]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - clang/lib/AST/Expr.cpp
Vendor import of llvm-project branch release/10.x
[FreeBSD/FreeBSD.git] / clang / lib / AST / Expr.cpp
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <cstring>
35 using namespace clang;
36
37 const Expr *Expr::getBestDynamicClassTypeExpr() const {
38   const Expr *E = this;
39   while (true) {
40     E = E->ignoreParenBaseCasts();
41
42     // Follow the RHS of a comma operator.
43     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
44       if (BO->getOpcode() == BO_Comma) {
45         E = BO->getRHS();
46         continue;
47       }
48     }
49
50     // Step into initializer for materialized temporaries.
51     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
52       E = MTE->getSubExpr();
53       continue;
54     }
55
56     break;
57   }
58
59   return E;
60 }
61
62 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
63   const Expr *E = getBestDynamicClassTypeExpr();
64   QualType DerivedType = E->getType();
65   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
66     DerivedType = PTy->getPointeeType();
67
68   if (DerivedType->isDependentType())
69     return nullptr;
70
71   const RecordType *Ty = DerivedType->castAs<RecordType>();
72   Decl *D = Ty->getDecl();
73   return cast<CXXRecordDecl>(D);
74 }
75
76 const Expr *Expr::skipRValueSubobjectAdjustments(
77     SmallVectorImpl<const Expr *> &CommaLHSs,
78     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
79   const Expr *E = this;
80   while (true) {
81     E = E->IgnoreParens();
82
83     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
84       if ((CE->getCastKind() == CK_DerivedToBase ||
85            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
86           E->getType()->isRecordType()) {
87         E = CE->getSubExpr();
88         auto *Derived =
89             cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
90         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
91         continue;
92       }
93
94       if (CE->getCastKind() == CK_NoOp) {
95         E = CE->getSubExpr();
96         continue;
97       }
98     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
99       if (!ME->isArrow()) {
100         assert(ME->getBase()->getType()->isRecordType());
101         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
102           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
103             E = ME->getBase();
104             Adjustments.push_back(SubobjectAdjustment(Field));
105             continue;
106           }
107         }
108       }
109     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
110       if (BO->getOpcode() == BO_PtrMemD) {
111         assert(BO->getRHS()->isRValue());
112         E = BO->getLHS();
113         const MemberPointerType *MPT =
114           BO->getRHS()->getType()->getAs<MemberPointerType>();
115         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
116         continue;
117       } else if (BO->getOpcode() == BO_Comma) {
118         CommaLHSs.push_back(BO->getLHS());
119         E = BO->getRHS();
120         continue;
121       }
122     }
123
124     // Nothing changed.
125     break;
126   }
127   return E;
128 }
129
130 bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
131   const Expr *E = IgnoreParens();
132
133   // If this value has _Bool type, it is obvious 0/1.
134   if (E->getType()->isBooleanType()) return true;
135   // If this is a non-scalar-integer type, we don't care enough to try.
136   if (!E->getType()->isIntegralOrEnumerationType()) return false;
137
138   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
139     switch (UO->getOpcode()) {
140     case UO_Plus:
141       return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
142     case UO_LNot:
143       return true;
144     default:
145       return false;
146     }
147   }
148
149   // Only look through implicit casts.  If the user writes
150   // '(int) (a && b)' treat it as an arbitrary int.
151   // FIXME: Should we look through any cast expression in !Semantic mode?
152   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
153     return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
154
155   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
156     switch (BO->getOpcode()) {
157     default: return false;
158     case BO_LT:   // Relational operators.
159     case BO_GT:
160     case BO_LE:
161     case BO_GE:
162     case BO_EQ:   // Equality operators.
163     case BO_NE:
164     case BO_LAnd: // AND operator.
165     case BO_LOr:  // Logical OR operator.
166       return true;
167
168     case BO_And:  // Bitwise AND operator.
169     case BO_Xor:  // Bitwise XOR operator.
170     case BO_Or:   // Bitwise OR operator.
171       // Handle things like (x==2)|(y==12).
172       return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
173              BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
174
175     case BO_Comma:
176     case BO_Assign:
177       return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
178     }
179   }
180
181   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
182     return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
183            CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
184
185   if (isa<ObjCBoolLiteralExpr>(E))
186     return true;
187
188   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
189     return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
190
191   if (const FieldDecl *FD = E->getSourceBitField())
192     if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
193         !FD->getBitWidth()->isValueDependent() &&
194         FD->getBitWidthValue(FD->getASTContext()) == 1)
195       return true;
196
197   return false;
198 }
199
200 // Amusing macro metaprogramming hack: check whether a class provides
201 // a more specific implementation of getExprLoc().
202 //
203 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
204 namespace {
205   /// This implementation is used when a class provides a custom
206   /// implementation of getExprLoc.
207   template <class E, class T>
208   SourceLocation getExprLocImpl(const Expr *expr,
209                                 SourceLocation (T::*v)() const) {
210     return static_cast<const E*>(expr)->getExprLoc();
211   }
212
213   /// This implementation is used when a class doesn't provide
214   /// a custom implementation of getExprLoc.  Overload resolution
215   /// should pick it over the implementation above because it's
216   /// more specialized according to function template partial ordering.
217   template <class E>
218   SourceLocation getExprLocImpl(const Expr *expr,
219                                 SourceLocation (Expr::*v)() const) {
220     return static_cast<const E *>(expr)->getBeginLoc();
221   }
222 }
223
224 SourceLocation Expr::getExprLoc() const {
225   switch (getStmtClass()) {
226   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
227 #define ABSTRACT_STMT(type)
228 #define STMT(type, base) \
229   case Stmt::type##Class: break;
230 #define EXPR(type, base) \
231   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
232 #include "clang/AST/StmtNodes.inc"
233   }
234   llvm_unreachable("unknown expression kind");
235 }
236
237 //===----------------------------------------------------------------------===//
238 // Primary Expressions.
