256         { BGE_CHIPID_BCM5750_B0,        "BCM5750 B0" },
257         { BGE_CHIPID_BCM5750_B1,        "BCM5750 B1" },
258         { BGE_CHIPID_BCM5750_C0,        "BCM5750 C0" },
259         { BGE_CHIPID_BCM5750_C1,        "BCM5750 C1" },
260         { BGE_CHIPID_BCM5750_C2,        "BCM5750 C2" },
261         { BGE_CHIPID_BCM5714_A0,        "BCM5714 A0" },
262         { BGE_CHIPID_BCM5752_A0,        "BCM5752 A0" },
263         { BGE_CHIPID_BCM5752_A1,        "BCM5752 A1" },
264         { BGE_CHIPID_BCM5752_A2,        "BCM5752 A2" },
265         { BGE_CHIPID_BCM5714_B0,        "BCM5714 B0" },
266         { BGE_CHIPID_BCM5714_B3,        "BCM5714 B3" },
267         { BGE_CHIPID_BCM5715_A0,        "BCM5715 A0" },
268         { BGE_CHIPID_BCM5715_A1,        "BCM5715 A1" },
269         { BGE_CHIPID_BCM5715_A3,        "BCM5715 A3" },
270         { BGE_CHIPID_BCM5755_A0,        "BCM5755 A0" },
271         { BGE_CHIPID_BCM5755_A1,        "BCM5755 A1" },
272         { BGE_CHIPID_BCM5755_A2,        "BCM5755 A2" },
273         { BGE_CHIPID_BCM5722_A0,        "BCM5722 A0" },
274         /* 5754 and 5787 share the same ASIC ID */
275         { BGE_CHIPID_BCM5787_A0,        "BCM5754/5787 A0" }, 
276         { BGE_CHIPID_BCM5787_A1,        "BCM5754/5787 A1" },
277         { BGE_CHIPID_BCM5787_A2,        "BCM5754/5787 A2" },
278         { BGE_CHIPID_BCM5906_A1,        "BCM5906 A1" },
279         { BGE_CHIPID_BCM5906_A2,        "BCM5906 A2" },
280
281         { 0, NULL }
282 };
283
284 /*
285  * Some defaults for major revisions, so that newer steppings
286  * that we don't know about have a shot at working.
287  */
288 static const struct bge_revision bge_majorrevs[] = {
289         { BGE_ASICREV_BCM5700,          "unknown BCM5700" },
290         { BGE_ASICREV_BCM5701,          "unknown BCM5701" },
291         { BGE_ASICREV_BCM5703,          "unknown BCM5703" },
292         { BGE_ASICREV_BCM5704,          "unknown BCM5704" },
293         { BGE_ASICREV_BCM5705,          "unknown BCM5705" },
294         { BGE_ASICREV_BCM5750,          "unknown BCM5750" },
295         { BGE_ASICREV_BCM5714_A0,       "unknown BCM5714" },
296         { BGE_ASICREV_BCM5752,          "unknown BCM5752" },
297         { BGE_ASICREV_BCM5780,          "unknown BCM5780" },
298         { BGE_ASICREV_BCM5714,          "unknown BCM5714" },
299         { BGE_ASICREV_BCM5755,          "unknown BCM5755" },
300         /* 5754 and 5787 share the same ASIC ID */
301         { BGE_ASICREV_BCM5787,          "unknown BCM5754/5787" },
302         { BGE_ASICREV_BCM5906,          "unknown BCM5906" },
303
304         { 0, NULL }
305 };
306
307 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
308 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
309 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
310 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
311 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
312
313 const struct bge_revision * bge_lookup_rev(uint32_t);
314 const struct bge_vendor * bge_lookup_vendor(uint16_t);
315
316 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
317
318 static int bge_probe(device_t);
319 static int bge_attach(device_t);
320 static int bge_detach(device_t);
321 static int bge_suspend(device_t);
322 static int bge_resume(device_t);
323 static void bge_release_resources(struct bge_softc *);
324 static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
325 static int bge_dma_alloc(device_t);
326 static void bge_dma_free(struct bge_softc *);
327
328 static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
329 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
330 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
331 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
332 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
333
334 static void bge_txeof(struct bge_softc *);
335 static void bge_rxeof(struct bge_softc *);
336
337 static void bge_asf_driver_up (struct bge_softc *);
338 static void bge_tick(void *);
339 static void bge_stats_update(struct bge_softc *);
340 static void bge_stats_update_regs(struct bge_softc *);
341 static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
342
343 static void bge_intr(void *);
344 static void bge_start_locked(struct ifnet *);
345 static void bge_start(struct ifnet *);
346 static int bge_ioctl(struct ifnet *, u_long, caddr_t);
347 static void bge_init_locked(struct bge_softc *);
348 static void bge_init(void *);
349 static void bge_stop(struct bge_softc *);
350 static void bge_watchdog(struct bge_softc *);
351 static void bge_shutdown(device_t);
352 static int bge_ifmedia_upd_locked(struct ifnet *);
353 static int bge_ifmedia_upd(struct ifnet *);
354 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
355
356 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
357 static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
358
359 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
360 static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
361
362 static void bge_setpromisc(struct bge_softc *);
363 static void bge_setmulti(struct bge_softc *);
364
365 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
366 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
367 static int bge_init_rx_ring_std(struct bge_softc *);
368 static void bge_free_rx_ring_std(struct bge_softc *);
369 static int bge_init_rx_ring_jumbo(struct bge_softc *);
370 static void bge_free_rx_ring_jumbo(struct bge_softc *);
371 static void bge_free_tx_ring(struct bge_softc *);
372 static int bge_init_tx_ring(struct bge_softc *);
373
374 static int bge_chipinit(struct bge_softc *);
375 static int bge_blockinit(struct bge_softc *);
376
377 static int bge_has_eaddr(struct bge_softc *);
378 static uint32_t bge_readmem_ind(struct bge_softc *, int);
379 static void bge_writemem_ind(struct bge_softc *, int, int);
380 static void bge_writembx(struct bge_softc *, int, int);
381 #ifdef notdef
382 static uint32_t bge_readreg_ind(struct bge_softc *, int);
383 #endif
384 static void bge_writemem_direct(struct bge_softc *, int, int);
385 static void bge_writereg_ind(struct bge_softc *, int, int);
386
387 static int bge_miibus_readreg(device_t, int, int);
388 static int bge_miibus_writereg(device_t, int, int, int);
389 static void bge_miibus_statchg(device_t);
390 #ifdef DEVICE_POLLING
391 static void bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
392 #endif
393
394 #define BGE_RESET_START 1
395 #define BGE_RESET_STOP  2
396 static void bge_sig_post_reset(struct bge_softc *, int);
397 static void bge_sig_legacy(struct bge_softc *, int);
398 static void bge_sig_pre_reset(struct bge_softc *, int);
399 static int bge_reset(struct bge_softc *);
400 static void bge_link_upd(struct bge_softc *);
401
402 /*
403  * The BGE_REGISTER_DEBUG option is only for low-level debugging.  It may
404  * leak information to untrusted users.  It is also known to cause alignment
405  * traps on certain architectures.
406  */
407 #ifdef BGE_REGISTER_DEBUG
408 static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
409 static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
410 static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
411 #endif
412 static void bge_add_sysctls(struct bge_softc *);
413
414 static device_method_t bge_methods[] = {
415         /* Device interface */
416         DEVMETHOD(device_probe,         bge_probe),
417         DEVMETHOD(device_attach,        bge_attach),
418         DEVMETHOD(device_detach,        bge_detach),
419         DEVMETHOD(device_shutdown,      bge_shutdown),
420         DEVMETHOD(device_suspend,       bge_suspend),
421         DEVMETHOD(device_resume,        bge_resume),
422
423         /* bus interface */
424         DEVMETHOD(bus_print_child,      bus_generic_print_child),
425         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
426
427         /* MII interface */
428         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
429         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
430         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
431
432         { 0, 0 }
433 };
434
435 static driver_t bge_driver = {
436         "bge",
437         bge_methods,
438         sizeof(struct bge_softc)
439 };
440
441 static devclass_t bge_devclass;
442
443 DRIVER_MODULE(bge, pci, bge_driver, bge_devclass, 0, 0);
444 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
445
446 static int bge_allow_asf = 0;
447
448 TUNABLE_INT("hw.bge.allow_asf", &bge_allow_asf);
449
450 SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD, 0, "BGE driver parameters");
451 SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RD, &bge_allow_asf, 0,
452         "Allow ASF mode if available");
453
454 #define SPARC64_BLADE_1500_MODEL        "SUNW,Sun-Blade-1500"
455 #define SPARC64_BLADE_1500_PATH_BGE     "/pci@1f,700000/network@2"
456 #define SPARC64_BLADE_2500_MODEL        "SUNW,Sun-Blade-2500"
457 #define SPARC64_BLADE_2500_PATH_BGE     "/pci@1c,600000/network@3"
458 #define SPARC64_OFW_SUBVENDOR           "subsystem-vendor-id"
459
460 static int
461 bge_has_eaddr(struct bge_softc *sc)
462 {
463 #ifdef __sparc64__
464         char buf[sizeof(SPARC64_BLADE_1500_PATH_BGE)];
465         device_t dev;
466         uint32_t subvendor;
467
468         dev = sc->bge_dev;
469
470         /*
471          * The on-board BGEs found in sun4u machines aren't fitted with
472          * an EEPROM which means that we have to obtain the MAC address
473          * via OFW and that some tests will always fail.  We distinguish
474          * such BGEs by the subvendor ID, which also has to be obtained
475          * from OFW instead of the PCI configuration space as the latter
476          * indicates Broadcom as the subvendor of the netboot interface.
477          * For early Blade 1500 and 2500 we even have to check the OFW
478          * device path as the subvendor ID always defaults to Broadcom
479          * there.
480          */
481         if (OF_getprop(ofw_bus_get_node(dev), SPARC64_OFW_SUBVENDOR,
482             &subvendor, sizeof(subvendor)) == sizeof(subvendor) &&
483             subvendor == SUN_VENDORID)
484                 return (0);
485         memset(buf, 0, sizeof(buf));
486         if (OF_package_to_path(ofw_bus_get_node(dev), buf, sizeof(buf)) > 0) {
487                 if (strcmp(sparc64_model, SPARC64_BLADE_1500_MODEL) == 0 &&
488                     strcmp(buf, SPARC64_BLADE_1500_PATH_BGE) == 0)
489                         return (0);
490                 if (strcmp(sparc64_model, SPARC64_BLADE_2500_MODEL) == 0 &&
491                     strcmp(buf, SPARC64_BLADE_2500_PATH_BGE) == 0)
492                         return (0);
493         }
494 #endif
495         return (1);
496 }
497
498 static uint32_t
499 bge_readmem_ind(struct bge_softc *sc, int off)
500 {
501         device_t dev;
502         uint32_t val;
503
504         dev = sc->bge_dev;
505
506         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
507         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
508         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
509         return (val);
510 }
511
512 static void
513 bge_writemem_ind(struct bge_softc *sc, int off, int val)
514 {
515         device_t dev;
516
517         dev = sc->bge_dev;
518
519         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
520         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
521         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
522 }
523
524 #ifdef notdef
525 static uint32_t
526 bge_readreg_ind(struct bge_softc *sc, int off)
527 {
528         device_t dev;
529
530         dev = sc->bge_dev;
531
532         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
533         return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
534 }
535 #endif
536
537 static void
538 bge_writereg_ind(struct bge_softc *sc, int off, int val)
539 {
540         device_t dev;
541
542         dev = sc->bge_dev;
543
544         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
545         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
546 }
547
548 static void
549 bge_writemem_direct(struct bge_softc *sc, int off, int val)
550 {
551         CSR_WRITE_4(sc, off, val);
552 }
553
554 static void
555 bge_writembx(struct bge_softc *sc, int off, int val)
556 {
557         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
558                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
559
560         CSR_WRITE_4(sc, off, val);
561 }
562
563 /*
564  * Map a single buffer address.
565  */
566
567 static void
568 bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
569 {
570         struct bge_dmamap_arg *ctx;
571
572         if (error)
573                 return;
574
575         ctx = arg;
576
577         if (nseg > ctx->bge_maxsegs) {
578                 ctx->bge_maxsegs = 0;
579                 return;
580         }
581
582         ctx->bge_busaddr = segs->ds_addr;
583 }
584
585 static uint8_t
586 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
587 {
588         uint32_t access, byte = 0;
589         int i;
590
591         /* Lock. */
592         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
593         for (i = 0; i < 8000; i++) {
594                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
595                         break;
596                 DELAY(20);
597         }
598         if (i == 8000)
599                 return (1);
600
601         /* Enable access. */
602         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
603         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
604
605         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
606         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
607         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
608                 DELAY(10);
609                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
610                         DELAY(10);
611                         break;
612                 }
613         }
614
615         if (i == BGE_TIMEOUT * 10) {
616                 if_printf(sc->bge_ifp, "nvram read timed out\n");
617                 return (1);
618         }
619
620         /* Get result. */
621         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
622
623         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
624
625         /* Disable access. */
626         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
627
628         /* Unlock. */
629         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
630         CSR_READ_4(sc, BGE_NVRAM_SWARB);
631
632         return (0);
633 }
634
635 /*
636  * Read a sequence of bytes from NVRAM.
637  */
638 static int
639 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
640 {
641         int err = 0, i;
642         uint8_t byte = 0;
643
644         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
645                 return (1);
646
647         for (i = 0; i < cnt; i++) {
648                 err = bge_nvram_getbyte(sc, off + i, &byte);
649                 if (err)
650                         break;
651                 *(dest + i) = byte;
652         }
653
654         return (err ? 1 : 0);
655 }
656
657 /*
658  * Read a byte of data stored in the EEPROM at address 'addr.' The
659  * BCM570x supports both the traditional bitbang interface and an
660  * auto access interface for reading the EEPROM. We use the auto
661  * access method.
662  */
663 static uint8_t
664 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
665 {
666         int i;
667         uint32_t byte = 0;
668
669         /*
670          * Enable use of auto EEPROM access so we can avoid
671          * having to use the bitbang method.
672          */
673         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
674
675         /* Reset the EEPROM, load the clock period. */
676         CSR_WRITE_4(sc, BGE_EE_ADDR,
677             BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
678         DELAY(20);
679
680         /* Issue the read EEPROM command. */
681         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
682
683         /* Wait for completion */
684         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
685                 DELAY(10);
686                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
687                         break;
688         }
689
690         if (i == BGE_TIMEOUT * 10) {
691                 device_printf(sc->bge_dev, "EEPROM read timed out\n");
692                 return (1);
693         }
694
695         /* Get result. */
696         byte = CSR_READ_4(sc, BGE_EE_DATA);
697
698         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
699
700         return (0);
701 }
702
703 /*
704  * Read a sequence of bytes from the EEPROM.
705  */
706 static int
707 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
708 {
709         int i, error = 0;
710         uint8_t byte = 0;
711
712         for (i = 0; i < cnt; i++) {
713                 error = bge_eeprom_getbyte(sc, off + i, &byte);
714                 if (error)
715                         break;
716                 *(dest + i) = byte;
717         }
718
719         return (error ? 1 : 0);
720 }
721
722 static int
723 bge_miibus_readreg(device_t dev, int phy, int reg)
724 {
725         struct bge_softc *sc;
726         uint32_t val, autopoll;
727         int i;
728
729         sc = device_get_softc(dev);
730
731         /*
732          * Broadcom's own driver always assumes the internal
733          * PHY is at GMII address 1. On some chips, the PHY responds
734          * to accesses at all addresses, which could cause us to
735          * bogusly attach the PHY 32 times at probe type. Always
736          * restricting the lookup to address 1 is simpler than
737          * trying to figure out which chips revisions should be
738          * special-cased.
739          */
740         if (phy != 1)
741                 return (0);
742
743         /* Reading with autopolling on may trigger PCI errors */
744         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
745         if (autopoll & BGE_MIMODE_AUTOPOLL) {
746                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
747                 DELAY(40);
748         }
749
750         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
751             BGE_MIPHY(phy) | BGE_MIREG(reg));
752
753         for (i = 0; i < BGE_TIMEOUT; i++) {
754                 DELAY(10);
755                 val = CSR_READ_4(sc, BGE_MI_COMM);
756                 if (!(val & BGE_MICOMM_BUSY))
757                         break;
758         }
759
760         if (i == BGE_TIMEOUT) {
761                 device_printf(sc->bge_dev,
762                     "PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
763                     phy, reg, val);
764                 val = 0;
765                 goto done;
766         }
767
768         DELAY(5);
769         val = CSR_READ_4(sc, BGE_MI_COMM);
770
771 done:
772         if (autopoll & BGE_MIMODE_AUTOPOLL) {
773                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
774                 DELAY(40);
775         }
776
777         if (val & BGE_MICOMM_READFAIL)
778                 return (0);
779
780         return (val & 0xFFFF);
781 }
782
783 static int
784 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
785 {
786         struct bge_softc *sc;
787         uint32_t autopoll;
788         int i;
789
790         sc = device_get_softc(dev);
791
792         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
793             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
794                 return(0);
795
796         /* Reading with autopolling on may trigger PCI errors */
797         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
798         if (autopoll & BGE_MIMODE_AUTOPOLL) {
799                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
800                 DELAY(40);
801         }
802
803         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
804             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
805
806         for (i = 0; i < BGE_TIMEOUT; i++) {
807                 DELAY(10);
808                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
809                         DELAY(5);
810                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
811                         break;
812                 }
813         }
814
815         if (i == BGE_TIMEOUT) {
816                 device_printf(sc->bge_dev,
817                     "PHY write timed out (phy %d, reg %d, val %d)\n",
818                     phy, reg, val);
819                 return (0);
820         }
821
822         if (autopoll & BGE_MIMODE_AUTOPOLL) {
823                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
824                 DELAY(40);
825         }
826
827
828         return (0);
829 }
830
831 static void
832 bge_miibus_statchg(device_t dev)
833 {
834         struct bge_softc *sc;
835         struct mii_data *mii;
836         sc = device_get_softc(dev);
837         mii = device_get_softc(sc->bge_miibus);
838
839         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
840         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T)
841                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
842         else
843                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
844
845         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
846                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
847         else
848                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
849 }
850
851 /*
852  * Intialize a standard receive ring descriptor.
853  */
854 static int
855 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
856 {
857         struct mbuf *m_new = NULL;
858         struct bge_rx_bd *r;
859         struct bge_dmamap_arg ctx;
860         int error;
861
862         if (m == NULL) {
863                 m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
864                 if (m_new == NULL)
865                         return (ENOBUFS);
866                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
867         } else {
868                 m_new = m;
869                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
870                 m_new->m_data = m_new->m_ext.ext_buf;
871         }
872
873         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
874                 m_adj(m_new, ETHER_ALIGN);
875         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
876         r = &sc->bge_ldata.bge_rx_std_ring[i];
877         ctx.bge_maxsegs = 1;
878         ctx.sc = sc;
879         error = bus_dmamap_load(sc->bge_cdata.bge_mtag,
880             sc->bge_cdata.bge_rx_std_dmamap[i], mtod(m_new, void *),
881             m_new->m_len, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
882         if (error || ctx.bge_maxsegs == 0) {
883                 if (m == NULL) {
884                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
885                         m_freem(m_new);
886                 }
887                 return (ENOMEM);
888         }
889         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(ctx.bge_busaddr);
890         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(ctx.bge_busaddr);
891         r->bge_flags = BGE_RXBDFLAG_END;
892         r->bge_len = m_new->m_len;
893         r->bge_idx = i;
894
895         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
896             sc->bge_cdata.bge_rx_std_dmamap[i],
897             BUS_DMASYNC_PREREAD);
898
899         return (0);
900 }
901
902 /*
903  * Initialize a jumbo receive ring descriptor. This allocates
904  * a jumbo buffer from the pool managed internally by the driver.
905  */
906 static int
907 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
908 {
909         bus_dma_segment_t segs[BGE_NSEG_JUMBO];
910         struct bge_extrx_bd *r;
911         struct mbuf *m_new = NULL;
912         int nsegs;
913         int error;
914
915         if (m == NULL) {
916                 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
917                 if (m_new == NULL)
918                         return (ENOBUFS);
919
920                 m_cljget(m_new, M_DONTWAIT, MJUM9BYTES);
921                 if (!(m_new->m_flags & M_EXT)) {
922                         m_freem(m_new);
923                         return (ENOBUFS);
924                 }
925                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
926         } else {
927                 m_new = m;
928                 m_new->m_len = m_new->m_pkthdr.len = MJUM9BYTES;
929                 m_new->m_data = m_new->m_ext.ext_buf;
930         }
931
932         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
933                 m_adj(m_new, ETHER_ALIGN);
934
935         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
936             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
937             m_new, segs, &nsegs, BUS_DMA_NOWAIT);
938         if (error) {
939                 if (m == NULL)
940                         m_freem(m_new);
941                 return (error);
942         }
943         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
944
945         /*
946          * Fill in the extended RX buffer descriptor.
947          */
948         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
949         r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
950         r->bge_idx = i;
951         r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
952         switch (nsegs) {
953         case 4:
954                 r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
955                 r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
956                 r->bge_len3 = segs[3].ds_len;
957         case 3:
958                 r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
959                 r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
960                 r->bge_len2 = segs[2].ds_len;
961         case 2:
962                 r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
963                 r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
964                 r->bge_len1 = segs[1].ds_len;
965         case 1:
966                 r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
967                 r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
968                 r->bge_len0 = segs[0].ds_len;
969                 break;
970         default:
971                 panic("%s: %d segments\n", __func__, nsegs);
972         }
973
974         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
975             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
976             BUS_DMASYNC_PREREAD);
977
978         return (0);
979 }
980
981 /*
982  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
983  * that's 1MB or memory, which is a lot. For now, we fill only the first
984  * 256 ring entries and hope that our CPU is fast enough to keep up with
985  * the NIC.
986  */
987 static int
988 bge_init_rx_ring_std(struct bge_softc *sc)
989 {
990         int i;
991
992         for (i = 0; i < BGE_SSLOTS; i++) {
993                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
994                         return (ENOBUFS);
995         };
996
997         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
998             sc->bge_cdata.bge_rx_std_ring_map,
999             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1000
1001         sc->bge_std = i - 1;
1002         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1003
1004         return (0);
1005 }
1006
1007 static void
1008 bge_free_rx_ring_std(struct bge_softc *sc)
1009 {
1010         int i;
1011
1012         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1013                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1014                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1015                             sc->bge_cdata.bge_rx_std_dmamap[i],
1016                             BUS_DMASYNC_POSTREAD);
1017                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1018                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1019                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1020                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1021                 }
1022                 bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1023                     sizeof(struct bge_rx_bd));
1024         }
1025 }
1026
1027 static int
1028 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1029 {
1030         struct bge_rcb *rcb;
1031         int i;
1032
1033         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1034                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1035                         return (ENOBUFS);
1036         };
1037
1038         bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1039             sc->bge_cdata.bge_rx_jumbo_ring_map,
1040             BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1041
1042         sc->bge_jumbo = i - 1;
1043
1044         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1045         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1046                                     BGE_RCB_FLAG_USE_EXT_RX_BD);
1047         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1048
1049         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1050
1051         return (0);
1052 }
1053
1054 static void
1055 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1056 {
1057         int i;
1058
1059         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1060                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1061                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1062                             sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1063                             BUS_DMASYNC_POSTREAD);
1064                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1065                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1066                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1067                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1068                 }
1069                 bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1070                     sizeof(struct bge_extrx_bd));
1071         }
1072 }
1073
1074 static void
1075 bge_free_tx_ring(struct bge_softc *sc)
1076 {
1077         int i;
1078
1079         if (sc->bge_ldata.bge_tx_ring == NULL)
1080                 return;
1081
1082         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1083                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1084                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
1085                             sc->bge_cdata.bge_tx_dmamap[i],
1086                             BUS_DMASYNC_POSTWRITE);
1087                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
1088                             sc->bge_cdata.bge_tx_dmamap[i]);
1089                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1090                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1091                 }
1092                 bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1093                     sizeof(struct bge_tx_bd));
1094         }
1095 }
1096
1097 static int
1098 bge_init_tx_ring(struct bge_softc *sc)
1099 {
1100         sc->bge_txcnt = 0;
1101         sc->bge_tx_saved_considx = 0;
1102
1103         /* Initialize transmit producer index for host-memory send ring. */
1104         sc->bge_tx_prodidx = 0;
1105         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1106
1107         /* 5700 b2 errata */
1108         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1109                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1110
1111         /* NIC-memory send ring not used; initialize to zero. */
1112         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1113         /* 5700 b2 errata */
1114         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1115                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1116
1117         return (0);
1118 }
1119
1120 static void
1121 bge_setpromisc(struct bge_softc *sc)
1122 {
1123         struct ifnet *ifp;
1124
1125         BGE_LOCK_ASSERT(sc);
1126
1127         ifp = sc->bge_ifp;
1128
1129         /* Enable or disable promiscuous mode as needed. */
1130         if (ifp->if_flags & IFF_PROMISC)
1131                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1132         else
1133                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1134 }
1135
1136 static void
1137 bge_setmulti(struct bge_softc *sc)
1138 {
1139         struct ifnet *ifp;
1140         struct ifmultiaddr *ifma;
1141         uint32_t hashes[4] = { 0, 0, 0, 0 };
1142         int h, i;
1143
1144         BGE_LOCK_ASSERT(sc);
1145
1146         ifp = sc->bge_ifp;
1147
1148         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1149                 for (i = 0; i < 4; i++)
1150                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1151                 return;
1152         }
1153
1154         /* First, zot all the existing filters. */
1155         for (i = 0; i < 4; i++)
1156                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1157
1158         /* Now program new ones. */
1159         IF_ADDR_LOCK(ifp);
1160         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1161                 if (ifma->ifma_addr->sa_family != AF_LINK)
1162                         continue;
1163                 h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
1164                     ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
1165                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1166         }
1167         IF_ADDR_UNLOCK(ifp);
1168
1169         for (i = 0; i < 4; i++)
1170                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1171 }
1172
1173 static void
1174 bge_sig_pre_reset(sc, type)
1175         struct bge_softc *sc;
1176         int type;
1177 {
1178         /*
1179          * Some chips don't like this so only do this if ASF is enabled
1180          */
1181         if (sc->bge_asf_mode)
1182                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1183
1184         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1185                 switch (type) {
1186                 case BGE_RESET_START:
1187                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1188                         break;
1189                 case BGE_RESET_STOP:
1190                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1191                         break;
1192                 }
1193         }
1194 }
1195
1196 static void
1197 bge_sig_post_reset(sc, type)
1198         struct bge_softc *sc;
1199         int type;
1200 {
1201         if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1202                 switch (type) {
1203                 case BGE_RESET_START:
1204                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001); 
1205                         /* START DONE */
1206                         break;
1207                 case BGE_RESET_STOP:
1208                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002); 
1209                         break;
1210                 }
1211         }
1212 }
1213
1214 static void
1215 bge_sig_legacy(sc, type)
1216         struct bge_softc *sc;
1217         int type;
1218 {
1219         if (sc->bge_asf_mode) {
1220                 switch (type) {
1221                 case BGE_RESET_START:
1222                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1223                         break;
1224                 case BGE_RESET_STOP:
1225                         bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1226                         break;
1227                 }
1228         }
1229 }
1230
1231 void bge_stop_fw(struct bge_softc *);
1232 void
1233 bge_stop_fw(sc)
1234         struct bge_softc *sc;
1235 {
1236         int i;
1237
1238         if (sc->bge_asf_mode) {
1239                 bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1240                 CSR_WRITE_4(sc, BGE_CPU_EVENT,
1241                     CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1242
1243                 for (i = 0; i < 100; i++ ) {
1244                         if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1245                                 break;
1246                         DELAY(10);
1247                 }
1248         }
1249 }
1250
1251 /*
1252  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1253  * self-test results.
1254  */
1255 static int
1256 bge_chipinit(struct bge_softc *sc)
1257 {
1258         uint32_t dma_rw_ctl;
1259         int i;
1260
1261         /* Set endianness before we access any non-PCI registers. */
1262         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_INIT, 4);
1263
1264         /*
1265          * Check the 'ROM failed' bit on the RX CPU to see if
1266          * self-tests passed. Skip this check when there's no
1267          * chip containing the Ethernet address fitted, since
1268          * in that case it will always fail.
1269          */
1270         if ((sc->bge_flags & BGE_FLAG_EADDR) &&
1271             CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1272                 device_printf(sc->bge_dev, "RX CPU self-diagnostics failed!\n");
1273                 return (ENODEV);
1274         }
1275
1276         /* Clear the MAC control register */
1277         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1278
1279         /*
1280          * Clear the MAC statistics block in the NIC's
1281          * internal memory.
1282          */
1283         for (i = BGE_STATS_BLOCK;
1284             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1285                 BGE_MEMWIN_WRITE(sc, i, 0);
1286
1287         for (i = BGE_STATUS_BLOCK;
1288             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1289                 BGE_MEMWIN_WRITE(sc, i, 0);
1290
1291         /* Set up the PCI DMA control register. */
1292         if (sc->bge_flags & BGE_FLAG_PCIE) {
1293                 /* PCI Express bus */
1294                 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1295                     BGE_PCIDMARWCTL_RD_WAT_SHIFT(0xF) |
1296                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x2);
1297         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1298                 /* PCI-X bus */
1299                 if (BGE_IS_5714_FAMILY(sc)) {
1300                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1301                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1302                         /* XXX magic values, Broadcom-supplied Linux driver */
1303                         dma_rw_ctl |= (1 << 20) | (1 << 18);
1304                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780)
1305                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1306                         else
1307                                 dma_rw_ctl |= 1 << 15;
1308
1309                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1310                         /*
1311                          * The 5704 uses a different encoding of read/write
1312                          * watermarks.
1313                          */
1314                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1315                             BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x7) |
1316                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x3);
1317                 else
1318                         dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1319                             BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x3) |
1320                             BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x3) |
1321                             0x0F;
1322
1323                 /*
1324                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1325                  * for hardware bugs.
1326                  */
1327                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1328                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1329                         uint32_t tmp;
1330
1331                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1332                         if (tmp == 0x6 || tmp == 0x7)
1333                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1334                 }
1335         } else
1336                 /* Conventional PCI bus */
1337                 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1338                     BGE_PCIDMARWCTL_RD_WAT_SHIFT(0x7) |
1339                     BGE_PCIDMARWCTL_WR_WAT_SHIFT(0x7) |
1340                     0x0F;
1341
1342         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1343             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1344             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1345                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1346         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1347
1348         /*
1349          * Set up general mode register.
1350          */
1351         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1352             BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1353             BGE_MODECTL_TX_NO_PHDR_CSUM);
1354
1355         /*
1356          * Tell the firmware the driver is running
1357          */
1358         if (sc->bge_asf_mode & ASF_STACKUP)
1359                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1360
1361         /*
1362          * Disable memory write invalidate.  Apparently it is not supported
1363          * properly by these devices.
1364          */
1365         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1366
1367 #ifdef __brokenalpha__
1368         /*
1369          * Must insure that we do not cross an 8K (bytes) boundary
1370          * for DMA reads.  Our highest limit is 1K bytes.  This is a
1371          * restriction on some ALPHA platforms with early revision
1372          * 21174 PCI chipsets, such as the AlphaPC 164lx
1373          */
1374         PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1375             BGE_PCI_READ_BNDRY_1024BYTES, 4);
1376 #endif
1377
1378         /* Set the timer prescaler (always 66Mhz) */
1379         CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1380
1381         /* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1382         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1383                 DELAY(40);      /* XXX */
1384
1385                 /* Put PHY into ready state */
1386                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1387                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1388                 DELAY(40);
1389         }
1390
1391         return (0);
1392 }
1393
1394 static int
1395 bge_blockinit(struct bge_softc *sc)
1396 {
1397         struct bge_rcb *rcb;
1398         bus_size_t vrcb;
1399         bge_hostaddr taddr;
1400         uint32_t val;
1401         int i;
1402
1403         /*
1404          * Initialize the memory window pointer register so that
1405          * we can access the first 32K of internal NIC RAM. This will
1406          * allow us to set up the TX send ring RCBs and the RX return
1407          * ring RCBs, plus other things which live in NIC memory.