239 //===----------------------------------------------------------------------===//
240
241 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
242   assert((Kind == ConstantExpr::RSK_APValue ||
243           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
244          "Invalid StorageKind Value");
245 }
246
247 ConstantExpr::ResultStorageKind
248 ConstantExpr::getStorageKind(const APValue &Value) {
249   switch (Value.getKind()) {
250   case APValue::None:
251   case APValue::Indeterminate:
252     return ConstantExpr::RSK_None;
253   case APValue::Int:
254     if (!Value.getInt().needsCleanup())
255       return ConstantExpr::RSK_Int64;
256     LLVM_FALLTHROUGH;
257   default:
258     return ConstantExpr::RSK_APValue;
259   }
260 }
261
262 ConstantExpr::ResultStorageKind
263 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
264   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
265     return ConstantExpr::RSK_Int64;
266   return ConstantExpr::RSK_APValue;
267 }
268
269 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
270   ConstantExprBits.ResultKind = StorageKind;
271   ConstantExprBits.APValueKind = APValue::None;
272   ConstantExprBits.HasCleanup = false;
273   if (StorageKind == ConstantExpr::RSK_APValue)
274     ::new (getTrailingObjects<APValue>()) APValue();
275 }
276
277 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
278     : FullExpr(ConstantExprClass, subexpr) {
279   DefaultInit(StorageKind);
280 }
281
282 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
283                                    ResultStorageKind StorageKind) {
284   assert(!isa<ConstantExpr>(E));
285   AssertResultStorageKind(StorageKind);
286   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
287       StorageKind == ConstantExpr::RSK_APValue,
288       StorageKind == ConstantExpr::RSK_Int64);
289   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
290   ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
291   return Self;
292 }
293
294 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
295                                    const APValue &Result) {
296   ResultStorageKind StorageKind = getStorageKind(Result);
297   ConstantExpr *Self = Create(Context, E, StorageKind);
298   Self->SetResult(Result, Context);
299   return Self;
300 }
301
302 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
303     : FullExpr(ConstantExprClass, Empty) {
304   DefaultInit(StorageKind);
305 }
306
307 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
308                                         ResultStorageKind StorageKind,
309                                         EmptyShell Empty) {
310   AssertResultStorageKind(StorageKind);
311   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
312       StorageKind == ConstantExpr::RSK_APValue,
313       StorageKind == ConstantExpr::RSK_Int64);
314   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
315   ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
316   return Self;
317 }
318
319 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
320   assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
321          "Invalid storage for this value kind");
322   ConstantExprBits.APValueKind = Value.getKind();
323   switch (ConstantExprBits.ResultKind) {
324   case RSK_None:
325     return;
326   case RSK_Int64:
327     Int64Result() = *Value.getInt().getRawData();
328     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
329     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
330     return;
331   case RSK_APValue:
332     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
333       ConstantExprBits.HasCleanup = true;
334       Context.addDestruction(&APValueResult());
335     }
336     APValueResult() = std::move(Value);
337     return;
338   }
339   llvm_unreachable("Invalid ResultKind Bits");
340 }
341
342 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
343   switch (ConstantExprBits.ResultKind) {
344   case ConstantExpr::RSK_APValue:
345     return APValueResult().getInt();
346   case ConstantExpr::RSK_Int64:
347     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
348                         ConstantExprBits.IsUnsigned);
349   default:
350     llvm_unreachable("invalid Accessor");
351   }
352 }
353
354 APValue ConstantExpr::getAPValueResult() const {
355   switch (ConstantExprBits.ResultKind) {
356   case ConstantExpr::RSK_APValue:
357     return APValueResult();
358   case ConstantExpr::RSK_Int64:
359     return APValue(
360         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
361                      ConstantExprBits.IsUnsigned));
362   case ConstantExpr::RSK_None:
363     return APValue();
364   }
365   llvm_unreachable("invalid ResultKind");
366 }
367
368 /// Compute the type-, value-, and instantiation-dependence of a
369 /// declaration reference
370 /// based on the declaration being referenced.
371 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
372                                      QualType T, bool &TypeDependent,
373                                      bool &ValueDependent,
374                                      bool &InstantiationDependent) {
375   TypeDependent = false;
376   ValueDependent = false;
377   InstantiationDependent = false;
378
379   // (TD) C++ [temp.dep.expr]p3:
380   //   An id-expression is type-dependent if it contains:
381   //
382   // and
383   //
384   // (VD) C++ [temp.dep.constexpr]p2:
385   //  An identifier is value-dependent if it is:
386
387   //  (TD)  - an identifier that was declared with dependent type
388   //  (VD)  - a name declared with a dependent type,
389   if (T->isDependentType()) {
390     TypeDependent = true;
391     ValueDependent = true;
392     InstantiationDependent = true;
393     return;
394   } else if (T->isInstantiationDependentType()) {
395     InstantiationDependent = true;
396   }
397
398   //  (TD)  - a conversion-function-id that specifies a dependent type
399   if (D->getDeclName().getNameKind()
400                                 == DeclarationName::CXXConversionFunctionName) {
401     QualType T = D->getDeclName().getCXXNameType();
402     if (T->isDependentType()) {
403       TypeDependent = true;
404       ValueDependent = true;
405       InstantiationDependent = true;
406       return;
407     }
408
409     if (T->isInstantiationDependentType())
410       InstantiationDependent = true;
411   }
412
413   //  (VD)  - the name of a non-type template parameter,
414   if (isa<NonTypeTemplateParmDecl>(D)) {
415     ValueDependent = true;
416     InstantiationDependent = true;
417     return;
418   }
419
420   //  (VD) - a constant with integral or enumeration type and is
421   //         initialized with an expression that is value-dependent.
422   //  (VD) - a constant with literal type and is initialized with an
423   //         expression that is value-dependent [C++11].
424   //  (VD) - FIXME: Missing from the standard:
425   //       -  an entity with reference type and is initialized with an
426   //          expression that is value-dependent [C++11]
427   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
428     if ((Ctx.getLangOpts().CPlusPlus11 ?
429            Var->getType()->isLiteralType(Ctx) :
430            Var->getType()->isIntegralOrEnumerationType()) &&
431         (Var->getType().isConstQualified() ||
432          Var->getType()->isReferenceType())) {
433       if (const Expr *Init = Var->getAnyInitializer())
434         if (Init->isValueDependent()) {
435           ValueDependent = true;
436           InstantiationDependent = true;
437         }
438     }
439
440     // (VD) - FIXME: Missing from the standard:
441     //      -  a member function or a static data member of the current
442     //         instantiation
443     if (Var->isStaticDataMember() &&
444         Var->getDeclContext()->isDependentContext()) {
445       ValueDependent = true;
446       InstantiationDependent = true;
447       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
448       if (TInfo->getType()->isIncompleteArrayType())
449         TypeDependent = true;
450     }
451
452     return;
453   }
454
455   // (VD) - FIXME: Missing from the standard:
456   //      -  a member function or a static data member of the current
457   //         instantiation
458   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
459     ValueDependent = true;
460     InstantiationDependent = true;
461   }
462 }
463
464 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
465   bool TypeDependent = false;
466   bool ValueDependent = false;
467   bool InstantiationDependent = false;
468   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
469                            ValueDependent, InstantiationDependent);
470
471   ExprBits.TypeDependent |= TypeDependent;
472   ExprBits.ValueDependent |= ValueDependent;
473   ExprBits.InstantiationDependent |= InstantiationDependent;
474
475   // Is the declaration a parameter pack?