1408          */
1409         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1410
1411         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1412
1413         if (!(BGE_IS_5705_PLUS(sc))) {
1414                 /* Configure mbuf memory pool */
1415                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1416                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1417                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1418                 else
1419                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1420
1421                 /* Configure DMA resource pool */
1422                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1423                     BGE_DMA_DESCRIPTORS);
1424                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1425         }
1426
1427         /* Configure mbuf pool watermarks */
1428         if (!BGE_IS_5705_PLUS(sc)) {
1429                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1430                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1431                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1432         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1433                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1434                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1435                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1436         } else {
1437                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1438                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1439                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1440         }
1441
1442         /* Configure DMA resource watermarks */
1443         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1444         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1445
1446         /* Enable buffer manager */
1447         if (!(BGE_IS_5705_PLUS(sc))) {
1448                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1449                     BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1450
1451                 /* Poll for buffer manager start indication */
1452                 for (i = 0; i < BGE_TIMEOUT; i++) {
1453                         DELAY(10);
1454                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1455                                 break;
1456                 }
1457
1458                 if (i == BGE_TIMEOUT) {
1459                         device_printf(sc->bge_dev,
1460                             "buffer manager failed to start\n");
1461                         return (ENXIO);
1462                 }
1463         }
1464
1465         /* Enable flow-through queues */
1466         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1467         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1468
1469         /* Wait until queue initialization is complete */
1470         for (i = 0; i < BGE_TIMEOUT; i++) {
1471                 DELAY(10);
1472                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1473                         break;
1474         }
1475
1476         if (i == BGE_TIMEOUT) {
1477                 device_printf(sc->bge_dev, "flow-through queue init failed\n");
1478                 return (ENXIO);
1479         }
1480
1481         /* Initialize the standard RX ring control block */
1482         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1483         rcb->bge_hostaddr.bge_addr_lo =
1484             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1485         rcb->bge_hostaddr.bge_addr_hi =
1486             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1487         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1488             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
1489         if (BGE_IS_5705_PLUS(sc))
1490                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1491         else
1492                 rcb->bge_maxlen_flags =
1493                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1494         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1495         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1496         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1497
1498         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1499         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1500
1501         /*
1502          * Initialize the jumbo RX ring control block
1503          * We set the 'ring disabled' bit in the flags
1504          * field until we're actually ready to start
1505          * using this ring (i.e. once we set the MTU
1506          * high enough to require it).
1507          */
1508         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1509                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1510
1511                 rcb->bge_hostaddr.bge_addr_lo =
1512                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1513                 rcb->bge_hostaddr.bge_addr_hi =
1514                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1515                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1516                     sc->bge_cdata.bge_rx_jumbo_ring_map,
1517                     BUS_DMASYNC_PREREAD);
1518                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1519                     BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
1520                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1521                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1522                     rcb->bge_hostaddr.bge_addr_hi);
1523                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1524                     rcb->bge_hostaddr.bge_addr_lo);
1525
1526                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1527                     rcb->bge_maxlen_flags);
1528                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1529
1530                 /* Set up dummy disabled mini ring RCB */
1531                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1532                 rcb->bge_maxlen_flags =
1533                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1534                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1535                     rcb->bge_maxlen_flags);
1536         }
1537
1538         /*
1539          * Set the BD ring replentish thresholds. The recommended
1540          * values are 1/8th the number of descriptors allocated to
1541          * each ring.
1542          * XXX The 5754 requires a lower threshold, so it might be a
1543          * requirement of all 575x family chips.  The Linux driver sets
1544          * the lower threshold for all 5705 family chips as well, but there
1545          * are reports that it might not need to be so strict.
1546          *
1547          * XXX Linux does some extra fiddling here for the 5906 parts as
1548          * well.
1549          */
1550         if (BGE_IS_5705_PLUS(sc))
1551                 val = 8;
1552         else
1553                 val = BGE_STD_RX_RING_CNT / 8;
1554         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1555         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1556
1557         /*
1558          * Disable all unused send rings by setting the 'ring disabled'
1559          * bit in the flags field of all the TX send ring control blocks.
1560          * These are located in NIC memory.
1561          */
1562         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1563         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1564                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1565                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1566                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1567                 vrcb += sizeof(struct bge_rcb);
1568         }
1569
1570         /* Configure TX RCB 0 (we use only the first ring) */
1571         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1572         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1573         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1574         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1575         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1576             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1577         if (!(BGE_IS_5705_PLUS(sc)))
1578                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1579                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1580
1581         /* Disable all unused RX return rings */
1582         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1583         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1584                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1585                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1586                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1587                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1588                     BGE_RCB_FLAG_RING_DISABLED));
1589                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1590                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1591                     (i * (sizeof(uint64_t))), 0);
1592                 vrcb += sizeof(struct bge_rcb);
1593         }
1594
1595         /* Initialize RX ring indexes */
1596         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1597         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1598         bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1599
1600         /*
1601          * Set up RX return ring 0
1602          * Note that the NIC address for RX return rings is 0x00000000.
1603          * The return rings live entirely within the host, so the
1604          * nicaddr field in the RCB isn't used.
1605          */
1606         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1607         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1608         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1609         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1610         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0x00000000);
1611         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1612             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));  
1613
1614         /* Set random backoff seed for TX */
1615         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1616             IF_LLADDR(sc->bge_ifp)[0] + IF_LLADDR(sc->bge_ifp)[1] +
1617             IF_LLADDR(sc->bge_ifp)[2] + IF_LLADDR(sc->bge_ifp)[3] +
1618             IF_LLADDR(sc->bge_ifp)[4] + IF_LLADDR(sc->bge_ifp)[5] +
1619             BGE_TX_BACKOFF_SEED_MASK);
1620
1621         /* Set inter-packet gap */
1622         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1623
1624         /*
1625          * Specify which ring to use for packets that don't match
1626          * any RX rules.
1627          */
1628         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1629
1630         /*
1631          * Configure number of RX lists. One interrupt distribution
1632          * list, sixteen active lists, one bad frames class.
1633          */
1634         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1635
1636         /* Inialize RX list placement stats mask. */
1637         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1638         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1639
1640         /* Disable host coalescing until we get it set up */
1641         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1642
1643         /* Poll to make sure it's shut down. */
1644         for (i = 0; i < BGE_TIMEOUT; i++) {
1645                 DELAY(10);
1646                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1647                         break;
1648         }
1649
1650         if (i == BGE_TIMEOUT) {
1651                 device_printf(sc->bge_dev,
1652                     "host coalescing engine failed to idle\n");
1653                 return (ENXIO);
1654         }
1655
1656         /* Set up host coalescing defaults */
1657         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1658         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1659         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1660         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1661         if (!(BGE_IS_5705_PLUS(sc))) {
1662                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1663                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1664         }
1665         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
1666         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
1667
1668         /* Set up address of statistics block */
1669         if (!(BGE_IS_5705_PLUS(sc))) {
1670                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1671                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1672                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1673                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1674                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1675                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1676                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1677         }
1678
1679         /* Set up address of status block */
1680         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1681             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1682         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1683             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1684         sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx = 0;
1685         sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx = 0;
1686
1687         /* Turn on host coalescing state machine */
1688         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1689
1690         /* Turn on RX BD completion state machine and enable attentions */
1691         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1692             BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
1693
1694         /* Turn on RX list placement state machine */
1695         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1696
1697         /* Turn on RX list selector state machine. */
1698         if (!(BGE_IS_5705_PLUS(sc)))
1699                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1700
1701         /* Turn on DMA, clear stats */
1702         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB |
1703             BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR |
1704             BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB |
1705             BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB |
1706             ((sc->bge_flags & BGE_FLAG_TBI) ?
1707             BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1708
1709         /* Set misc. local control, enable interrupts on attentions */
1710         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1711
1712 #ifdef notdef
1713         /* Assert GPIO pins for PHY reset */
1714         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
1715             BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
1716         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
1717             BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
1718 #endif
1719
1720         /* Turn on DMA completion state machine */
1721         if (!(BGE_IS_5705_PLUS(sc)))
1722                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1723
1724         val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
1725
1726         /* Enable host coalescing bug fix. */
1727         if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
1728             sc->bge_asicrev == BGE_ASICREV_BCM5787)
1729                         val |= 1 << 29;
1730
1731         /* Turn on write DMA state machine */
1732         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1733
1734         /* Turn on read DMA state machine */
1735         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1736             BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS);
1737
1738         /* Turn on RX data completion state machine */
1739         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1740
1741         /* Turn on RX BD initiator state machine */
1742         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1743
1744         /* Turn on RX data and RX BD initiator state machine */
1745         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1746
1747         /* Turn on Mbuf cluster free state machine */
1748         if (!(BGE_IS_5705_PLUS(sc)))
1749                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1750
1751         /* Turn on send BD completion state machine */
1752         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1753
1754         /* Turn on send data completion state machine */
1755         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1756
1757         /* Turn on send data initiator state machine */
1758         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1759
1760         /* Turn on send BD initiator state machine */
1761         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1762
1763         /* Turn on send BD selector state machine */
1764         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1765
1766         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1767         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1768             BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
1769
1770         /* ack/clear link change events */
1771         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1772             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1773             BGE_MACSTAT_LINK_CHANGED);
1774         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1775
1776         /* Enable PHY auto polling (for MII/GMII only) */
1777         if (sc->bge_flags & BGE_FLAG_TBI) {
1778                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1779         } else {
1780                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
1781                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1782                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
1783                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1784                             BGE_EVTENB_MI_INTERRUPT);
1785         }
1786
1787         /*
1788          * Clear any pending link state attention.
1789          * Otherwise some link state change events may be lost until attention
1790          * is cleared by bge_intr() -> bge_link_upd() sequence.
1791          * It's not necessary on newer BCM chips - perhaps enabling link
1792          * state change attentions implies clearing pending attention.
1793          */
1794         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
1795             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
1796             BGE_MACSTAT_LINK_CHANGED);
1797
1798         /* Enable link state change attentions. */
1799         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1800
1801         return (0);
1802 }
1803
1804 const struct bge_revision *
1805 bge_lookup_rev(uint32_t chipid)
1806 {
1807         const struct bge_revision *br;
1808
1809         for (br = bge_revisions; br->br_name != NULL; br++) {
1810                 if (br->br_chipid == chipid)
1811                         return (br);
1812         }
1813
1814         for (br = bge_majorrevs; br->br_name != NULL; br++) {
1815                 if (br->br_chipid == BGE_ASICREV(chipid))
1816                         return (br);
1817         }
1818
1819         return (NULL);
1820 }
1821
1822 const struct bge_vendor *
1823 bge_lookup_vendor(uint16_t vid)
1824 {
1825         const struct bge_vendor *v;
1826
1827         for (v = bge_vendors; v->v_name != NULL; v++)
1828                 if (v->v_id == vid)
1829                         return (v);
1830                 
1831         panic("%s: unknown vendor %d", __func__, vid);
1832         return (NULL);
1833 }
1834
1835 /*
1836  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1837  * against our list and return its name if we find a match.
1838  *
1839  * Note that since the Broadcom controller contains VPD support, we
1840  * try to get the device name string from the controller itself instead
1841  * of the compiled-in string. It guarantees we'll always announce the
1842  * right product name. We fall back to the compiled-in string when
1843  * VPD is unavailable or corrupt.
1844  */
1845 static int
1846 bge_probe(device_t dev)
1847 {
1848         struct bge_type *t = bge_devs;
1849         struct bge_softc *sc = device_get_softc(dev);
1850         uint16_t vid, did;
1851
1852         sc->bge_dev = dev;
1853         vid = pci_get_vendor(dev);
1854         did = pci_get_device(dev);
1855         while(t->bge_vid != 0) {
1856                 if ((vid == t->bge_vid) && (did == t->bge_did)) {
1857                         char model[64], buf[96];
1858                         const struct bge_revision *br;
1859                         const struct bge_vendor *v;
1860                         uint32_t id;
1861
1862                         id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1863                             BGE_PCIMISCCTL_ASICREV;
1864                         br = bge_lookup_rev(id);
1865                         v = bge_lookup_vendor(vid);
1866                         {
1867 #if __FreeBSD_version > 700024
1868                                 const char *pname;
1869
1870                                 if (pci_get_vpd_ident(dev, &pname) == 0)
1871                                         snprintf(model, 64, "%s", pname);
1872                                 else
1873 #endif
1874                                         snprintf(model, 64, "%s %s",
1875                                             v->v_name,
1876                                             br != NULL ? br->br_name :
1877                                             "NetXtreme Ethernet Controller");
1878                         }
1879                         snprintf(buf, 96, "%s, %sASIC rev. %#04x", model,
1880                             br != NULL ? "" : "unknown ", id >> 16);
1881                         device_set_desc_copy(dev, buf);
1882                         if (pci_get_subvendor(dev) == DELL_VENDORID)
1883                                 sc->bge_flags |= BGE_FLAG_NO_3LED;
1884                         if (did == BCOM_DEVICEID_BCM5755M)
1885                                 sc->bge_flags |= BGE_FLAG_ADJUST_TRIM;
1886                         return (0);
1887                 }
1888                 t++;
1889         }
1890
1891         return (ENXIO);
1892 }
1893
1894 static void
1895 bge_dma_free(struct bge_softc *sc)
1896 {
1897         int i;
1898
1899         /* Destroy DMA maps for RX buffers. */
1900         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1901                 if (sc->bge_cdata.bge_rx_std_dmamap[i])
1902                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1903                             sc->bge_cdata.bge_rx_std_dmamap[i]);
1904         }
1905
1906         /* Destroy DMA maps for jumbo RX buffers. */
1907         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1908                 if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
1909                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
1910                             sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1911         }
1912
1913         /* Destroy DMA maps for TX buffers. */
1914         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1915                 if (sc->bge_cdata.bge_tx_dmamap[i])
1916                         bus_dmamap_destroy(sc->bge_cdata.bge_mtag,
1917                             sc->bge_cdata.bge_tx_dmamap[i]);
1918         }
1919
1920         if (sc->bge_cdata.bge_mtag)
1921                 bus_dma_tag_destroy(sc->bge_cdata.bge_mtag);
1922
1923
1924         /* Destroy standard RX ring. */
1925         if (sc->bge_cdata.bge_rx_std_ring_map)
1926                 bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
1927                     sc->bge_cdata.bge_rx_std_ring_map);
1928         if (sc->bge_cdata.bge_rx_std_ring_map && sc->bge_ldata.bge_rx_std_ring)
1929                 bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
1930                     sc->bge_ldata.bge_rx_std_ring,
1931                     sc->bge_cdata.bge_rx_std_ring_map);
1932
1933         if (sc->bge_cdata.bge_rx_std_ring_tag)
1934                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
1935
1936         /* Destroy jumbo RX ring. */
1937         if (sc->bge_cdata.bge_rx_jumbo_ring_map)
1938                 bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1939                     sc->bge_cdata.bge_rx_jumbo_ring_map);
1940
1941         if (sc->bge_cdata.bge_rx_jumbo_ring_map &&
1942             sc->bge_ldata.bge_rx_jumbo_ring)
1943                 bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1944                     sc->bge_ldata.bge_rx_jumbo_ring,
1945                     sc->bge_cdata.bge_rx_jumbo_ring_map);
1946
1947         if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
1948                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
1949
1950         /* Destroy RX return ring. */
1951         if (sc->bge_cdata.bge_rx_return_ring_map)
1952                 bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
1953                     sc->bge_cdata.bge_rx_return_ring_map);
1954
1955         if (sc->bge_cdata.bge_rx_return_ring_map &&
1956             sc->bge_ldata.bge_rx_return_ring)
1957                 bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
1958                     sc->bge_ldata.bge_rx_return_ring,
1959                     sc->bge_cdata.bge_rx_return_ring_map);
1960
1961         if (sc->bge_cdata.bge_rx_return_ring_tag)
1962                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
1963
1964         /* Destroy TX ring. */
1965         if (sc->bge_cdata.bge_tx_ring_map)
1966                 bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
1967                     sc->bge_cdata.bge_tx_ring_map);
1968
1969         if (sc->bge_cdata.bge_tx_ring_map && sc->bge_ldata.bge_tx_ring)
1970                 bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
1971                     sc->bge_ldata.bge_tx_ring,
1972                     sc->bge_cdata.bge_tx_ring_map);
1973
1974         if (sc->bge_cdata.bge_tx_ring_tag)
1975                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
1976
1977         /* Destroy status block. */
1978         if (sc->bge_cdata.bge_status_map)
1979                 bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
1980                     sc->bge_cdata.bge_status_map);
1981
1982         if (sc->bge_cdata.bge_status_map && sc->bge_ldata.bge_status_block)
1983                 bus_dmamem_free(sc->bge_cdata.bge_status_tag,
1984                     sc->bge_ldata.bge_status_block,
1985                     sc->bge_cdata.bge_status_map);
1986
1987         if (sc->bge_cdata.bge_status_tag)
1988                 bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
1989
1990         /* Destroy statistics block. */
1991         if (sc->bge_cdata.bge_stats_map)
1992                 bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
1993                     sc->bge_cdata.bge_stats_map);
1994
1995         if (sc->bge_cdata.bge_stats_map && sc->bge_ldata.bge_stats)
1996                 bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
1997                     sc->bge_ldata.bge_stats,
1998                     sc->bge_cdata.bge_stats_map);
1999
2000         if (sc->bge_cdata.bge_stats_tag)
2001                 bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2002
2003         /* Destroy the parent tag. */
2004         if (sc->bge_cdata.bge_parent_tag)
2005                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2006 }
2007
2008 static int
2009 bge_dma_alloc(device_t dev)
2010 {
2011         struct bge_dmamap_arg ctx;
2012         struct bge_softc *sc;
2013         int i, error;
2014
2015         sc = device_get_softc(dev);
2016
2017         /*
2018          * Allocate the parent bus DMA tag appropriate for PCI.
2019          */
2020         error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2021             1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2022             NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2023             0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2024
2025         if (error != 0) {
2026                 device_printf(sc->bge_dev,
2027                     "could not allocate parent dma tag\n");
2028                 return (ENOMEM);
2029         }
2030
2031         /*
2032          * Create tag for mbufs.
2033          */
2034         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1,
2035             0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2036             NULL, MCLBYTES * BGE_NSEG_NEW, BGE_NSEG_NEW, MCLBYTES,
2037             BUS_DMA_ALLOCNOW, NULL, NULL, &sc->bge_cdata.bge_mtag);
2038
2039         if (error) {
2040                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2041                 return (ENOMEM);
2042         }
2043
2044         /* Create DMA maps for RX buffers. */
2045         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2046                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2047                             &sc->bge_cdata.bge_rx_std_dmamap[i]);
2048                 if (error) {
2049                         device_printf(sc->bge_dev,
2050                             "can't create DMA map for RX\n");
2051                         return (ENOMEM);
2052                 }
2053         }
2054
2055         /* Create DMA maps for TX buffers. */
2056         for (i = 0; i < BGE_TX_RING_CNT; i++) {
2057                 error = bus_dmamap_create(sc->bge_cdata.bge_mtag, 0,
2058                             &sc->bge_cdata.bge_tx_dmamap[i]);
2059                 if (error) {
2060                         device_printf(sc->bge_dev,
2061                             "can't create DMA map for RX\n");
2062                         return (ENOMEM);
2063                 }
2064         }
2065
2066         /* Create tag for standard RX ring. */
2067         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2068             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2069             NULL, BGE_STD_RX_RING_SZ, 1, BGE_STD_RX_RING_SZ, 0,
2070             NULL, NULL, &sc->bge_cdata.bge_rx_std_ring_tag);
2071
2072         if (error) {
2073                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2074                 return (ENOMEM);
2075         }
2076
2077         /* Allocate DMA'able memory for standard RX ring. */
2078         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_std_ring_tag,
2079             (void **)&sc->bge_ldata.bge_rx_std_ring, BUS_DMA_NOWAIT,
2080             &sc->bge_cdata.bge_rx_std_ring_map);
2081         if (error)
2082                 return (ENOMEM);
2083
2084         bzero((char *)sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
2085
2086         /* Load the address of the standard RX ring. */
2087         ctx.bge_maxsegs = 1;
2088         ctx.sc = sc;
2089
2090         error = bus_dmamap_load(sc->bge_cdata.bge_rx_std_ring_tag,
2091             sc->bge_cdata.bge_rx_std_ring_map, sc->bge_ldata.bge_rx_std_ring,
2092             BGE_STD_RX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2093
2094         if (error)
2095                 return (ENOMEM);
2096
2097         sc->bge_ldata.bge_rx_std_ring_paddr = ctx.bge_busaddr;
2098
2099         /* Create tags for jumbo mbufs. */
2100         if (BGE_IS_JUMBO_CAPABLE(sc)) {
2101                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2102                     1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2103                     NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
2104                     0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
2105                 if (error) {
2106                         device_printf(sc->bge_dev,
2107                             "could not allocate jumbo dma tag\n");
2108                         return (ENOMEM);
2109                 }
2110
2111                 /* Create tag for jumbo RX ring. */
2112                 error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2113                     PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2114                     NULL, BGE_JUMBO_RX_RING_SZ, 1, BGE_JUMBO_RX_RING_SZ, 0,
2115                     NULL, NULL, &sc->bge_cdata.bge_rx_jumbo_ring_tag);
2116
2117                 if (error) {
2118                         device_printf(sc->bge_dev,
2119                             "could not allocate jumbo ring dma tag\n");
2120                         return (ENOMEM);
2121                 }
2122
2123                 /* Allocate DMA'able memory for jumbo RX ring. */
2124                 error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2125                     (void **)&sc->bge_ldata.bge_rx_jumbo_ring,
2126                     BUS_DMA_NOWAIT | BUS_DMA_ZERO,
2127                     &sc->bge_cdata.bge_rx_jumbo_ring_map);
2128                 if (error)
2129                         return (ENOMEM);
2130
2131                 /* Load the address of the jumbo RX ring. */
2132                 ctx.bge_maxsegs = 1;
2133                 ctx.sc = sc;
2134
2135                 error = bus_dmamap_load(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2136                     sc->bge_cdata.bge_rx_jumbo_ring_map,
2137                     sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ,
2138                     bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2139
2140                 if (error)
2141                         return (ENOMEM);
2142
2143                 sc->bge_ldata.bge_rx_jumbo_ring_paddr = ctx.bge_busaddr;
2144
2145                 /* Create DMA maps for jumbo RX buffers. */
2146                 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2147                         error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
2148                                     0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2149                         if (error) {
2150                                 device_printf(sc->bge_dev,
2151                                     "can't create DMA map for jumbo RX\n");
2152                                 return (ENOMEM);
2153                         }
2154                 }
2155
2156         }
2157
2158         /* Create tag for RX return ring. */
2159         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2160             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2161             NULL, BGE_RX_RTN_RING_SZ(sc), 1, BGE_RX_RTN_RING_SZ(sc), 0,
2162             NULL, NULL, &sc->bge_cdata.bge_rx_return_ring_tag);
2163
2164         if (error) {
2165                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2166                 return (ENOMEM);
2167         }
2168
2169         /* Allocate DMA'able memory for RX return ring. */
2170         error = bus_dmamem_alloc(sc->bge_cdata.bge_rx_return_ring_tag,
2171             (void **)&sc->bge_ldata.bge_rx_return_ring, BUS_DMA_NOWAIT,
2172             &sc->bge_cdata.bge_rx_return_ring_map);
2173         if (error)
2174                 return (ENOMEM);
2175
2176         bzero((char *)sc->bge_ldata.bge_rx_return_ring,
2177             BGE_RX_RTN_RING_SZ(sc));
2178
2179         /* Load the address of the RX return ring. */
2180         ctx.bge_maxsegs = 1;
2181         ctx.sc = sc;
2182
2183         error = bus_dmamap_load(sc->bge_cdata.bge_rx_return_ring_tag,
2184             sc->bge_cdata.bge_rx_return_ring_map,
2185             sc->bge_ldata.bge_rx_return_ring, BGE_RX_RTN_RING_SZ(sc),
2186             bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2187
2188         if (error)
2189                 return (ENOMEM);
2190
2191         sc->bge_ldata.bge_rx_return_ring_paddr = ctx.bge_busaddr;
2192
2193         /* Create tag for TX ring. */
2194         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2195             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2196             NULL, BGE_TX_RING_SZ, 1, BGE_TX_RING_SZ, 0, NULL, NULL,
2197             &sc->bge_cdata.bge_tx_ring_tag);
2198
2199         if (error) {
2200                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2201                 return (ENOMEM);
2202         }
2203
2204         /* Allocate DMA'able memory for TX ring. */
2205         error = bus_dmamem_alloc(sc->bge_cdata.bge_tx_ring_tag,
2206             (void **)&sc->bge_ldata.bge_tx_ring, BUS_DMA_NOWAIT,
2207             &sc->bge_cdata.bge_tx_ring_map);
2208         if (error)
2209                 return (ENOMEM);
2210
2211         bzero((char *)sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
2212
2213         /* Load the address of the TX ring. */
2214         ctx.bge_maxsegs = 1;
2215         ctx.sc = sc;
2216
2217         error = bus_dmamap_load(sc->bge_cdata.bge_tx_ring_tag,
2218             sc->bge_cdata.bge_tx_ring_map, sc->bge_ldata.bge_tx_ring,
2219             BGE_TX_RING_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2220
2221         if (error)
2222                 return (ENOMEM);
2223
2224         sc->bge_ldata.bge_tx_ring_paddr = ctx.bge_busaddr;
2225
2226         /* Create tag for status block. */
2227         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2228             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2229             NULL, BGE_STATUS_BLK_SZ, 1, BGE_STATUS_BLK_SZ, 0,
2230             NULL, NULL, &sc->bge_cdata.bge_status_tag);
2231
2232         if (error) {
2233                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2234                 return (ENOMEM);
2235         }
2236
2237         /* Allocate DMA'able memory for status block. */
2238         error = bus_dmamem_alloc(sc->bge_cdata.bge_status_tag,
2239             (void **)&sc->bge_ldata.bge_status_block, BUS_DMA_NOWAIT,
2240             &sc->bge_cdata.bge_status_map);
2241         if (error)
2242                 return (ENOMEM);
2243
2244         bzero((char *)sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2245
2246         /* Load the address of the status block. */
2247         ctx.sc = sc;
2248         ctx.bge_maxsegs = 1;
2249
2250         error = bus_dmamap_load(sc->bge_cdata.bge_status_tag,
2251             sc->bge_cdata.bge_status_map, sc->bge_ldata.bge_status_block,
2252             BGE_STATUS_BLK_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2253
2254         if (error)
2255                 return (ENOMEM);
2256
2257         sc->bge_ldata.bge_status_block_paddr = ctx.bge_busaddr;
2258
2259         /* Create tag for statistics block. */
2260         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2261             PAGE_SIZE, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
2262             NULL, BGE_STATS_SZ, 1, BGE_STATS_SZ, 0, NULL, NULL,
2263             &sc->bge_cdata.bge_stats_tag);
2264
2265         if (error) {
2266                 device_printf(sc->bge_dev, "could not allocate dma tag\n");
2267                 return (ENOMEM);
2268         }
2269
2270         /* Allocate DMA'able memory for statistics block. */
2271         error = bus_dmamem_alloc(sc->bge_cdata.bge_stats_tag,
2272             (void **)&sc->bge_ldata.bge_stats, BUS_DMA_NOWAIT,
2273             &sc->bge_cdata.bge_stats_map);
2274         if (error)
2275                 return (ENOMEM);
2276
2277         bzero((char *)sc->bge_ldata.bge_stats, BGE_STATS_SZ);
2278
2279         /* Load the address of the statstics block. */
2280         ctx.sc = sc;
2281         ctx.bge_maxsegs = 1;
2282
2283         error = bus_dmamap_load(sc->bge_cdata.bge_stats_tag,
2284             sc->bge_cdata.bge_stats_map, sc->bge_ldata.bge_stats,
2285             BGE_STATS_SZ, bge_dma_map_addr, &ctx, BUS_DMA_NOWAIT);
2286
2287         if (error)
2288                 return (ENOMEM);
2289
2290         sc->bge_ldata.bge_stats_paddr = ctx.bge_busaddr;
2291
2292         return (0);
2293 }
2294
2295 #if __FreeBSD_version > 602105
2296 /*
2297  * Return true if this device has more than one port.
2298  */
2299 static int
2300 bge_has_multiple_ports(struct bge_softc *sc)
2301 {
2302         device_t dev = sc->bge_dev;
2303         u_int b, s, f, fscan;
2304
2305         b = pci_get_bus(dev);
2306         s = pci_get_slot(dev);
2307         f = pci_get_function(dev);
2308         for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
2309                 if (fscan != f && pci_find_bsf(b, s, fscan) != NULL)
2310                         return (1);
2311         return (0);
2312 }
2313
2314 /*
2315  * Return true if MSI can be used with this device.
2316  */
2317 static int
2318 bge_can_use_msi(struct bge_softc *sc)
2319 {
2320         int can_use_msi = 0;
2321
2322         switch (sc->bge_asicrev) {
2323         case BGE_ASICREV_BCM5714:
2324                 /*
2325                  * Apparently, MSI doesn't work when this chip is configured
2326                  * in single-port mode.
2327                  */
2328                 if (bge_has_multiple_ports(sc))
2329                         can_use_msi = 1;
2330                 break;
2331         case BGE_ASICREV_BCM5750:
2332                 if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
2333                     sc->bge_chiprev != BGE_CHIPREV_5750_BX)
2334                         can_use_msi = 1;
2335                 break;
2336         case BGE_ASICREV_BCM5752:
2337         case BGE_ASICREV_BCM5780:
2338                 can_use_msi = 1;
2339                 break;
2340         }
2341         return (can_use_msi);
2342 }
2343 #endif
2344
2345 static int
2346 bge_attach(device_t dev)
2347 {
2348         struct ifnet *ifp;
2349         struct bge_softc *sc;
2350         uint32_t hwcfg = 0;
2351         u_char eaddr[ETHER_ADDR_LEN];
2352         int error, reg, rid, trys;
2353
2354         sc = device_get_softc(dev);
2355         sc->bge_dev = dev;
2356
2357         /*
2358          * Map control/status registers.
2359          */
2360         pci_enable_busmaster(dev);
2361
2362         rid = BGE_PCI_BAR0;
2363         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
2364             RF_ACTIVE | PCI_RF_DENSE);
2365
2366         if (sc->bge_res == NULL) {
2367                 device_printf (sc->bge_dev, "couldn't map memory\n");
2368                 error = ENXIO;
2369                 goto fail;
2370         }
2371
2372         sc->bge_btag = rman_get_bustag(sc->bge_res);
2373         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2374
2375         /* Save ASIC rev. */
2376
2377         sc->bge_chipid =
2378             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
2379             BGE_PCIMISCCTL_ASICREV;
2380         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2381         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2382
2383         /*
2384          * Don't enable Ethernet@WireSpeed for the 5700, 5906, or the
2385          * 5705 A0 and A1 chips.
2386          */
2387         if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
2388             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2389             sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2390             sc->bge_chipid != BGE_CHIPID_BCM5705_A1)
2391                 sc->bge_flags |= BGE_FLAG_WIRESPEED;
2392
2393         if (bge_has_eaddr(sc))
2394                 sc->bge_flags |= BGE_FLAG_EADDR;
2395
2396         /* Save chipset family. */
2397         switch (sc->bge_asicrev) {
2398         case BGE_ASICREV_BCM5700:
2399         case BGE_ASICREV_BCM5701:
2400         case BGE_ASICREV_BCM5703:
2401         case BGE_ASICREV_BCM5704:
2402                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2403                 break;
2404         case BGE_ASICREV_BCM5714_A0:
2405         case BGE_ASICREV_BCM5780:
2406         case BGE_ASICREV_BCM5714:
2407                 sc->bge_flags |= BGE_FLAG_5714_FAMILY /* | BGE_FLAG_JUMBO */;
2408                 /* FALLTHRU */
2409         case BGE_ASICREV_BCM5750:
2410         case BGE_ASICREV_BCM5752:
2411         case BGE_ASICREV_BCM5755:
2412         case BGE_ASICREV_BCM5787:
2413         case BGE_ASICREV_BCM5906:
2414                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2415                 /* FALLTHRU */
2416         case BGE_ASICREV_BCM5705:
2417                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2418                 break;
2419         }
2420
2421         /* Set various bug flags. */
2422         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2423             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2424                 sc->bge_flags |= BGE_FLAG_CRC_BUG;
2425         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2426             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2427                 sc->bge_flags |= BGE_FLAG_ADC_BUG;
2428         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2429                 sc->bge_flags |= BGE_FLAG_5704_A0_BUG;
2430         if (BGE_IS_5705_PLUS(sc) &&
2431             !(sc->bge_flags & BGE_FLAG_ADJUST_TRIM)) {
2432                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2433                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2434                         if (sc->bge_chipid != BGE_CHIPID_BCM5722_A0)
2435                                 sc->bge_flags |= BGE_FLAG_JITTER_BUG;
2436                 } else if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
2437                         sc->bge_flags |= BGE_FLAG_BER_BUG;
2438         }
2439
2440         /*
2441          * Check if this is a PCI-X or PCI Express device.
2442          */
2443 #if __FreeBSD_version > 602101
2444         if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
2445                 /*
2446                  * Found a PCI Express capabilities register, this
2447                  * must be a PCI Express device.
2448                  */
2449                 if (reg != 0)
2450                         sc->bge_flags |= BGE_FLAG_PCIE;
2451         } else if (pci_find_extcap(dev, PCIY_PCIX, &reg) == 0) {
2452                 if (reg != 0)
2453                         sc->bge_flags |= BGE_FLAG_PCIX;
2454         }
2455                         
2456 #else
2457         if (BGE_IS_5705_PLUS(sc)) {
2458                 reg = pci_read_config(dev, BGE_PCIE_CAPID_REG, 4);
2459                 if ((reg & 0xFF) == BGE_PCIE_CAPID)
2460                         sc->bge_flags |= BGE_FLAG_PCIE;
2461         } else {
2462                 /*
2463                  * Check if the device is in PCI-X Mode.