476   if (getDecl()->isParameterPack())
477     ExprBits.ContainsUnexpandedParameterPack = true;
478 }
479
480 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
481                          bool RefersToEnclosingVariableOrCapture, QualType T,
482                          ExprValueKind VK, SourceLocation L,
483                          const DeclarationNameLoc &LocInfo,
484                          NonOdrUseReason NOUR)
485     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
486       D(D), DNLoc(LocInfo) {
487   DeclRefExprBits.HasQualifier = false;
488   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
489   DeclRefExprBits.HasFoundDecl = false;
490   DeclRefExprBits.HadMultipleCandidates = false;
491   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
492       RefersToEnclosingVariableOrCapture;
493   DeclRefExprBits.NonOdrUseReason = NOUR;
494   DeclRefExprBits.Loc = L;
495   computeDependence(Ctx);
496 }
497
498 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
499                          NestedNameSpecifierLoc QualifierLoc,
500                          SourceLocation TemplateKWLoc, ValueDecl *D,
501                          bool RefersToEnclosingVariableOrCapture,
502                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
503                          const TemplateArgumentListInfo *TemplateArgs,
504                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
505     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
506       D(D), DNLoc(NameInfo.getInfo()) {
507   DeclRefExprBits.Loc = NameInfo.getLoc();
508   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
509   if (QualifierLoc) {
510     new (getTrailingObjects<NestedNameSpecifierLoc>())
511         NestedNameSpecifierLoc(QualifierLoc);
512     auto *NNS = QualifierLoc.getNestedNameSpecifier();
513     if (NNS->isInstantiationDependent())
514       ExprBits.InstantiationDependent = true;
515     if (NNS->containsUnexpandedParameterPack())
516       ExprBits.ContainsUnexpandedParameterPack = true;
517   }
518   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
519   if (FoundD)
520     *getTrailingObjects<NamedDecl *>() = FoundD;
521   DeclRefExprBits.HasTemplateKWAndArgsInfo
522     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
523   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
524       RefersToEnclosingVariableOrCapture;
525   DeclRefExprBits.NonOdrUseReason = NOUR;
526   if (TemplateArgs) {
527     bool Dependent = false;
528     bool InstantiationDependent = false;
529     bool ContainsUnexpandedParameterPack = false;
530     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
531         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
532         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
533     assert(!Dependent && "built a DeclRefExpr with dependent template args");
534     ExprBits.InstantiationDependent |= InstantiationDependent;
535     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
536   } else if (TemplateKWLoc.isValid()) {
537     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
538         TemplateKWLoc);
539   }
540   DeclRefExprBits.HadMultipleCandidates = 0;
541
542   computeDependence(Ctx);
543 }
544
545 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
546                                  NestedNameSpecifierLoc QualifierLoc,
547                                  SourceLocation TemplateKWLoc, ValueDecl *D,
548                                  bool RefersToEnclosingVariableOrCapture,
549                                  SourceLocation NameLoc, QualType T,
550                                  ExprValueKind VK, NamedDecl *FoundD,
551                                  const TemplateArgumentListInfo *TemplateArgs,
552                                  NonOdrUseReason NOUR) {
553   return Create(Context, QualifierLoc, TemplateKWLoc, D,
554                 RefersToEnclosingVariableOrCapture,
555                 DeclarationNameInfo(D->getDeclName(), NameLoc),
556                 T, VK, FoundD, TemplateArgs, NOUR);
557 }
558
559 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
560                                  NestedNameSpecifierLoc QualifierLoc,
561                                  SourceLocation TemplateKWLoc, ValueDecl *D,
562                                  bool RefersToEnclosingVariableOrCapture,
563                                  const DeclarationNameInfo &NameInfo,
564                                  QualType T, ExprValueKind VK,
565                                  NamedDecl *FoundD,
566                                  const TemplateArgumentListInfo *TemplateArgs,
567                                  NonOdrUseReason NOUR) {
568   // Filter out cases where the found Decl is the same as the value refenenced.
569   if (D == FoundD)
570     FoundD = nullptr;
571
572   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
573   std::size_t Size =
574       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
575                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
576           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
577           HasTemplateKWAndArgsInfo ? 1 : 0,
578           TemplateArgs ? TemplateArgs->size() : 0);
579
580   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
581   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
582                                RefersToEnclosingVariableOrCapture, NameInfo,
583                                FoundD, TemplateArgs, T, VK, NOUR);
584 }
585
586 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
587                                       bool HasQualifier,
588                                       bool HasFoundDecl,
589                                       bool HasTemplateKWAndArgsInfo,
590                                       unsigned NumTemplateArgs) {
591   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
592   std::size_t Size =
593       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
594                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
595           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
596           NumTemplateArgs);
597   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
598   return new (Mem) DeclRefExpr(EmptyShell());
599 }
600
601 SourceLocation DeclRefExpr::getBeginLoc() const {
602   if (hasQualifier())
603     return getQualifierLoc().getBeginLoc();
604   return getNameInfo().getBeginLoc();
605 }
606 SourceLocation DeclRefExpr::getEndLoc() const {
607   if (hasExplicitTemplateArgs())
608     return getRAngleLoc();
609   return getNameInfo().getEndLoc();
610 }
611
612 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
613                                StringLiteral *SL)
614     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
615            FNTy->isDependentType(), FNTy->isDependentType(),
616            FNTy->isInstantiationDependentType(),
617            /*ContainsUnexpandedParameterPack=*/false) {
618   PredefinedExprBits.Kind = IK;
619   assert((getIdentKind() == IK) &&
620          "IdentKind do not fit in PredefinedExprBitfields!");
621   bool HasFunctionName = SL != nullptr;
622   PredefinedExprBits.HasFunctionName = HasFunctionName;
623   PredefinedExprBits.Loc = L;
624   if (HasFunctionName)
625     setFunctionName(SL);
626 }
627
628 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
629     : Expr(PredefinedExprClass, Empty) {
630   PredefinedExprBits.HasFunctionName = HasFunctionName;
631 }
632
633 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
634                                        QualType FNTy, IdentKind IK,
635                                        StringLiteral *SL) {
636   bool HasFunctionName = SL != nullptr;
637   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
638                            alignof(PredefinedExpr));
639   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
640 }
641
642 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
643                                             bool HasFunctionName) {
644   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
645                            alignof(PredefinedExpr));
646   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
647 }
648
649 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
650   switch (IK) {
651   case Func:
652     return "__func__";
653   case Function:
654     return "__FUNCTION__";
655   case FuncDName:
656     return "__FUNCDNAME__";
657   case LFunction:
658     return "L__FUNCTION__";
659   case PrettyFunction:
660     return "__PRETTY_FUNCTION__";
661   case FuncSig:
662     return "__FUNCSIG__";
663   case LFuncSig:
664     return "L__FUNCSIG__";
665   case PrettyFunctionNoVirtual:
666     break;
667   }
668   llvm_unreachable("Unknown ident kind for PredefinedExpr");
669 }
670
671 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
672 // expr" policy instead.