2464                  * (This bit is not valid on PCI Express controllers.)
2465                  */
2466                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2467                     BGE_PCISTATE_PCI_BUSMODE) == 0)
2468                         sc->bge_flags |= BGE_FLAG_PCIX;
2469         }
2470 #endif
2471
2472 #if __FreeBSD_version > 602105
2473         {
2474                 int msicount;
2475
2476                 /*
2477                  * Allocate the interrupt, using MSI if possible.  These devices
2478                  * support 8 MSI messages, but only the first one is used in
2479                  * normal operation.
2480                  */
2481                 if (bge_can_use_msi(sc)) {
2482                         msicount = pci_msi_count(dev);
2483                         if (msicount > 1)
2484                                 msicount = 1;
2485                 } else
2486                         msicount = 0;
2487                 if (msicount == 1 && pci_alloc_msi(dev, &msicount) == 0) {
2488                         rid = 1;
2489                         sc->bge_flags |= BGE_FLAG_MSI;
2490                 } else
2491                         rid = 0;
2492         }
2493 #else
2494         rid = 0;
2495 #endif
2496
2497         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2498             RF_SHAREABLE | RF_ACTIVE);
2499
2500         if (sc->bge_irq == NULL) {
2501                 device_printf(sc->bge_dev, "couldn't map interrupt\n");
2502                 error = ENXIO;
2503                 goto fail;
2504         }
2505
2506         BGE_LOCK_INIT(sc, device_get_nameunit(dev));
2507
2508         /* Try to reset the chip. */
2509         if (bge_reset(sc)) {
2510                 device_printf(sc->bge_dev, "chip reset failed\n");
2511                 error = ENXIO;
2512                 goto fail;
2513         }
2514
2515         sc->bge_asf_mode = 0;
2516         if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2517             == BGE_MAGIC_NUMBER)) {
2518                 if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2519                     & BGE_HWCFG_ASF) {
2520                         sc->bge_asf_mode |= ASF_ENABLE;
2521                         sc->bge_asf_mode |= ASF_STACKUP;
2522                         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
2523                                 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2524                         }
2525                 }
2526         }
2527
2528         /* Try to reset the chip again the nice way. */
2529         bge_stop_fw(sc);
2530         bge_sig_pre_reset(sc, BGE_RESET_STOP);
2531         if (bge_reset(sc)) {
2532                 device_printf(sc->bge_dev, "chip reset failed\n");
2533                 error = ENXIO;
2534                 goto fail;
2535         }
2536
2537         bge_sig_legacy(sc, BGE_RESET_STOP);
2538         bge_sig_post_reset(sc, BGE_RESET_STOP);
2539
2540         if (bge_chipinit(sc)) {
2541                 device_printf(sc->bge_dev, "chip initialization failed\n");
2542                 error = ENXIO;
2543                 goto fail;
2544         }
2545
2546         error = bge_get_eaddr(sc, eaddr);
2547         if (error) {
2548                 device_printf(sc->bge_dev,
2549                     "failed to read station address\n");
2550                 error = ENXIO;
2551                 goto fail;
2552         }
2553
2554         /* 5705 limits RX return ring to 512 entries. */
2555         if (BGE_IS_5705_PLUS(sc))
2556                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2557         else
2558                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2559
2560         if (bge_dma_alloc(dev)) {
2561                 device_printf(sc->bge_dev,
2562                     "failed to allocate DMA resources\n");
2563                 error = ENXIO;
2564                 goto fail;
2565         }
2566
2567         /* Set default tuneable values. */
2568         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2569         sc->bge_rx_coal_ticks = 150;
2570         sc->bge_tx_coal_ticks = 150;
2571         sc->bge_rx_max_coal_bds = 10;
2572         sc->bge_tx_max_coal_bds = 10;
2573
2574         /* Set up ifnet structure */
2575         ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
2576         if (ifp == NULL) {
2577                 device_printf(sc->bge_dev, "failed to if_alloc()\n");
2578                 error = ENXIO;
2579                 goto fail;
2580         }
2581         ifp->if_softc = sc;
2582         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2583         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2584         ifp->if_ioctl = bge_ioctl;
2585         ifp->if_start = bge_start;
2586         ifp->if_init = bge_init;
2587         ifp->if_mtu = ETHERMTU;
2588         ifp->if_snd.ifq_drv_maxlen = BGE_TX_RING_CNT - 1;
2589         IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
2590         IFQ_SET_READY(&ifp->if_snd);
2591         ifp->if_hwassist = BGE_CSUM_FEATURES;
2592         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
2593             IFCAP_VLAN_MTU;
2594 #ifdef IFCAP_VLAN_HWCSUM
2595         ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
2596 #endif
2597         ifp->if_capenable = ifp->if_capabilities;
2598 #ifdef DEVICE_POLLING
2599         ifp->if_capabilities |= IFCAP_POLLING;
2600 #endif
2601
2602         /*
2603          * 5700 B0 chips do not support checksumming correctly due
2604          * to hardware bugs.
2605          */
2606         if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
2607                 ifp->if_capabilities &= ~IFCAP_HWCSUM;
2608                 ifp->if_capenable &= IFCAP_HWCSUM;
2609                 ifp->if_hwassist = 0;
2610         }
2611
2612         /*
2613          * Figure out what sort of media we have by checking the
2614          * hardware config word in the first 32k of NIC internal memory,
2615          * or fall back to examining the EEPROM if necessary.
2616          * Note: on some BCM5700 cards, this value appears to be unset.
2617          * If that's the case, we have to rely on identifying the NIC
2618          * by its PCI subsystem ID, as we do below for the SysKonnect
2619          * SK-9D41.
2620          */
2621         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
2622                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2623         else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
2624             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2625                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2626                     sizeof(hwcfg))) {
2627                         device_printf(sc->bge_dev, "failed to read EEPROM\n");
2628                         error = ENXIO;
2629                         goto fail;
2630                 }
2631                 hwcfg = ntohl(hwcfg);
2632         }
2633
2634         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2635                 sc->bge_flags |= BGE_FLAG_TBI;
2636
2637         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2638         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) == SK_SUBSYSID_9D41)
2639                 sc->bge_flags |= BGE_FLAG_TBI;
2640
2641         if (sc->bge_flags & BGE_FLAG_TBI) {
2642                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2643                     bge_ifmedia_sts);
2644                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
2645                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
2646                     0, NULL);
2647                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2648                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2649                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2650         } else {
2651                 /*
2652                  * Do transceiver setup and tell the firmware the
2653                  * driver is down so we can try to get access the
2654                  * probe if ASF is running.  Retry a couple of times
2655                  * if we get a conflict with the ASF firmware accessing
2656                  * the PHY.
2657                  */
2658                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2659 again:
2660                 bge_asf_driver_up(sc);
2661
2662                 trys = 0;
2663                 if (mii_phy_probe(dev, &sc->bge_miibus,
2664                     bge_ifmedia_upd, bge_ifmedia_sts)) {
2665                         if (trys++ < 4) {
2666                                 device_printf(sc->bge_dev, "Try again\n");
2667                                 bge_miibus_writereg(sc->bge_dev, 1, MII_BMCR,
2668                                     BMCR_RESET);
2669                                 goto again;
2670                         }
2671
2672                         device_printf(sc->bge_dev, "MII without any PHY!\n");
2673                         error = ENXIO;
2674                         goto fail;
2675                 }
2676
2677                 /*
2678                  * Now tell the firmware we are going up after probing the PHY
2679                  */
2680                 if (sc->bge_asf_mode & ASF_STACKUP)
2681                         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2682         }
2683
2684         /*
2685          * When using the BCM5701 in PCI-X mode, data corruption has
2686          * been observed in the first few bytes of some received packets.
2687          * Aligning the packet buffer in memory eliminates the corruption.
2688          * Unfortunately, this misaligns the packet payloads.  On platforms
2689          * which do not support unaligned accesses, we will realign the
2690          * payloads by copying the received packets.
2691          */
2692         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2693             sc->bge_flags & BGE_FLAG_PCIX)
2694                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2695
2696         /*
2697          * Call MI attach routine.
2698          */
2699         ether_ifattach(ifp, eaddr);
2700         callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
2701
2702         /*
2703          * Hookup IRQ last.
2704          */
2705 #if __FreeBSD_version > 700030
2706         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2707            NULL, bge_intr, sc, &sc->bge_intrhand);
2708 #else
2709         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET | INTR_MPSAFE,
2710            bge_intr, sc, &sc->bge_intrhand);
2711 #endif
2712
2713         if (error) {
2714                 bge_detach(dev);
2715                 device_printf(sc->bge_dev, "couldn't set up irq\n");
2716         }
2717
2718         bge_add_sysctls(sc);
2719
2720         return (0);
2721
2722 fail:
2723         bge_release_resources(sc);
2724
2725         return (error);
2726 }
2727
2728 static int
2729 bge_detach(device_t dev)
2730 {
2731         struct bge_softc *sc;
2732         struct ifnet *ifp;
2733
2734         sc = device_get_softc(dev);
2735         ifp = sc->bge_ifp;
2736
2737 #ifdef DEVICE_POLLING
2738         if (ifp->if_capenable & IFCAP_POLLING)
2739                 ether_poll_deregister(ifp);
2740 #endif
2741
2742         BGE_LOCK(sc);
2743         bge_stop(sc);
2744         bge_reset(sc);
2745         BGE_UNLOCK(sc);
2746
2747         callout_drain(&sc->bge_stat_ch);
2748
2749         ether_ifdetach(ifp);
2750
2751         if (sc->bge_flags & BGE_FLAG_TBI) {
2752                 ifmedia_removeall(&sc->bge_ifmedia);
2753         } else {
2754                 bus_generic_detach(dev);
2755                 device_delete_child(dev, sc->bge_miibus);
2756         }
2757
2758         bge_release_resources(sc);
2759
2760         return (0);
2761 }
2762
2763 static void
2764 bge_release_resources(struct bge_softc *sc)
2765 {
2766         device_t dev;
2767
2768         dev = sc->bge_dev;
2769
2770         if (sc->bge_intrhand != NULL)
2771                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2772
2773         if (sc->bge_irq != NULL)
2774                 bus_release_resource(dev, SYS_RES_IRQ,
2775                     sc->bge_flags & BGE_FLAG_MSI ? 1 : 0, sc->bge_irq);
2776
2777 #if __FreeBSD_version > 602105
2778         if (sc->bge_flags & BGE_FLAG_MSI)
2779                 pci_release_msi(dev);
2780 #endif
2781
2782         if (sc->bge_res != NULL)
2783                 bus_release_resource(dev, SYS_RES_MEMORY,
2784                     BGE_PCI_BAR0, sc->bge_res);
2785
2786         if (sc->bge_ifp != NULL)
2787                 if_free(sc->bge_ifp);
2788
2789         bge_dma_free(sc);
2790
2791         if (mtx_initialized(&sc->bge_mtx))      /* XXX */
2792                 BGE_LOCK_DESTROY(sc);
2793 }
2794
2795 static int
2796 bge_reset(struct bge_softc *sc)
2797 {
2798         device_t dev;
2799         uint32_t cachesize, command, pcistate, reset, val;
2800         void (*write_op)(struct bge_softc *, int, int);
2801         int i;
2802
2803         dev = sc->bge_dev;
2804
2805         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2806             (sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
2807                 if (sc->bge_flags & BGE_FLAG_PCIE)
2808                         write_op = bge_writemem_direct;
2809                 else
2810                         write_op = bge_writemem_ind;
2811         } else
2812                 write_op = bge_writereg_ind;
2813
2814         /* Save some important PCI state. */
2815         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2816         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2817         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2818
2819         pci_write_config(dev, BGE_PCI_MISC_CTL,
2820             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2821             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2822
2823         /* Disable fastboot on controllers that support it. */
2824         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2825             sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2826             sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2827                 if (bootverbose)
2828                         device_printf(sc->bge_dev, "Disabling fastboot\n");
2829                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2830         }
2831
2832         /*
2833          * Write the magic number to SRAM at offset 0xB50.
2834          * When firmware finishes its initialization it will
2835          * write ~BGE_MAGIC_NUMBER to the same location.
2836          */
2837         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2838
2839         reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
2840
2841         /* XXX: Broadcom Linux driver. */
2842         if (sc->bge_flags & BGE_FLAG_PCIE) {
2843                 if (CSR_READ_4(sc, 0x7E2C) == 0x60)     /* PCIE 1.0 */
2844                         CSR_WRITE_4(sc, 0x7E2C, 0x20);
2845                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2846                         /* Prevent PCIE link training during global reset */
2847                         CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2848                         reset |= 1 << 29;
2849                 }
2850         }
2851
2852         /* 
2853          * Set GPHY Power Down Override to leave GPHY
2854          * powered up in D0 uninitialized.
2855          */
2856         if (BGE_IS_5705_PLUS(sc))
2857                 reset |= 0x04000000;
2858
2859         /* Issue global reset */
2860         write_op(sc, BGE_MISC_CFG, reset);
2861
2862         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2863                 val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2864                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2865                     val | BGE_VCPU_STATUS_DRV_RESET);
2866                 val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2867                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2868                     val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2869         }
2870
2871         DELAY(1000);
2872
2873         /* XXX: Broadcom Linux driver. */
2874         if (sc->bge_flags & BGE_FLAG_PCIE) {
2875                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2876                         DELAY(500000); /* wait for link training to complete */
2877                         val = pci_read_config(dev, 0xC4, 4);
2878                         pci_write_config(dev, 0xC4, val | (1 << 15), 4);
2879                 }
2880                 /*
2881                  * Set PCIE max payload size to 128 bytes and clear error
2882                  * status.
2883                  */
2884                 pci_write_config(dev, 0xD8, 0xF5000, 4);
2885         }
2886
2887         /* Reset some of the PCI state that got zapped by reset. */
2888         pci_write_config(dev, BGE_PCI_MISC_CTL,
2889             BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
2890             BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
2891         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2892         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2893         write_op(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2894
2895         /* Re-enable MSI, if neccesary, and enable the memory arbiter. */
2896         if (BGE_IS_5714_FAMILY(sc)) {
2897                 /* This chip disables MSI on reset. */
2898                 if (sc->bge_flags & BGE_FLAG_MSI) {
2899                         val = pci_read_config(dev, BGE_PCI_MSI_CTL, 2);
2900                         pci_write_config(dev, BGE_PCI_MSI_CTL,
2901                             val | PCIM_MSICTRL_MSI_ENABLE, 2);
2902                         val = CSR_READ_4(sc, BGE_MSI_MODE);
2903                         CSR_WRITE_4(sc, BGE_MSI_MODE,
2904                             val | BGE_MSIMODE_ENABLE);
2905                 }
2906                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2907                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2908         } else
2909                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2910
2911         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2912                 for (i = 0; i < BGE_TIMEOUT; i++) {
2913                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2914                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2915                                 break;
2916                         DELAY(100);
2917                 }
2918                 if (i == BGE_TIMEOUT) {
2919                         device_printf(sc->bge_dev, "reset timed out\n");
2920                         return (1);
2921                 }
2922         } else {
2923                 /*
2924                  * Poll until we see the 1's complement of the magic number.
2925                  * This indicates that the firmware initialization is complete.
2926                  * We expect this to fail if no chip containing the Ethernet
2927                  * address is fitted though.
2928                  */
2929                 for (i = 0; i < BGE_TIMEOUT; i++) {
2930                         DELAY(10);
2931                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2932                         if (val == ~BGE_MAGIC_NUMBER)
2933                                 break;
2934                 }
2935
2936                 if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
2937                         device_printf(sc->bge_dev, "firmware handshake timed out, "
2938                             "found 0x%08x\n", val);
2939         }
2940
2941         /*
2942          * XXX Wait for the value of the PCISTATE register to
2943          * return to its original pre-reset state. This is a
2944          * fairly good indicator of reset completion. If we don't
2945          * wait for the reset to fully complete, trying to read
2946          * from the device's non-PCI registers may yield garbage
2947          * results.
2948          */
2949         for (i = 0; i < BGE_TIMEOUT; i++) {
2950                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2951                         break;
2952                 DELAY(10);
2953         }
2954
2955         if (sc->bge_flags & BGE_FLAG_PCIE) {
2956                 reset = bge_readmem_ind(sc, 0x7C00);
2957                 bge_writemem_ind(sc, 0x7C00, reset | (1 << 25));
2958         }
2959
2960         /* Fix up byte swapping. */
2961         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2962             BGE_MODECTL_BYTESWAP_DATA);
2963
2964         /* Tell the ASF firmware we are up */
2965         if (sc->bge_asf_mode & ASF_STACKUP)
2966                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2967
2968         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2969
2970         /*
2971          * The 5704 in TBI mode apparently needs some special
2972          * adjustment to insure the SERDES drive level is set
2973          * to 1.2V.
2974          */
2975         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2976             sc->bge_flags & BGE_FLAG_TBI) {
2977                 val = CSR_READ_4(sc, BGE_SERDES_CFG);
2978                 val = (val & ~0xFFF) | 0x880;
2979                 CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
2980         }
2981
2982         /* XXX: Broadcom Linux driver. */
2983         if (sc->bge_flags & BGE_FLAG_PCIE &&
2984             sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2985                 val = CSR_READ_4(sc, 0x7C00);
2986                 CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
2987         }
2988         DELAY(10000);
2989
2990         return(0);
2991 }
2992
2993 /*
2994  * Frame reception handling. This is called if there's a frame
2995  * on the receive return list.
2996  *
2997  * Note: we have to be able to handle two possibilities here:
2998  * 1) the frame is from the jumbo receive ring
2999  * 2) the frame is from the standard receive ring
3000  */
3001
3002 static void
3003 bge_rxeof(struct bge_softc *sc)
3004 {
3005         struct ifnet *ifp;
3006         int stdcnt = 0, jumbocnt = 0;
3007
3008         BGE_LOCK_ASSERT(sc);
3009
3010         /* Nothing to do. */
3011         if (sc->bge_rx_saved_considx ==
3012             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx)
3013                 return;
3014
3015         ifp = sc->bge_ifp;
3016
3017         bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
3018             sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
3019         bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3020             sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTREAD);
3021         if (BGE_IS_JUMBO_CAPABLE(sc))
3022                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3023                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTREAD);
3024
3025         while(sc->bge_rx_saved_considx !=
3026             sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx) {
3027                 struct bge_rx_bd        *cur_rx;
3028                 uint32_t                rxidx;
3029                 struct mbuf             *m = NULL;
3030                 uint16_t                vlan_tag = 0;
3031                 int                     have_tag = 0;
3032
3033 #ifdef DEVICE_POLLING
3034                 if (ifp->if_capenable & IFCAP_POLLING) {
3035                         if (sc->rxcycles <= 0)
3036                                 break;
3037                         sc->rxcycles--;
3038                 }
3039 #endif
3040
3041                 cur_rx =
3042             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
3043
3044                 rxidx = cur_rx->bge_idx;
3045                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3046
3047                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3048                         have_tag = 1;
3049                         vlan_tag = cur_rx->bge_vlan_tag;
3050                 }
3051
3052                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3053                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3054                         bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
3055                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx],
3056                             BUS_DMASYNC_POSTREAD);
3057                         bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
3058                             sc->bge_cdata.bge_rx_jumbo_dmamap[rxidx]);
3059                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3060                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3061                         jumbocnt++;
3062                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3063                                 ifp->if_ierrors++;
3064                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3065                                 continue;
3066                         }
3067                         if (bge_newbuf_jumbo(sc,
3068                             sc->bge_jumbo, NULL) == ENOBUFS) {
3069                                 ifp->if_ierrors++;
3070                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3071                                 continue;
3072                         }
3073                 } else {
3074                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3075                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3076                             sc->bge_cdata.bge_rx_std_dmamap[rxidx],
3077                             BUS_DMASYNC_POSTREAD);
3078                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3079                             sc->bge_cdata.bge_rx_std_dmamap[rxidx]);
3080                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3081                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3082                         stdcnt++;
3083                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3084                                 ifp->if_ierrors++;
3085                                 bge_newbuf_std(sc, sc->bge_std, m);
3086                                 continue;
3087                         }
3088                         if (bge_newbuf_std(sc, sc->bge_std,
3089                             NULL) == ENOBUFS) {
3090                                 ifp->if_ierrors++;
3091                                 bge_newbuf_std(sc, sc->bge_std, m);
3092                                 continue;
3093                         }
3094                 }
3095
3096                 ifp->if_ipackets++;
3097 #ifndef __NO_STRICT_ALIGNMENT
3098                 /*
3099                  * For architectures with strict alignment we must make sure
3100                  * the payload is aligned.
3101                  */
3102                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
3103                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
3104                             cur_rx->bge_len);
3105                         m->m_data += ETHER_ALIGN;
3106                 }
3107 #endif
3108                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3109                 m->m_pkthdr.rcvif = ifp;
3110
3111                 if (ifp->if_capenable & IFCAP_RXCSUM) {
3112                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
3113                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3114                                 if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
3115                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3116                         }
3117                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3118                             m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
3119                                 m->m_pkthdr.csum_data =
3120                                     cur_rx->bge_tcp_udp_csum;
3121                                 m->m_pkthdr.csum_flags |=
3122                                     CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
3123                         }
3124                 }
3125
3126                 /*
3127                  * If we received a packet with a vlan tag,
3128                  * attach that information to the packet.
3129                  */
3130                 if (have_tag) {
3131 #if __FreeBSD_version > 700022
3132                         m->m_pkthdr.ether_vtag = vlan_tag;
3133                         m->m_flags |= M_VLANTAG;
3134 #else
3135                         VLAN_INPUT_TAG_NEW(ifp, m, vlan_tag);
3136                         if (m == NULL)
3137                                 continue;
3138 #endif
3139                 }
3140
3141                 BGE_UNLOCK(sc);
3142                 (*ifp->if_input)(ifp, m);
3143                 BGE_LOCK(sc);
3144         }
3145
3146         if (stdcnt > 0)
3147                 bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
3148                     sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
3149
3150         if (BGE_IS_JUMBO_CAPABLE(sc) && jumbocnt > 0)
3151                 bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
3152                     sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
3153
3154         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3155         if (stdcnt)
3156                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3157         if (jumbocnt)
3158                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3159 #ifdef notyet
3160         /*
3161          * This register wraps very quickly under heavy packet drops.
3162          * If you need correct statistics, you can enable this check.
3163          */
3164         if (BGE_IS_5705_PLUS(sc))
3165                 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3166 #endif
3167 }
3168
3169 static void
3170 bge_txeof(struct bge_softc *sc)
3171 {
3172         struct bge_tx_bd *cur_tx = NULL;
3173         struct ifnet *ifp;
3174
3175         BGE_LOCK_ASSERT(sc);
3176
3177         /* Nothing to do. */
3178         if (sc->bge_tx_saved_considx ==
3179             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx)
3180                 return;
3181
3182         ifp = sc->bge_ifp;
3183
3184         bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
3185             sc->bge_cdata.bge_tx_ring_map,
3186             BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
3187         /*
3188          * Go through our tx ring and free mbufs for those
3189          * frames that have been sent.
3190          */
3191         while (sc->bge_tx_saved_considx !=
3192             sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx) {
3193                 uint32_t                idx = 0;
3194
3195                 idx = sc->bge_tx_saved_considx;
3196                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
3197                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3198                         ifp->if_opackets++;
3199                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
3200                         bus_dmamap_sync(sc->bge_cdata.bge_mtag,
3201                             sc->bge_cdata.bge_tx_dmamap[idx],
3202                             BUS_DMASYNC_POSTWRITE);
3203                         bus_dmamap_unload(sc->bge_cdata.bge_mtag,
3204                             sc->bge_cdata.bge_tx_dmamap[idx]);
3205                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
3206                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
3207                 }
3208                 sc->bge_txcnt--;
3209                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3210         }
3211
3212         if (cur_tx != NULL)
3213                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3214         if (sc->bge_txcnt == 0)
3215                 sc->bge_timer = 0;
3216 }
3217
3218 #ifdef DEVICE_POLLING
3219 static void
3220 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
3221 {
3222         struct bge_softc *sc = ifp->if_softc;
3223         uint32_t statusword;
3224         
3225         BGE_LOCK(sc);
3226         if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
3227                 BGE_UNLOCK(sc);
3228                 return;
3229         }
3230
3231         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3232             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3233
3234         statusword = atomic_readandclear_32(
3235             &sc->bge_ldata.bge_status_block->bge_status);
3236
3237         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3238             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3239
3240         /* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
3241         if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
3242                 sc->bge_link_evt++;
3243
3244         if (cmd == POLL_AND_CHECK_STATUS)
3245                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3246                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3247                     sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
3248                         bge_link_upd(sc);
3249
3250         sc->rxcycles = count;
3251         bge_rxeof(sc);
3252         bge_txeof(sc);
3253         if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3254                 bge_start_locked(ifp);
3255
3256         BGE_UNLOCK(sc);
3257 }
3258 #endif /* DEVICE_POLLING */
3259
3260 static void
3261 bge_intr(void *xsc)
3262 {
3263         struct bge_softc *sc;
3264         struct ifnet *ifp;
3265         uint32_t statusword;
3266
3267         sc = xsc;
3268
3269         BGE_LOCK(sc);
3270
3271         ifp = sc->bge_ifp;
3272
3273 #ifdef DEVICE_POLLING
3274         if (ifp->if_capenable & IFCAP_POLLING) {
3275                 BGE_UNLOCK(sc);
3276                 return;
3277         }
3278 #endif
3279
3280         /*
3281          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
3282          * disable interrupts by writing nonzero like we used to, since with
3283          * our current organization this just gives complications and
3284          * pessimizations for re-enabling interrupts.  We used to have races
3285          * instead of the necessary complications.  Disabling interrupts
3286          * would just reduce the chance of a status update while we are
3287          * running (by switching to the interrupt-mode coalescence
3288          * parameters), but this chance is already very low so it is more
3289          * efficient to get another interrupt than prevent it.
3290          *
3291          * We do the ack first to ensure another interrupt if there is a
3292          * status update after the ack.  We don't check for the status
3293          * changing later because it is more efficient to get another
3294          * interrupt than prevent it, not quite as above (not checking is
3295          * a smaller optimization than not toggling the interrupt enable,
3296          * since checking doesn't involve PCI accesses and toggling require
3297          * the status check).  So toggling would probably be a pessimization
3298          * even with MSI.  It would only be needed for using a task queue.
3299          */
3300         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3301
3302         /*
3303          * Do the mandatory PCI flush as well as get the link status.
3304          */
3305         statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
3306
3307         /* Make sure the descriptor ring indexes are coherent. */
3308         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3309             sc->bge_cdata.bge_status_map, BUS_DMASYNC_POSTREAD);
3310         bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
3311             sc->bge_cdata.bge_status_map, BUS_DMASYNC_PREREAD);
3312
3313         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
3314             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
3315             statusword || sc->bge_link_evt)
3316                 bge_link_upd(sc);
3317
3318         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3319                 /* Check RX return ring producer/consumer. */
3320                 bge_rxeof(sc);
3321
3322                 /* Check TX ring producer/consumer. */
3323                 bge_txeof(sc);
3324         }
3325
3326         if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
3327             !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3328                 bge_start_locked(ifp);
3329
3330         BGE_UNLOCK(sc);
3331 }
3332
3333 static void
3334 bge_asf_driver_up(struct bge_softc *sc)
3335 {
3336         if (sc->bge_asf_mode & ASF_STACKUP) {
3337                 /* Send ASF heartbeat aprox. every 2s */
3338                 if (sc->bge_asf_count)
3339                         sc->bge_asf_count --;
3340                 else {
3341                         sc->bge_asf_count = 5;
3342                         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3343                             BGE_FW_DRV_ALIVE);
3344                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3345                         bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3346                         CSR_WRITE_4(sc, BGE_CPU_EVENT,
3347                             CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3348                 }
3349         }
3350 }
3351
3352 static void
3353 bge_tick(void *xsc)
3354 {
3355         struct bge_softc *sc = xsc;
3356         struct mii_data *mii = NULL;
3357
3358         BGE_LOCK_ASSERT(sc);
3359
3360         /* Synchronize with possible callout reset/stop. */
3361         if (callout_pending(&sc->bge_stat_ch) ||
3362             !callout_active(&sc->bge_stat_ch))
3363                 return;
3364
3365         if (BGE_IS_5705_PLUS(sc))
3366                 bge_stats_update_regs(sc);
3367         else
3368                 bge_stats_update(sc);
3369
3370         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
3371                 mii = device_get_softc(sc->bge_miibus);
3372                 /*
3373                  * Do not touch PHY if we have link up. This could break
3374                  * IPMI/ASF mode or produce extra input errors
3375                  * (extra errors was reported for bcm5701 & bcm5704).
3376                  */
3377                 if (!sc->bge_link)
3378                         mii_tick(mii);
3379         } else {
3380                 /*
3381                  * Since in TBI mode auto-polling can't be used we should poll
3382                  * link status manually. Here we register pending link event
3383                  * and trigger interrupt.
3384                  */
3385 #ifdef DEVICE_POLLING
3386                 /* In polling mode we poll link state in bge_poll(). */
3387                 if (!(sc->bge_ifp->if_capenable & IFCAP_POLLING))
3388 #endif
3389                 {
3390                 sc->bge_link_evt++;
3391                 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3392                 }
3393         }
3394
3395         bge_asf_driver_up(sc);
3396         bge_watchdog(sc);
3397
3398         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3399 }
3400
3401 static void
3402 bge_stats_update_regs(struct bge_softc *sc)
3403 {
3404         struct ifnet *ifp;
3405
3406         ifp = sc->bge_ifp;
3407
3408         ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3409             offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3410
3411         ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3412 }
3413
3414 static void
3415 bge_stats_update(struct bge_softc *sc)
3416 {
3417         struct ifnet *ifp;
3418         bus_size_t stats;
3419         uint32_t cnt;   /* current register value */
3420
3421         ifp = sc->bge_ifp;
3422
3423         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3424
3425 #define READ_STAT(sc, stats, stat) \
3426         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3427
3428         cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
3429         ifp->if_collisions += (uint32_t)(cnt - sc->bge_tx_collisions);
3430         sc->bge_tx_collisions = cnt;
3431
3432         cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
3433         ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_discards);
3434         sc->bge_rx_discards = cnt;
3435
3436         cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
3437         ifp->if_oerrors += (uint32_t)(cnt - sc->bge_tx_discards);
3438         sc->bge_tx_discards = cnt;
3439
3440 #undef  READ_STAT
3441 }
3442
3443 /*
3444  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3445  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3446  * but when such padded frames employ the bge IP/TCP checksum offload,
3447  * the hardware checksum assist gives incorrect results (possibly
3448  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3449  * If we pad such runts with zeros, the onboard checksum comes out correct.
3450  */
3451 static __inline int
3452 bge_cksum_pad(struct mbuf *m)
3453 {
3454         int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
3455         struct mbuf *last;
3456
3457         /* If there's only the packet-header and we can pad there, use it. */
3458         if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
3459             M_TRAILINGSPACE(m) >= padlen) {
3460                 last = m;
3461         } else {
3462                 /*
3463                  * Walk packet chain to find last mbuf. We will either
3464                  * pad there, or append a new mbuf and pad it.
3465                  */
3466                 for (last = m; last->m_next != NULL; last = last->m_next);
3467                 if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
3468                         /* Allocate new empty mbuf, pad it. Compact later. */
3469                         struct mbuf *n;
3470
3471                         MGET(n, M_DONTWAIT, MT_DATA);
3472                         if (n == NULL)
3473                                 return (ENOBUFS);
3474                         n->m_len = 0;
3475                         last->m_next = n;
3476                         last = n;
3477                 }
3478         }
3479         
3480         /* Now zero the pad area, to avoid the bge cksum-assist bug. */
3481         memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3482         last->m_len += padlen;
3483         m->m_pkthdr.len += padlen;
3484
3485         return (0);
3486 }
3487
3488 /*
3489  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3490  * pointers to descriptors.