673 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
674   ASTContext &Context = CurrentDecl->getASTContext();
675
676   if (IK == PredefinedExpr::FuncDName) {
677     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
678       std::unique_ptr<MangleContext> MC;
679       MC.reset(Context.createMangleContext());
680
681       if (MC->shouldMangleDeclName(ND)) {
682         SmallString<256> Buffer;
683         llvm::raw_svector_ostream Out(Buffer);
684         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
685           MC->mangleCXXCtor(CD, Ctor_Base, Out);
686         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
687           MC->mangleCXXDtor(DD, Dtor_Base, Out);
688         else
689           MC->mangleName(ND, Out);
690
691         if (!Buffer.empty() && Buffer.front() == '\01')
692           return Buffer.substr(1);
693         return Buffer.str();
694       } else
695         return ND->getIdentifier()->getName();
696     }
697     return "";
698   }
699   if (isa<BlockDecl>(CurrentDecl)) {
700     // For blocks we only emit something if it is enclosed in a function
701     // For top-level block we'd like to include the name of variable, but we
702     // don't have it at this point.
703     auto DC = CurrentDecl->getDeclContext();
704     if (DC->isFileContext())
705       return "";
706
707     SmallString<256> Buffer;
708     llvm::raw_svector_ostream Out(Buffer);
709     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
710       // For nested blocks, propagate up to the parent.
711       Out << ComputeName(IK, DCBlock);
712     else if (auto *DCDecl = dyn_cast<Decl>(DC))
713       Out << ComputeName(IK, DCDecl) << "_block_invoke";
714     return Out.str();
715   }
716   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
717     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
718         IK != FuncSig && IK != LFuncSig)
719       return FD->getNameAsString();
720
721     SmallString<256> Name;
722     llvm::raw_svector_ostream Out(Name);
723
724     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
725       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
726         Out << "virtual ";
727       if (MD->isStatic())
728         Out << "static ";
729     }
730
731     PrintingPolicy Policy(Context.getLangOpts());
732     std::string Proto;
733     llvm::raw_string_ostream POut(Proto);
734
735     const FunctionDecl *Decl = FD;
736     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
737       Decl = Pattern;
738     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
739     const FunctionProtoType *FT = nullptr;
740     if (FD->hasWrittenPrototype())
741       FT = dyn_cast<FunctionProtoType>(AFT);
742
743     if (IK == FuncSig || IK == LFuncSig) {
744       switch (AFT->getCallConv()) {
745       case CC_C: POut << "__cdecl "; break;
746       case CC_X86StdCall: POut << "__stdcall "; break;
747       case CC_X86FastCall: POut << "__fastcall "; break;
748       case CC_X86ThisCall: POut << "__thiscall "; break;
749       case CC_X86VectorCall: POut << "__vectorcall "; break;
750       case CC_X86RegCall: POut << "__regcall "; break;
751       // Only bother printing the conventions that MSVC knows about.
752       default: break;
753       }
754     }
755
756     FD->printQualifiedName(POut, Policy);
757
758     POut << "(";
759     if (FT) {
760       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
761         if (i) POut << ", ";
762         POut << Decl->getParamDecl(i)->getType().stream(Policy);
763       }
764
765       if (FT->isVariadic()) {
766         if (FD->getNumParams()) POut << ", ";
767         POut << "...";
768       } else if ((IK == FuncSig || IK == LFuncSig ||
769                   !Context.getLangOpts().CPlusPlus) &&
770                  !Decl->getNumParams()) {
771         POut << "void";
772       }
773     }
774     POut << ")";
775
776     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
777       assert(FT && "We must have a written prototype in this case.");
778       if (FT->isConst())
779         POut << " const";
780       if (FT->isVolatile())
781         POut << " volatile";
782       RefQualifierKind Ref = MD->getRefQualifier();
783       if (Ref == RQ_LValue)
784         POut << " &";
785       else if (Ref == RQ_RValue)
786         POut << " &&";
787     }
788
789     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
790     SpecsTy Specs;
791     const DeclContext *Ctx = FD->getDeclContext();
792     while (Ctx && isa<NamedDecl>(Ctx)) {
793       const ClassTemplateSpecializationDecl *Spec
794                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
795       if (Spec && !Spec->isExplicitSpecialization())
796         Specs.push_back(Spec);
797       Ctx = Ctx->getParent();
798     }
799
800     std::string TemplateParams;
801     llvm::raw_string_ostream TOut(TemplateParams);
802     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
803          I != E; ++I) {
804       const TemplateParameterList *Params
805                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
806       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
807       assert(Params->size() == Args.size());
808       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
809         StringRef Param = Params->getParam(i)->getName();
810         if (Param.empty()) continue;
811         TOut << Param << " = ";
812         Args.get(i).print(Policy, TOut);
813         TOut << ", ";
814       }
815     }
816
817     FunctionTemplateSpecializationInfo *FSI
818                                           = FD->getTemplateSpecializationInfo();
819     if (FSI && !FSI->isExplicitSpecialization()) {
820       const TemplateParameterList* Params
821                                   = FSI->getTemplate()->getTemplateParameters();
822       const TemplateArgumentList* Args = FSI->TemplateArguments;
823       assert(Params->size() == Args->size());
824       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
825         StringRef Param = Params->getParam(i)->getName();
826         if (Param.empty()) continue;
827         TOut << Param << " = ";
828         Args->get(i).print(Policy, TOut);
829         TOut << ", ";
830       }
831     }
832
833     TOut.flush();
834     if (!TemplateParams.empty()) {
835       // remove the trailing comma and space
836       TemplateParams.resize(TemplateParams.size() - 2);
837       POut << " [" << TemplateParams << "]";
838     }
839
840     POut.flush();
841
842     // Print "auto" for all deduced return types. This includes C++1y return
843     // type deduction and lambdas. For trailing return types resolve the
844     // decltype expression. Otherwise print the real type when this is
845     // not a constructor or destructor.
846     if (isa<CXXMethodDecl>(FD) &&
847          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
848       Proto = "auto " + Proto;
849     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
850       FT->getReturnType()
851           ->getAs<DecltypeType>()
852           ->getUnderlyingType()
853           .getAsStringInternal(Proto, Policy);
854     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
855       AFT->getReturnType().getAsStringInternal(Proto, Policy);
856
857     Out << Proto;
858
859     return Name.str().str();
860   }
861   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
862     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
863       // Skip to its enclosing function or method, but not its enclosing
864       // CapturedDecl.
865       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
866         const Decl *D = Decl::castFromDeclContext(DC);
867         return ComputeName(IK, D);
868       }
869     llvm_unreachable("CapturedDecl not inside a function or method");
870   }
871   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
872     SmallString<256> Name;
873     llvm::raw_svector_ostream Out(Name);
874     Out << (MD->isInstanceMethod() ? '-' : '+');
875     Out << '[';
876
877     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
878     // a null check to avoid a crash.
879     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
880       Out << *ID;
881
882     if (const ObjCCategoryImplDecl *CID =
883         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
884       Out << '(' << *CID << ')';
885
886     Out <<  ' ';
887     MD->getSelector().print(Out);
888     Out <<  ']';
889
890     return Name.str().str();
891   }
892   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
893     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
894     return "top level";
895   }
896   return "";
897 }
898
899 void APNumericStorage::setIntValue(const ASTContext &C,
900                                    const llvm::APInt &Val) {
901   if (hasAllocation())
902     C.Deallocate(pVal);
903
904   BitWidth = Val.getBitWidth();
905   unsigned NumWords = Val.getNumWords();
906   const uint64_t* Words = Val.getRawData();
907   if (NumWords > 1) {
908     pVal = new (C) uint64_t[NumWords];
909     std::copy(Words, Words + NumWords, pVal);
910   } else if (NumWords == 1)
911     VAL = Words[0];
912   else
913     VAL = 0;
914 }
915
916 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
917                                QualType type, SourceLocation l)
918   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
919          false, false),
920     Loc(l) {
921   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
922   assert(V.getBitWidth() == C.getIntWidth(type) &&
923          "Integer type is not the correct size for constant.");
924   setValue(C, V);
925 }
926
927 IntegerLiteral *
928 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
929                        QualType type, SourceLocation l) {
930   return new (C) IntegerLiteral(C, V, type, l);
931 }
932
933 IntegerLiteral *
934 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
935   return new (C) IntegerLiteral(Empty);
936 }
937
938 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
939                                      QualType type, SourceLocation l,
940                                      unsigned Scale)
941     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
942            false, false),
943       Loc(l), Scale(Scale) {
944   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
945   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
946          "Fixed point type is not the correct size for constant.");
947   setValue(C, V);
948 }
949
950 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
951                                                        const llvm::APInt &V,
952                                                        QualType type,
953                                                        SourceLocation l,
954                                                        unsigned Scale) {
955   return new (C) FixedPointLiteral(C, V, type, l, Scale);
956 }
957
958 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
959   // Currently the longest decimal number that can be printed is the max for an
960   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
961   // which is 43 characters.
962   SmallString<64> S;
963   FixedPointValueToString(
964       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
965   return S.str();
966 }
967
968 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
969                                  bool isexact, QualType Type, SourceLocation L)
970   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
971          false, false), Loc(L) {
972   setSemantics(V.getSemantics());
973   FloatingLiteralBits.IsExact = isexact;
974   setValue(C, V);
975 }
976
977 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
978   : Expr(FloatingLiteralClass, Empty) {
979   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
980   FloatingLiteralBits.IsExact = false;
981 }
982
983 FloatingLiteral *
984 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
985                         bool isexact, QualType Type, SourceLocation L) {
986   return new (C) FloatingLiteral(C, V, isexact, Type, L);
987 }
988
989 FloatingLiteral *
990 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
991   return new (C) FloatingLiteral(C, Empty);
992 }
993
994 /// getValueAsApproximateDouble - This returns the value as an inaccurate
995 /// double.  Note that this may cause loss of precision, but is useful for
996 /// debugging dumps, etc.
997 double FloatingLiteral::getValueAsApproximateDouble() const {
998   llvm::APFloat V = getValue();
999   bool ignored;
1000   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
1001             &ignored);
1002   return V.convertToDouble();
1003 }
1004
1005 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1006                                          StringKind SK) {
1007   unsigned CharByteWidth = 0;
1008   switch (SK) {
1009   case Ascii:
1010   case UTF8:
1011     CharByteWidth = Target.getCharWidth();
1012     break;
1013   case Wide:
1014     CharByteWidth = Target.getWCharWidth();
1015     break;
1016   case UTF16:
1017     CharByteWidth = Target.getChar16Width();
1018     break;
1019   case UTF32:
1020     CharByteWidth = Target.getChar32Width();
1021     break;
1022   }
1023   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1024   CharByteWidth /= 8;
1025   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1026          "The only supported character byte widths are 1,2 and 4!");
1027   return CharByteWidth;
1028 }
1029
1030 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1031                              StringKind Kind, bool Pascal, QualType Ty,
1032                              const SourceLocation *Loc,
1033                              unsigned NumConcatenated)
1034     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1035            false) {
1036   assert(Ctx.getAsConstantArrayType(Ty) &&
1037          "StringLiteral must be of constant array type!");
1038   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1039   unsigned ByteLength = Str.size();
1040   assert((ByteLength % CharByteWidth == 0) &&
1041          "The size of the data must be a multiple of CharByteWidth!");
1042
1043   // Avoid the expensive division. The compiler should be able to figure it
1044   // out by itself. However as of clang 7, even with the appropriate
1045   // llvm_unreachable added just here, it is not able to do so.
1046   unsigned Length;
1047   switch (CharByteWidth) {
1048   case 1:
1049     Length = ByteLength;
1050     break;
1051   case 2:
1052     Length = ByteLength / 2;
1053     break;
1054   case 4:
1055     Length = ByteLength / 4;
1056     break;
1057   default:
1058     llvm_unreachable("Unsupported character width!");
1059   }
1060
1061   StringLiteralBits.Kind = Kind;
1062   StringLiteralBits.CharByteWidth = CharByteWidth;
1063   StringLiteralBits.IsPascal = Pascal;
1064   StringLiteralBits.NumConcatenated = NumConcatenated;
1065   *getTrailingObjects<unsigned>() = Length;
1066
1067   // Initialize the trailing array of SourceLocation.
1068   // This is safe since SourceLocation is POD-like.
1069   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1070               NumConcatenated * sizeof(SourceLocation));
1071
1072   // Initialize the trailing array of char holding the string data.
1073   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1074 }
1075
1076 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1077                              unsigned Length, unsigned CharByteWidth)
1078     : Expr(StringLiteralClass, Empty) {
1079   StringLiteralBits.CharByteWidth = CharByteWidth;
1080   StringLiteralBits.NumConcatenated = NumConcatenated;
1081   *getTrailingObjects<unsigned>() = Length;
1082 }
1083
1084 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1085                                      StringKind Kind, bool Pascal, QualType Ty,
1086                                      const SourceLocation *Loc,
1087                                      unsigned NumConcatenated) {
1088   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1089                                1, NumConcatenated, Str.size()),
1090                            alignof(StringLiteral));
1091   return new (Mem)
1092       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1093 }
1094
1095 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1096                                           unsigned NumConcatenated,
1097                                           unsigned Length,
1098                                           unsigned CharByteWidth) {
1099   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1100                                1, NumConcatenated, Length * CharByteWidth),
1101                            alignof(StringLiteral));
1102   return new (Mem)
1103       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1104 }
1105
1106 void StringLiteral::outputString(raw_ostream &OS) const {
1107   switch (getKind()) {
1108   case Ascii: break; // no prefix.