3491  */
3492 static int
3493 bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
3494 {
3495         bus_dma_segment_t       segs[BGE_NSEG_NEW];
3496         bus_dmamap_t            map;
3497         struct bge_tx_bd        *d;
3498         struct mbuf             *m = *m_head;
3499         uint32_t                idx = *txidx;
3500         uint16_t                csum_flags;
3501         int                     nsegs, i, error;
3502
3503         csum_flags = 0;
3504         if (m->m_pkthdr.csum_flags) {
3505                 if (m->m_pkthdr.csum_flags & CSUM_IP)
3506                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3507                 if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
3508                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3509                         if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
3510                             (error = bge_cksum_pad(m)) != 0) {
3511                                 m_freem(m);
3512                                 *m_head = NULL;
3513                                 return (error);
3514                         }
3515                 }
3516                 if (m->m_flags & M_LASTFRAG)
3517                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3518                 else if (m->m_flags & M_FRAG)
3519                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3520         }
3521
3522         map = sc->bge_cdata.bge_tx_dmamap[idx];
3523         error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m, segs,
3524             &nsegs, BUS_DMA_NOWAIT);
3525         if (error == EFBIG) {
3526                 m = m_defrag(m, M_DONTWAIT);
3527                 if (m == NULL) {
3528                         m_freem(*m_head);
3529                         *m_head = NULL;
3530                         return (ENOBUFS);
3531                 }
3532                 *m_head = m;
3533                 error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag, map, m,
3534                     segs, &nsegs, BUS_DMA_NOWAIT);
3535                 if (error) {
3536                         m_freem(m);
3537                         *m_head = NULL;
3538                         return (error);
3539                 }
3540         } else if (error != 0)
3541                 return (error);
3542
3543         /*
3544          * Sanity check: avoid coming within 16 descriptors
3545          * of the end of the ring.
3546          */
3547         if (nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3548                 bus_dmamap_unload(sc->bge_cdata.bge_mtag, map);
3549                 return (ENOBUFS);
3550         }
3551
3552         bus_dmamap_sync(sc->bge_cdata.bge_mtag, map, BUS_DMASYNC_PREWRITE);
3553
3554         for (i = 0; ; i++) {
3555                 d = &sc->bge_ldata.bge_tx_ring[idx];
3556                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3557                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3558                 d->bge_len = segs[i].ds_len;
3559                 d->bge_flags = csum_flags;
3560                 if (i == nsegs - 1)
3561                         break;
3562                 BGE_INC(idx, BGE_TX_RING_CNT);
3563         }
3564
3565         /* Mark the last segment as end of packet... */
3566         d->bge_flags |= BGE_TXBDFLAG_END;
3567
3568         /* ... and put VLAN tag into first segment.  */
3569         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3570 #if __FreeBSD_version > 700022
3571         if (m->m_flags & M_VLANTAG) {
3572                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3573                 d->bge_vlan_tag = m->m_pkthdr.ether_vtag;
3574         } else
3575                 d->bge_vlan_tag = 0;
3576 #else
3577         {
3578                 struct m_tag            *mtag;
3579
3580                 if ((mtag = VLAN_OUTPUT_TAG(sc->bge_ifp, m)) != NULL) {
3581                         d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3582                         d->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3583                 } else
3584                         d->bge_vlan_tag = 0;
3585         }
3586 #endif
3587
3588         /*
3589          * Insure that the map for this transmission
3590          * is placed at the array index of the last descriptor
3591          * in this chain.
3592          */
3593         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3594         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3595         sc->bge_cdata.bge_tx_chain[idx] = m;
3596         sc->bge_txcnt += nsegs;
3597
3598         BGE_INC(idx, BGE_TX_RING_CNT);
3599         *txidx = idx;
3600
3601         return (0);
3602 }
3603
3604 /*
3605  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3606  * to the mbuf data regions directly in the transmit descriptors.
3607  */
3608 static void
3609 bge_start_locked(struct ifnet *ifp)
3610 {
3611         struct bge_softc *sc;
3612         struct mbuf *m_head = NULL;
3613         uint32_t prodidx;
3614         int count = 0;
3615
3616         sc = ifp->if_softc;
3617
3618         if (!sc->bge_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3619                 return;
3620
3621         prodidx = sc->bge_tx_prodidx;
3622
3623         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3624                 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
3625                 if (m_head == NULL)
3626                         break;
3627
3628                 /*
3629                  * XXX
3630                  * The code inside the if() block is never reached since we
3631                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3632                  * requests to checksum TCP/UDP in a fragmented packet.
3633                  *
3634                  * XXX
3635                  * safety overkill.  If this is a fragmented packet chain
3636                  * with delayed TCP/UDP checksums, then only encapsulate
3637                  * it if we have enough descriptors to handle the entire
3638                  * chain at once.
3639                  * (paranoia -- may not actually be needed)
3640                  */
3641                 if (m_head->m_flags & M_FIRSTFRAG &&
3642                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3643                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3644                             m_head->m_pkthdr.csum_data + 16) {
3645                                 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3646                                 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3647                                 break;
3648                         }
3649                 }
3650
3651                 /*
3652                  * Pack the data into the transmit ring. If we
3653                  * don't have room, set the OACTIVE flag and wait
3654                  * for the NIC to drain the ring.
3655                  */
3656                 if (bge_encap(sc, &m_head, &prodidx)) {
3657                         if (m_head == NULL)
3658                                 break;
3659                         IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
3660                         ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3661                         break;
3662                 }
3663                 ++count;
3664
3665                 /*
3666                  * If there's a BPF listener, bounce a copy of this frame
3667                  * to him.
3668                  */
3669 #ifdef ETHER_BPF_MTAP
3670                 ETHER_BPF_MTAP(ifp, m_head);
3671 #else
3672                 BPF_MTAP(ifp, m_head);
3673 #endif
3674         }
3675
3676         if (count == 0)
3677                 /* No packets were dequeued. */
3678                 return;
3679
3680         /* Transmit. */
3681         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3682         /* 5700 b2 errata */
3683         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3684                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3685
3686         sc->bge_tx_prodidx = prodidx;
3687
3688         /*
3689          * Set a timeout in case the chip goes out to lunch.
3690          */
3691         sc->bge_timer = 5;
3692 }
3693
3694 /*
3695  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3696  * to the mbuf data regions directly in the transmit descriptors.
3697  */
3698 static void
3699 bge_start(struct ifnet *ifp)
3700 {
3701         struct bge_softc *sc;
3702
3703         sc = ifp->if_softc;
3704         BGE_LOCK(sc);
3705         bge_start_locked(ifp);
3706         BGE_UNLOCK(sc);
3707 }
3708
3709 static void
3710 bge_init_locked(struct bge_softc *sc)
3711 {
3712         struct ifnet *ifp;
3713         uint16_t *m;
3714
3715         BGE_LOCK_ASSERT(sc);
3716
3717         ifp = sc->bge_ifp;
3718
3719         if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3720                 return;
3721
3722         /* Cancel pending I/O and flush buffers. */
3723         bge_stop(sc);
3724
3725         bge_stop_fw(sc);
3726         bge_sig_pre_reset(sc, BGE_RESET_START);
3727         bge_reset(sc);
3728         bge_sig_legacy(sc, BGE_RESET_START);
3729         bge_sig_post_reset(sc, BGE_RESET_START);
3730
3731         bge_chipinit(sc);
3732
3733         /*
3734          * Init the various state machines, ring
3735          * control blocks and firmware.
3736          */
3737         if (bge_blockinit(sc)) {
3738                 device_printf(sc->bge_dev, "initialization failure\n");
3739                 return;
3740         }
3741
3742         ifp = sc->bge_ifp;
3743
3744         /* Specify MTU. */
3745         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3746             ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3747
3748         /* Load our MAC address. */
3749         m = (uint16_t *)IF_LLADDR(sc->bge_ifp);
3750         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3751         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3752
3753         /* Program promiscuous mode. */
3754         bge_setpromisc(sc);
3755
3756         /* Program multicast filter. */
3757         bge_setmulti(sc);
3758
3759         /* Init RX ring. */
3760         bge_init_rx_ring_std(sc);
3761
3762         /*
3763          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3764          * memory to insure that the chip has in fact read the first
3765          * entry of the ring.
3766          */
3767         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3768                 uint32_t                v, i;
3769                 for (i = 0; i < 10; i++) {
3770                         DELAY(20);
3771                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3772                         if (v == (MCLBYTES - ETHER_ALIGN))
3773                                 break;
3774                 }
3775                 if (i == 10)
3776                         device_printf (sc->bge_dev,
3777                             "5705 A0 chip failed to load RX ring\n");
3778         }
3779
3780         /* Init jumbo RX ring. */
3781         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3782                 bge_init_rx_ring_jumbo(sc);
3783
3784         /* Init our RX return ring index. */
3785         sc->bge_rx_saved_considx = 0;
3786
3787         /* Init our RX/TX stat counters. */
3788         sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
3789
3790         /* Init TX ring. */
3791         bge_init_tx_ring(sc);
3792
3793         /* Turn on transmitter. */
3794         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3795
3796         /* Turn on receiver. */
3797         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3798
3799         /* Tell firmware we're alive. */
3800         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3801
3802 #ifdef DEVICE_POLLING
3803         /* Disable interrupts if we are polling. */
3804         if (ifp->if_capenable & IFCAP_POLLING) {
3805                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
3806                     BGE_PCIMISCCTL_MASK_PCI_INTR);
3807                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3808         } else
3809 #endif
3810
3811         /* Enable host interrupts. */
3812         {
3813         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3814         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3815         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3816         }
3817         
3818         bge_ifmedia_upd_locked(ifp);
3819
3820         ifp->if_drv_flags |= IFF_DRV_RUNNING;
3821         ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3822
3823         callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
3824 }
3825
3826 static void
3827 bge_init(void *xsc)
3828 {
3829         struct bge_softc *sc = xsc;
3830
3831         BGE_LOCK(sc);
3832         bge_init_locked(sc);
3833         BGE_UNLOCK(sc);
3834 }
3835
3836 /*
3837  * Set media options.
3838  */
3839 static int
3840 bge_ifmedia_upd(struct ifnet *ifp)
3841 {
3842         struct bge_softc *sc = ifp->if_softc;
3843         int res;
3844
3845         BGE_LOCK(sc);
3846         res = bge_ifmedia_upd_locked(ifp);
3847         BGE_UNLOCK(sc);
3848
3849         return (res);
3850 }
3851
3852 static int
3853 bge_ifmedia_upd_locked(struct ifnet *ifp)
3854 {
3855         struct bge_softc *sc = ifp->if_softc;
3856         struct mii_data *mii;
3857         struct ifmedia *ifm;
3858
3859         BGE_LOCK_ASSERT(sc);
3860
3861         ifm = &sc->bge_ifmedia;
3862
3863         /* If this is a 1000baseX NIC, enable the TBI port. */
3864         if (sc->bge_flags & BGE_FLAG_TBI) {
3865                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3866                         return (EINVAL);
3867                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3868                 case IFM_AUTO:
3869                         /*
3870                          * The BCM5704 ASIC appears to have a special
3871                          * mechanism for programming the autoneg
3872                          * advertisement registers in TBI mode.
3873                          */
3874                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3875                                 uint32_t sgdig;
3876                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
3877                                 if (sgdig & BGE_SGDIGSTS_DONE) {
3878                                         CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3879                                         sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3880                                         sgdig |= BGE_SGDIGCFG_AUTO |
3881                                             BGE_SGDIGCFG_PAUSE_CAP |
3882                                             BGE_SGDIGCFG_ASYM_PAUSE;
3883                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3884                                             sgdig | BGE_SGDIGCFG_SEND);
3885                                         DELAY(5);
3886                                         CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3887                                 }
3888                         }
3889                         break;
3890                 case IFM_1000_SX:
3891                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3892                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3893                                     BGE_MACMODE_HALF_DUPLEX);
3894                         } else {
3895                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3896                                     BGE_MACMODE_HALF_DUPLEX);
3897                         }
3898                         break;
3899                 default:
3900                         return (EINVAL);
3901                 }
3902                 return (0);
3903         }
3904
3905         sc->bge_link_evt++;
3906         mii = device_get_softc(sc->bge_miibus);
3907         if (mii->mii_instance) {
3908                 struct mii_softc *miisc;
3909                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
3910                     miisc = LIST_NEXT(miisc, mii_list))
3911                         mii_phy_reset(miisc);
3912         }
3913         mii_mediachg(mii);
3914
3915         return (0);
3916 }
3917
3918 /*
3919  * Report current media status.
3920  */
3921 static void
3922 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3923 {
3924         struct bge_softc *sc = ifp->if_softc;
3925         struct mii_data *mii;
3926
3927         BGE_LOCK(sc);
3928
3929         if (sc->bge_flags & BGE_FLAG_TBI) {
3930                 ifmr->ifm_status = IFM_AVALID;
3931                 ifmr->ifm_active = IFM_ETHER;
3932                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3933                     BGE_MACSTAT_TBI_PCS_SYNCHED)
3934                         ifmr->ifm_status |= IFM_ACTIVE;
3935                 else {
3936                         ifmr->ifm_active |= IFM_NONE;
3937                         BGE_UNLOCK(sc);
3938                         return;
3939                 }
3940                 ifmr->ifm_active |= IFM_1000_SX;
3941                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3942                         ifmr->ifm_active |= IFM_HDX;
3943                 else
3944                         ifmr->ifm_active |= IFM_FDX;
3945                 BGE_UNLOCK(sc);
3946                 return;
3947         }
3948
3949         mii = device_get_softc(sc->bge_miibus);
3950         mii_pollstat(mii);
3951         ifmr->ifm_active = mii->mii_media_active;
3952         ifmr->ifm_status = mii->mii_media_status;
3953
3954         BGE_UNLOCK(sc);
3955 }
3956
3957 static int
3958 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3959 {
3960         struct bge_softc *sc = ifp->if_softc;
3961         struct ifreq *ifr = (struct ifreq *) data;
3962         struct mii_data *mii;
3963         int flags, mask, error = 0;
3964
3965         switch (command) {
3966         case SIOCSIFMTU:
3967                 if (ifr->ifr_mtu < ETHERMIN ||
3968                     ((BGE_IS_JUMBO_CAPABLE(sc)) &&
3969                     ifr->ifr_mtu > BGE_JUMBO_MTU) ||
3970                     ((!BGE_IS_JUMBO_CAPABLE(sc)) &&
3971                     ifr->ifr_mtu > ETHERMTU))
3972                         error = EINVAL;
3973                 else if (ifp->if_mtu != ifr->ifr_mtu) {
3974                         ifp->if_mtu = ifr->ifr_mtu;
3975                         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3976                         bge_init(sc);
3977                 }
3978                 break;
3979         case SIOCSIFFLAGS:
3980                 BGE_LOCK(sc);
3981                 if (ifp->if_flags & IFF_UP) {
3982                         /*
3983                          * If only the state of the PROMISC flag changed,
3984                          * then just use the 'set promisc mode' command
3985                          * instead of reinitializing the entire NIC. Doing
3986                          * a full re-init means reloading the firmware and
3987                          * waiting for it to start up, which may take a
3988                          * second or two.  Similarly for ALLMULTI.
3989                          */
3990                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
3991                                 flags = ifp->if_flags ^ sc->bge_if_flags;
3992                                 if (flags & IFF_PROMISC)
3993                                         bge_setpromisc(sc);
3994                                 if (flags & IFF_ALLMULTI)
3995                                         bge_setmulti(sc);
3996                         } else
3997                                 bge_init_locked(sc);
3998                 } else {
3999                         if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4000                                 bge_stop(sc);
4001                         }
4002                 }
4003                 sc->bge_if_flags = ifp->if_flags;
4004                 BGE_UNLOCK(sc);
4005                 error = 0;
4006                 break;
4007         case SIOCADDMULTI:
4008         case SIOCDELMULTI:
4009                 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4010                         BGE_LOCK(sc);
4011                         bge_setmulti(sc);
4012                         BGE_UNLOCK(sc);
4013                         error = 0;
4014                 }
4015                 break;
4016         case SIOCSIFMEDIA:
4017         case SIOCGIFMEDIA:
4018                 if (sc->bge_flags & BGE_FLAG_TBI) {
4019                         error = ifmedia_ioctl(ifp, ifr,
4020                             &sc->bge_ifmedia, command);
4021                 } else {
4022                         mii = device_get_softc(sc->bge_miibus);
4023                         error = ifmedia_ioctl(ifp, ifr,
4024                             &mii->mii_media, command);
4025                 }
4026                 break;
4027         case SIOCSIFCAP:
4028                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
4029 #ifdef DEVICE_POLLING
4030                 if (mask & IFCAP_POLLING) {
4031                         if (ifr->ifr_reqcap & IFCAP_POLLING) {
4032                                 error = ether_poll_register(bge_poll, ifp);
4033                                 if (error)
4034                                         return (error);
4035                                 BGE_LOCK(sc);
4036                                 BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
4037                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
4038                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4039                                 ifp->if_capenable |= IFCAP_POLLING;
4040                                 BGE_UNLOCK(sc);
4041                         } else {
4042                                 error = ether_poll_deregister(ifp);
4043                                 /* Enable interrupt even in error case */
4044                                 BGE_LOCK(sc);
4045                                 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
4046                                     BGE_PCIMISCCTL_MASK_PCI_INTR);
4047                                 bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4048                                 ifp->if_capenable &= ~IFCAP_POLLING;
4049                                 BGE_UNLOCK(sc);
4050                         }
4051                 }
4052 #endif
4053                 if (mask & IFCAP_HWCSUM) {
4054                         ifp->if_capenable ^= IFCAP_HWCSUM;
4055                         if (IFCAP_HWCSUM & ifp->if_capenable &&
4056                             IFCAP_HWCSUM & ifp->if_capabilities)
4057                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
4058                         else
4059                                 ifp->if_hwassist = 0;
4060 #ifdef VLAN_CAPABILITIES
4061                         VLAN_CAPABILITIES(ifp);
4062 #endif
4063                 }
4064                 break;
4065         default:
4066                 error = ether_ioctl(ifp, command, data);
4067                 break;
4068         }
4069
4070         return (error);
4071 }
4072
4073 static void
4074 bge_watchdog(struct bge_softc *sc)
4075 {
4076         struct ifnet *ifp;
4077
4078         BGE_LOCK_ASSERT(sc);
4079
4080         if (sc->bge_timer == 0 || --sc->bge_timer)
4081                 return;
4082
4083         ifp = sc->bge_ifp;
4084
4085         if_printf(ifp, "watchdog timeout -- resetting\n");
4086
4087         ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
4088         bge_init_locked(sc);
4089
4090         ifp->if_oerrors++;
4091 }
4092
4093 /*
4094  * Stop the adapter and free any mbufs allocated to the
4095  * RX and TX lists.