1109   case Wide:  OS << 'L'; break;
1110   case UTF8:  OS << "u8"; break;
1111   case UTF16: OS << 'u'; break;
1112   case UTF32: OS << 'U'; break;
1113   }
1114   OS << '"';
1115   static const char Hex[] = "0123456789ABCDEF";
1116
1117   unsigned LastSlashX = getLength();
1118   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1119     switch (uint32_t Char = getCodeUnit(I)) {
1120     default:
1121       // FIXME: Convert UTF-8 back to codepoints before rendering.
1122
1123       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1124       // Leave invalid surrogates alone; we'll use \x for those.
1125       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1126           Char <= 0xdbff) {
1127         uint32_t Trail = getCodeUnit(I + 1);
1128         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1129           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1130           ++I;
1131         }
1132       }
1133
1134       if (Char > 0xff) {
1135         // If this is a wide string, output characters over 0xff using \x
1136         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1137         // codepoint: use \x escapes for invalid codepoints.
1138         if (getKind() == Wide ||
1139             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1140           // FIXME: Is this the best way to print wchar_t?
1141           OS << "\\x";
1142           int Shift = 28;
1143           while ((Char >> Shift) == 0)
1144             Shift -= 4;
1145           for (/**/; Shift >= 0; Shift -= 4)
1146             OS << Hex[(Char >> Shift) & 15];
1147           LastSlashX = I;
1148           break;
1149         }
1150
1151         if (Char > 0xffff)
1152           OS << "\\U00"
1153              << Hex[(Char >> 20) & 15]
1154              << Hex[(Char >> 16) & 15];
1155         else
1156           OS << "\\u";
1157         OS << Hex[(Char >> 12) & 15]
1158            << Hex[(Char >>  8) & 15]
1159            << Hex[(Char >>  4) & 15]
1160            << Hex[(Char >>  0) & 15];
1161         break;
1162       }
1163
1164       // If we used \x... for the previous character, and this character is a
1165       // hexadecimal digit, prevent it being slurped as part of the \x.
1166       if (LastSlashX + 1 == I) {
1167         switch (Char) {
1168           case '0': case '1': case '2': case '3': case '4':
1169           case '5': case '6': case '7': case '8': case '9':
1170           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1171           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1172             OS << "\"\"";
1173         }
1174       }
1175
1176       assert(Char <= 0xff &&
1177              "Characters above 0xff should already have been handled.");
1178
1179       if (isPrintable(Char))
1180         OS << (char)Char;
1181       else  // Output anything hard as an octal escape.
1182         OS << '\\'
1183            << (char)('0' + ((Char >> 6) & 7))
1184            << (char)('0' + ((Char >> 3) & 7))
1185            << (char)('0' + ((Char >> 0) & 7));
1186       break;
1187     // Handle some common non-printable cases to make dumps prettier.
1188     case '\\': OS << "\\\\"; break;
1189     case '"': OS << "\\\""; break;
1190     case '\a': OS << "\\a"; break;
1191     case '\b': OS << "\\b"; break;
1192     case '\f': OS << "\\f"; break;
1193     case '\n': OS << "\\n"; break;
1194     case '\r': OS << "\\r"; break;
1195     case '\t': OS << "\\t"; break;
1196     case '\v': OS << "\\v"; break;
1197     }
1198   }
1199   OS << '"';
1200 }
1201
1202 /// getLocationOfByte - Return a source location that points to the specified
1203 /// byte of this string literal.
1204 ///
1205 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1206 /// can have escape sequences in them in addition to the usual trigraph and
1207 /// escaped newline business.  This routine handles this complexity.
1208 ///
1209 /// The *StartToken sets the first token to be searched in this function and
1210 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1211 /// returning, it updates the *StartToken to the TokNo of the token being found
1212 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1213 /// string.
1214 /// Using these two parameters can reduce the time complexity from O(n^2) to
1215 /// O(n) if one wants to get the location of byte for all the tokens in a
1216 /// string.
1217 ///
1218 SourceLocation
1219 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1220                                  const LangOptions &Features,
1221                                  const TargetInfo &Target, unsigned *StartToken,
1222                                  unsigned *StartTokenByteOffset) const {
1223   assert((getKind() == StringLiteral::Ascii ||
1224           getKind() == StringLiteral::UTF8) &&
1225          "Only narrow string literals are currently supported");
1226
1227   // Loop over all of the tokens in this string until we find the one that
1228   // contains the byte we're looking for.
1229   unsigned TokNo = 0;
1230   unsigned StringOffset = 0;
1231   if (StartToken)
1232     TokNo = *StartToken;
1233   if (StartTokenByteOffset) {
1234     StringOffset = *StartTokenByteOffset;
1235     ByteNo -= StringOffset;
1236   }
1237   while (1) {
1238     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1239     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1240
1241     // Get the spelling of the string so that we can get the data that makes up
1242     // the string literal, not the identifier for the macro it is potentially
1243     // expanded through.
1244     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1245
1246     // Re-lex the token to get its length and original spelling.
1247     std::pair<FileID, unsigned> LocInfo =
1248         SM.getDecomposedLoc(StrTokSpellingLoc);
1249     bool Invalid = false;
1250     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1251     if (Invalid) {
1252       if (StartTokenByteOffset != nullptr)
1253         *StartTokenByteOffset = StringOffset;
1254       if (StartToken != nullptr)
1255         *StartToken = TokNo;
1256       return StrTokSpellingLoc;
1257     }
1258
1259     const char *StrData = Buffer.data()+LocInfo.second;
1260
1261     // Create a lexer starting at the beginning of this token.
1262     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1263                    Buffer.begin(), StrData, Buffer.end());
1264     Token TheTok;
1265     TheLexer.LexFromRawLexer(TheTok);
1266
1267     // Use the StringLiteralParser to compute the length of the string in bytes.
1268     StringLiteralParser SLP(TheTok, SM, Features, Target);
1269     unsigned TokNumBytes = SLP.GetStringLength();
1270
1271     // If the byte is in this token, return the location of the byte.
1272     if (ByteNo < TokNumBytes ||
1273         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1274       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1275
1276       // Now that we know the offset of the token in the spelling, use the
1277       // preprocessor to get the offset in the original source.
1278       if (StartTokenByteOffset != nullptr)
1279         *StartTokenByteOffset = StringOffset;
1280       if (StartToken != nullptr)
1281         *StartToken = TokNo;
1282       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1283     }
1284
1285     // Move to the next string token.
1286     StringOffset += TokNumBytes;
1287     ++TokNo;
1288     ByteNo -= TokNumBytes;
1289   }
1290 }
1291
1292 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1293 /// corresponds to, e.g. "sizeof" or "[pre]++".
1294 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1295   switch (Op) {
1296 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1297 #include "clang/AST/OperationKinds.def"
1298   }
1299   llvm_unreachable("Unknown unary operator");
1300 }
1301
1302 UnaryOperatorKind
1303 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1304   switch (OO) {
1305   default: llvm_unreachable("No unary operator for overloaded function");
1306   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1307   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1308   case OO_Amp:        return UO_AddrOf;
1309   case OO_Star:       return UO_Deref;
1310   case OO_Plus:       return UO_Plus;
1311   case OO_Minus:      return UO_Minus;
1312   case OO_Tilde:      return UO_Not;
1313   case OO_Exclaim:    return UO_LNot;
1314   case OO_Coawait:    return UO_Coawait;
1315   }
1316 }
1317
1318 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1319   switch (Opc) {
1320   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1321   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1322   case UO_AddrOf: return OO_Amp;
1323   case UO_Deref: return OO_Star;
1324   case UO_Plus: return OO_Plus;
1325   case UO_Minus: return OO_Minus;
1326   case UO_Not: return OO_Tilde;
1327   case UO_LNot: return OO_Exclaim;
1328   case UO_Coawait: return OO_Coawait;
1329   default: return OO_None;
1330   }
1331 }
1332
1333
1334 //===----------------------------------------------------------------------===//
1335 // Postfix Operators.
1336 //===----------------------------------------------------------------------===//
1337
1338 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1339                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1340                    SourceLocation RParenLoc, unsigned MinNumArgs,
1341                    ADLCallKind UsesADL)
1342     : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
1343            Fn->isValueDependent(), Fn->isInstantiationDependent(),
1344            Fn->containsUnexpandedParameterPack()),
1345       RParenLoc(RParenLoc) {
1346   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1347   unsigned NumPreArgs = PreArgs.size();
1348   CallExprBits.NumPreArgs = NumPreArgs;
1349   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1350
1351   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1352   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1353   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1354          "OffsetToTrailingObjects overflow!");
1355
1356   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1357
1358   setCallee(Fn);
1359   for (unsigned I = 0; I != NumPreArgs; ++I) {
1360     updateDependenciesFromArg(PreArgs[I]);
1361     setPreArg(I, PreArgs[I]);
1362   }
1363   for (unsigned I = 0; I != Args.size(); ++I) {
1364     updateDependenciesFromArg(Args[I]);
1365     setArg(I, Args[I]);
1366   }
1367   for (unsigned I = Args.size(); I != NumArgs; ++I) {
1368     setArg(I, nullptr);
1369   }
1370 }
1371
1372 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1373                    EmptyShell Empty)
1374     : Expr(SC, Empty), NumArgs(NumArgs) {
1375   CallExprBits.NumPreArgs = NumPreArgs;
1376   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1377
1378   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1379   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1380   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1381          "OffsetToTrailingObjects overflow!");
1382 }
1383
1384 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1385                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1386                            SourceLocation RParenLoc, unsigned MinNumArgs,
1387                            ADLCallKind UsesADL) {
1388   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1389   unsigned SizeOfTrailingObjects =
1390       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1391   void *Mem =
1392       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1393   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1394                             RParenLoc, MinNumArgs, UsesADL);
1395 }
1396
1397 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1398                                     ExprValueKind VK, SourceLocation RParenLoc,
1399                                     ADLCallKind UsesADL) {
1400   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1401          "Misaligned memory in CallExpr::CreateTemporary!");
1402   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1403                             VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
1404 }
1405
1406 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1407                                 EmptyShell Empty) {
1408   unsigned SizeOfTrailingObjects =
1409       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1410   void *Mem =
1411       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1412   return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
1413 }
1414
1415 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1416   switch (SC) {
1417   case CallExprClass:
1418     return sizeof(CallExpr);
1419   case CXXOperatorCallExprClass:
1420     return sizeof(CXXOperatorCallExpr);
1421   case CXXMemberCallExprClass:
1422     return sizeof(CXXMemberCallExpr);
1423   case UserDefinedLiteralClass:
1424     return sizeof(UserDefinedLiteral);
1425   case CUDAKernelCallExprClass:
1426     return sizeof(CUDAKernelCallExpr);
1427   default:
1428     llvm_unreachable("unexpected class deriving from CallExpr!");
1429   }
1430 }
1431
1432 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1433   if (Arg->isTypeDependent())
1434     ExprBits.TypeDependent = true;
1435   if (Arg->isValueDependent())
1436     ExprBits.ValueDependent = true;
1437   if (Arg->isInstantiationDependent())
1438     ExprBits.InstantiationDependent = true;
1439   if (Arg->containsUnexpandedParameterPack())
1440     ExprBits.ContainsUnexpandedParameterPack = true;
1441 }
1442
1443 Decl *Expr::getReferencedDeclOfCallee() {
1444   Expr *CEE = IgnoreParenImpCasts();
1445
1446   while (SubstNonTypeTemplateParmExpr *NTTP
1447                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1448     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1449   }
1450
1451   // If we're calling a dereference, look at the pointer instead.
1452   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1453     if (BO->isPtrMemOp())
1454       CEE = BO->getRHS()->IgnoreParenCasts();
1455   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1456     if (UO->getOpcode() == UO_Deref)
1457       CEE = UO->getSubExpr()->IgnoreParenCasts();
1458   }
1459   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1460     return DRE->getDecl();
1461   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1462     return ME->getMemberDecl();
1463   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1464     return BE->getBlockDecl();
1465
1466   return nullptr;
1467 }
1468
1469 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1470 /// not, return 0.
1471 unsigned CallExpr::getBuiltinCallee() const {
1472   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1473   // function. As a result, we try and obtain the DeclRefExpr from the
1474   // ImplicitCastExpr.
1475   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1476   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1477     return 0;
1478
1479   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1480   if (!DRE)
1481     return 0;
1482
1483   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1484   if (!FDecl)
1485     return 0;
1486
1487   if (!FDecl->getIdentifier())
1488     return 0;
1489
1490   return FDecl->getBuiltinID();
1491 }
1492
1493 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1494   if (unsigned BI = getBuiltinCallee())
1495     return Ctx.BuiltinInfo.isUnevaluated(BI);
1496   return false;
1497 }
1498
1499 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1500   const Expr *Callee = getCallee();
1501   QualType CalleeType = Callee->getType();
1502   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1503     CalleeType = FnTypePtr->getPointeeType();
1504   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1505     CalleeType = BPT->getPointeeType();
1506   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1507     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1508       return Ctx.VoidTy;
1509
1510     // This should never be overloaded and so should never return null.
1511     CalleeType = Expr::findBoundMemberType(Callee);
1512   }
1513
1514   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1515   return FnType->getReturnType();
1516 }
1517
1518 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1519   // If the return type is a struct, union, or enum that is marked nodiscard,
1520   // then return the return type attribute.
1521   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1522     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1523       return A;
1524
1525   // Otherwise, see if the callee is marked nodiscard and return that attribute
1526   // instead.