4096  */
4097 static void
4098 bge_stop(struct bge_softc *sc)
4099 {
4100         struct ifnet *ifp;
4101         struct ifmedia_entry *ifm;
4102         struct mii_data *mii = NULL;
4103         int mtmp, itmp;
4104
4105         BGE_LOCK_ASSERT(sc);
4106
4107         ifp = sc->bge_ifp;
4108
4109         if ((sc->bge_flags & BGE_FLAG_TBI) == 0)
4110                 mii = device_get_softc(sc->bge_miibus);
4111
4112         callout_stop(&sc->bge_stat_ch);
4113
4114         /*
4115          * Disable all of the receiver blocks.
4116          */
4117         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4118         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4119         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4120         if (!(BGE_IS_5705_PLUS(sc)))
4121                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4122         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4123         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4124         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4125
4126         /*
4127          * Disable all of the transmit blocks.
4128          */
4129         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4130         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4131         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4132         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4133         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4134         if (!(BGE_IS_5705_PLUS(sc)))
4135                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4136         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4137
4138         /*
4139          * Shut down all of the memory managers and related
4140          * state machines.
4141          */
4142         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4143         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4144         if (!(BGE_IS_5705_PLUS(sc)))
4145                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4146         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4147         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4148         if (!(BGE_IS_5705_PLUS(sc))) {
4149                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4150                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4151         }
4152
4153         /* Disable host interrupts. */
4154         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4155         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4156
4157         /*
4158          * Tell firmware we're shutting down.
4159          */
4160
4161         bge_stop_fw(sc);
4162         bge_sig_pre_reset(sc, BGE_RESET_STOP);
4163         bge_reset(sc);
4164         bge_sig_legacy(sc, BGE_RESET_STOP);
4165         bge_sig_post_reset(sc, BGE_RESET_STOP);
4166
4167         /* 
4168          * Keep the ASF firmware running if up.
4169          */
4170         if (sc->bge_asf_mode & ASF_STACKUP)
4171                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4172         else
4173                 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4174
4175         /* Free the RX lists. */
4176         bge_free_rx_ring_std(sc);
4177
4178         /* Free jumbo RX list. */
4179         if (BGE_IS_JUMBO_CAPABLE(sc))
4180                 bge_free_rx_ring_jumbo(sc);
4181
4182         /* Free TX buffers. */
4183         bge_free_tx_ring(sc);
4184
4185         /*
4186          * Isolate/power down the PHY, but leave the media selection
4187          * unchanged so that things will be put back to normal when
4188          * we bring the interface back up.
4189          */
4190         if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4191                 itmp = ifp->if_flags;
4192                 ifp->if_flags |= IFF_UP;
4193                 /*
4194                  * If we are called from bge_detach(), mii is already NULL.
4195                  */
4196                 if (mii != NULL) {
4197                         ifm = mii->mii_media.ifm_cur;
4198                         mtmp = ifm->ifm_media;
4199                         ifm->ifm_media = IFM_ETHER | IFM_NONE;
4200                         mii_mediachg(mii);
4201                         ifm->ifm_media = mtmp;
4202                 }
4203                 ifp->if_flags = itmp;
4204         }
4205
4206         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4207
4208         /* Clear MAC's link state (PHY may still have link UP). */
4209         if (bootverbose && sc->bge_link)
4210                 if_printf(sc->bge_ifp, "link DOWN\n");
4211         sc->bge_link = 0;
4212
4213         ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
4214 }
4215
4216 /*
4217  * Stop all chip I/O so that the kernel's probe routines don't
4218  * get confused by errant DMAs when rebooting.
4219  */
4220 static void
4221 bge_shutdown(device_t dev)
4222 {
4223         struct bge_softc *sc;
4224
4225         sc = device_get_softc(dev);
4226
4227         BGE_LOCK(sc);
4228         bge_stop(sc);
4229         bge_reset(sc);
4230         BGE_UNLOCK(sc);
4231 }
4232
4233 static int
4234 bge_suspend(device_t dev)
4235 {
4236         struct bge_softc *sc;
4237
4238         sc = device_get_softc(dev);
4239         BGE_LOCK(sc);
4240         bge_stop(sc);
4241         BGE_UNLOCK(sc);
4242
4243         return (0);
4244 }
4245
4246 static int
4247 bge_resume(device_t dev)
4248 {
4249         struct bge_softc *sc;
4250         struct ifnet *ifp;
4251
4252         sc = device_get_softc(dev);
4253         BGE_LOCK(sc);
4254         ifp = sc->bge_ifp;
4255         if (ifp->if_flags & IFF_UP) {
4256                 bge_init_locked(sc);
4257                 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4258                         bge_start_locked(ifp);
4259         }
4260         BGE_UNLOCK(sc);
4261
4262         return (0);
4263 }
4264
4265 static void
4266 bge_link_upd(struct bge_softc *sc)
4267 {
4268         struct mii_data *mii;
4269         uint32_t link, status;
4270
4271         BGE_LOCK_ASSERT(sc);
4272
4273         /* Clear 'pending link event' flag. */
4274         sc->bge_link_evt = 0;
4275
4276         /*
4277          * Process link state changes.
4278          * Grrr. The link status word in the status block does
4279          * not work correctly on the BCM5700 rev AX and BX chips,
4280          * according to all available information. Hence, we have
4281          * to enable MII interrupts in order to properly obtain
4282          * async link changes. Unfortunately, this also means that
4283          * we have to read the MAC status register to detect link
4284          * changes, thereby adding an additional register access to
4285          * the interrupt handler.
4286          *
4287          * XXX: perhaps link state detection procedure used for
4288          * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4289          */
4290
4291         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4292             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
4293                 status = CSR_READ_4(sc, BGE_MAC_STS);
4294                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
4295                         mii = device_get_softc(sc->bge_miibus);
4296                         mii_pollstat(mii);
4297                         if (!sc->bge_link &&
4298                             mii->mii_media_status & IFM_ACTIVE &&
4299                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4300                                 sc->bge_link++;
4301                                 if (bootverbose)
4302                                         if_printf(sc->bge_ifp, "link UP\n");
4303                         } else if (sc->bge_link &&
4304                             (!(mii->mii_media_status & IFM_ACTIVE) ||
4305                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4306                                 sc->bge_link = 0;
4307                                 if (bootverbose)
4308                                         if_printf(sc->bge_ifp, "link DOWN\n");
4309                         }
4310
4311                         /* Clear the interrupt. */
4312                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4313                             BGE_EVTENB_MI_INTERRUPT);
4314                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4315                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4316                             BRGPHY_INTRS);
4317                 }
4318                 return;
4319         }
4320
4321         if (sc->bge_flags & BGE_FLAG_TBI) {
4322                 status = CSR_READ_4(sc, BGE_MAC_STS);
4323                 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4324                         if (!sc->bge_link) {
4325                                 sc->bge_link++;
4326                                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
4327                                         BGE_CLRBIT(sc, BGE_MAC_MODE,
4328                                             BGE_MACMODE_TBI_SEND_CFGS);
4329                                 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4330                                 if (bootverbose)
4331                                         if_printf(sc->bge_ifp, "link UP\n");
4332                                 if_link_state_change(sc->bge_ifp,
4333                                     LINK_STATE_UP);
4334                         }
4335                 } else if (sc->bge_link) {
4336                         sc->bge_link = 0;
4337                         if (bootverbose)
4338                                 if_printf(sc->bge_ifp, "link DOWN\n");
4339                         if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
4340                 }
4341         } else if (CSR_READ_4(sc, BGE_MI_MODE) & BGE_MIMODE_AUTOPOLL) {
4342                 /*
4343                  * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
4344                  * in status word always set. Workaround this bug by reading
4345                  * PHY link status directly.
4346                  */
4347                 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
4348
4349                 if (link != sc->bge_link ||
4350                     sc->bge_asicrev == BGE_ASICREV_BCM5700) {
4351                         mii = device_get_softc(sc->bge_miibus);
4352                         mii_pollstat(mii);
4353                         if (!sc->bge_link &&
4354                             mii->mii_media_status & IFM_ACTIVE &&
4355                             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4356                                 sc->bge_link++;
4357                                 if (bootverbose)
4358                                         if_printf(sc->bge_ifp, "link UP\n");
4359                         } else if (sc->bge_link &&
4360                             (!(mii->mii_media_status & IFM_ACTIVE) ||
4361                             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4362                                 sc->bge_link = 0;
4363                                 if (bootverbose)
4364                                         if_printf(sc->bge_ifp, "link DOWN\n");
4365                         }
4366                 }
4367         } else {
4368                 /*
4369                  * Discard link events for MII/GMII controllers
4370                  * if MI auto-polling is disabled.
4371                  */
4372         }
4373
4374         /* Clear the attention. */
4375         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4376             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4377             BGE_MACSTAT_LINK_CHANGED);
4378 }
4379
4380 static void
4381 bge_add_sysctls(struct bge_softc *sc)
4382 {
4383         struct sysctl_ctx_list *ctx;
4384         struct sysctl_oid_list *children;
4385
4386         ctx = device_get_sysctl_ctx(sc->bge_dev);
4387         children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
4388
4389 #ifdef BGE_REGISTER_DEBUG
4390         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
4391             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_debug_info, "I",
4392             "Debug Information");
4393
4394         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
4395             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_reg_read, "I",
4396             "Register Read");
4397
4398         SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
4399             CTLTYPE_INT | CTLFLAG_RW, sc, 0, bge_sysctl_mem_read, "I",
4400             "Memory Read");
4401
4402         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHcInOctets",
4403             CTLFLAG_RD,
4404             &sc->bge_ldata.bge_stats->rxstats.ifHCInOctets.bge_addr_lo,
4405             "Bytes received");
4406
4407         SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "stat_IfHcOutOctets",
4408             CTLFLAG_RD,
4409             &sc->bge_ldata.bge_stats->txstats.ifHCOutOctets.bge_addr_lo,
4410             "Bytes received");
4411 #endif
4412 }
4413
4414 #ifdef BGE_REGISTER_DEBUG
4415 static int
4416 bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
4417 {
4418         struct bge_softc *sc;
4419         uint16_t *sbdata;
4420         int error;
4421         int result;
4422         int i, j;
4423
4424         result = -1;
4425         error = sysctl_handle_int(oidp, &result, 0, req);
4426         if (error || (req->newptr == NULL))
4427                 return (error);
4428
4429         if (result == 1) {
4430                 sc = (struct bge_softc *)arg1;
4431
4432                 sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
4433                 printf("Status Block:\n");
4434                 for (i = 0x0; i < (BGE_STATUS_BLK_SZ / 4); ) {
4435                         printf("%06x:", i);
4436                         for (j = 0; j < 8; j++) {
4437                                 printf(" %04x", sbdata[i]);
4438                                 i += 4;
4439                         }
4440                         printf("\n");
4441                 }
4442
4443                 printf("Registers:\n");
4444                 for (i = 0x800; i < 0xA00; ) {
4445                         printf("%06x:", i);
4446                         for (j = 0; j < 8; j++) {
4447                                 printf(" %08x", CSR_READ_4(sc, i));
4448                                 i += 4;
4449                         }
4450                         printf("\n");
4451                 }
4452
4453                 printf("Hardware Flags:\n");
4454                 if (BGE_IS_575X_PLUS(sc))
4455                         printf(" - 575X Plus\n");
4456                 if (BGE_IS_5705_PLUS(sc))
4457                         printf(" - 5705 Plus\n");
4458                 if (BGE_IS_5714_FAMILY(sc))
4459                         printf(" - 5714 Family\n");
4460                 if (BGE_IS_5700_FAMILY(sc))
4461                         printf(" - 5700 Family\n");
4462                 if (sc->bge_flags & BGE_FLAG_JUMBO)
4463                         printf(" - Supports Jumbo Frames\n");
4464                 if (sc->bge_flags & BGE_FLAG_PCIX)
4465                         printf(" - PCI-X Bus\n");
4466                 if (sc->bge_flags & BGE_FLAG_PCIE)
4467                         printf(" - PCI Express Bus\n");
4468                 if (sc->bge_flags & BGE_FLAG_NO_3LED)
4469                         printf(" - No 3 LEDs\n");
4470                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
4471                         printf(" - RX Alignment Bug\n");
4472         }
4473
4474         return (error);
4475 }
4476
4477 static int
4478 bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
4479 {
4480         struct bge_softc *sc;
4481         int error;
4482         uint16_t result;
4483         uint32_t val;
4484
4485         result = -1;
4486         error = sysctl_handle_int(oidp, &result, 0, req);
4487         if (error || (req->newptr == NULL))
4488                 return (error);
4489
4490         if (result < 0x8000) {
4491                 sc = (struct bge_softc *)arg1;
4492                 val = CSR_READ_4(sc, result);
4493                 printf("reg 0x%06X = 0x%08X\n", result, val);
4494         }
4495
4496         return (error);
4497 }
4498
4499 static int
4500 bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
4501 {
4502         struct bge_softc *sc;
4503         int error;
4504         uint16_t result;
4505         uint32_t val;
4506
4507         result = -1;
4508         error = sysctl_handle_int(oidp, &result, 0, req);
4509         if (error || (req->newptr == NULL))
4510                 return (error);
4511
4512         if (result < 0x8000) {
4513                 sc = (struct bge_softc *)arg1;
4514                 val = bge_readmem_ind(sc, result);
4515                 printf("mem 0x%06X = 0x%08X\n", result, val);
4516         }
4517
4518         return (error);
4519 }
4520 #endif
4521
4522 static int
4523 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4524 {
4525
4526         if (sc->bge_flags & BGE_FLAG_EADDR)
4527                 return (1);
4528
4529 #ifdef __sparc64__
4530         OF_getetheraddr(sc->bge_dev, ether_addr);
4531         return (0);
4532 #endif
4533         return (1);
4534 }
4535
4536 static int
4537 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4538 {
4539         uint32_t mac_addr;
4540
4541         mac_addr = bge_readmem_ind(sc, 0x0c14);
4542         if ((mac_addr >> 16) == 0x484b) {
4543                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4544                 ether_addr[1] = (uint8_t)mac_addr;
4545                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4546                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4547                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4548                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4549                 ether_addr[5] = (uint8_t)mac_addr;
4550                 return (0);
4551         }
4552         return (1);
4553 }
4554
4555 static int
4556 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4557 {
4558         int mac_offset = BGE_EE_MAC_OFFSET;
4559
4560         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4561                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4562
4563         return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4564             ETHER_ADDR_LEN));
4565 }
4566
4567 static int
4568 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4569 {
4570
4571         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4572                 return (1);
4573
4574         return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4575            ETHER_ADDR_LEN));
4576 }
4577
4578 static int
4579 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4580 {
4581         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4582                 /* NOTE: Order is critical */
4583                 bge_get_eaddr_fw,
4584                 bge_get_eaddr_mem,
4585                 bge_get_eaddr_nvram,
4586                 bge_get_eaddr_eeprom,
4587                 NULL
4588         };
4589         const bge_eaddr_fcn_t *func;
4590
4591         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4592                 if ((*func)(sc, eaddr) == 0)
4593                         break;
4594         }
4595         return (*func == NULL ? ENXIO : 0);
4596 }