1527   const Decl *D = getCalleeDecl();
1528   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1529 }
1530
1531 SourceLocation CallExpr::getBeginLoc() const {
1532   if (isa<CXXOperatorCallExpr>(this))
1533     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1534
1535   SourceLocation begin = getCallee()->getBeginLoc();
1536   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1537     begin = getArg(0)->getBeginLoc();
1538   return begin;
1539 }
1540 SourceLocation CallExpr::getEndLoc() const {
1541   if (isa<CXXOperatorCallExpr>(this))
1542     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1543
1544   SourceLocation end = getRParenLoc();
1545   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1546     end = getArg(getNumArgs() - 1)->getEndLoc();
1547   return end;
1548 }
1549
1550 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1551                                    SourceLocation OperatorLoc,
1552                                    TypeSourceInfo *tsi,
1553                                    ArrayRef<OffsetOfNode> comps,
1554                                    ArrayRef<Expr*> exprs,
1555                                    SourceLocation RParenLoc) {
1556   void *Mem = C.Allocate(
1557       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1558
1559   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1560                                 RParenLoc);
1561 }
1562
1563 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1564                                         unsigned numComps, unsigned numExprs) {
1565   void *Mem =
1566       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1567   return new (Mem) OffsetOfExpr(numComps, numExprs);
1568 }
1569
1570 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1571                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1572                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1573                            SourceLocation RParenLoc)
1574   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1575          /*TypeDependent=*/false,
1576          /*ValueDependent=*/tsi->getType()->isDependentType(),
1577          tsi->getType()->isInstantiationDependentType(),
1578          tsi->getType()->containsUnexpandedParameterPack()),
1579     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1580     NumComps(comps.size()), NumExprs(exprs.size())
1581 {
1582   for (unsigned i = 0; i != comps.size(); ++i) {
1583     setComponent(i, comps[i]);
1584   }
1585
1586   for (unsigned i = 0; i != exprs.size(); ++i) {
1587     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1588       ExprBits.ValueDependent = true;
1589     if (exprs[i]->containsUnexpandedParameterPack())
1590       ExprBits.ContainsUnexpandedParameterPack = true;
1591
1592     setIndexExpr(i, exprs[i]);
1593   }
1594 }
1595
1596 IdentifierInfo *OffsetOfNode::getFieldName() const {
1597   assert(getKind() == Field || getKind() == Identifier);
1598   if (getKind() == Field)
1599     return getField()->getIdentifier();
1600
1601   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1602 }
1603
1604 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1605     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1606     SourceLocation op, SourceLocation rp)
1607     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1608            false, // Never type-dependent (C++ [temp.dep.expr]p3).
1609            // Value-dependent if the argument is type-dependent.
1610            E->isTypeDependent(), E->isInstantiationDependent(),
1611            E->containsUnexpandedParameterPack()),
1612       OpLoc(op), RParenLoc(rp) {
1613   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1614   UnaryExprOrTypeTraitExprBits.IsType = false;
1615   Argument.Ex = E;
1616
1617   // Check to see if we are in the situation where alignof(decl) should be
1618   // dependent because decl's alignment is dependent.
1619   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
1620     if (!isValueDependent() || !isInstantiationDependent()) {
1621       E = E->IgnoreParens();
1622
1623       const ValueDecl *D = nullptr;
1624       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1625         D = DRE->getDecl();
1626       else if (const auto *ME = dyn_cast<MemberExpr>(E))
1627         D = ME->getMemberDecl();
1628
1629       if (D) {
1630         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1631           if (I->isAlignmentDependent()) {
1632             setValueDependent(true);
1633             setInstantiationDependent(true);
1634             break;
1635           }
1636         }
1637       }
1638     }
1639   }
1640 }
1641
1642 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1643                        ValueDecl *MemberDecl,
1644                        const DeclarationNameInfo &NameInfo, QualType T,
1645                        ExprValueKind VK, ExprObjectKind OK,
1646                        NonOdrUseReason NOUR)
1647     : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
1648            Base->isValueDependent(), Base->isInstantiationDependent(),
1649            Base->containsUnexpandedParameterPack()),
1650       Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
1651       MemberLoc(NameInfo.getLoc()) {
1652   assert(!NameInfo.getName() ||
1653          MemberDecl->getDeclName() == NameInfo.getName());
1654   MemberExprBits.IsArrow = IsArrow;
1655   MemberExprBits.HasQualifierOrFoundDecl = false;
1656   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1657   MemberExprBits.HadMultipleCandidates = false;
1658   MemberExprBits.NonOdrUseReason = NOUR;
1659   MemberExprBits.OperatorLoc = OperatorLoc;
1660 }
1661
1662 MemberExpr *MemberExpr::Create(
1663     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1664     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1665     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1666     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1667     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1668   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1669                         FoundDecl.getAccess() != MemberDecl->getAccess();
1670   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1671   std::size_t Size =
1672       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1673                        TemplateArgumentLoc>(
1674           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1675           TemplateArgs ? TemplateArgs->size() : 0);
1676
1677   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1678   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1679                                        NameInfo, T, VK, OK, NOUR);
1680
1681   if (isa<FieldDecl>(MemberDecl)) {
1682     DeclContext *DC = MemberDecl->getDeclContext();
1683     // dyn_cast_or_null is used to handle objC variables which do not
1684     // have a declaration context.
1685     CXXRecordDecl *RD = dyn_cast_or_null<CXXRecordDecl>(DC);
1686     if (RD && RD->isDependentContext() && RD->isCurrentInstantiation(DC))
1687       E->setTypeDependent(T->isDependentType());
1688
1689     // Bitfield with value-dependent width is type-dependent.
1690     FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl);
1691     if (FD && FD->isBitField() && FD->getBitWidth()->isValueDependent())
1692       E->setTypeDependent(true);
1693   }
1694
1695   if (HasQualOrFound) {
1696     // FIXME: Wrong. We should be looking at the member declaration we found.
1697     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1698       E->setValueDependent(true);
1699       E->setTypeDependent(true);
1700       E->setInstantiationDependent(true);
1701     }
1702     else if (QualifierLoc &&
1703              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1704       E->setInstantiationDependent(true);
1705
1706     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1707
1708     MemberExprNameQualifier *NQ =
1709         E->getTrailingObjects<MemberExprNameQualifier>();
1710     NQ->QualifierLoc = QualifierLoc;
1711     NQ->FoundDecl = FoundDecl;
1712   }
1713
1714   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1715       TemplateArgs || TemplateKWLoc.isValid();
1716
1717   if (TemplateArgs) {
1718     bool Dependent = false;
1719     bool InstantiationDependent = false;
1720     bool ContainsUnexpandedParameterPack = false;
1721     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1722         TemplateKWLoc, *TemplateArgs,
1723         E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
1724         InstantiationDependent, ContainsUnexpandedParameterPack);
1725     if (InstantiationDependent)
1726       E->setInstantiationDependent(true);
1727   } else if (TemplateKWLoc.isValid()) {
1728     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1729         TemplateKWLoc);
1730   }
1731
1732   return E;
1733 }
1734
1735 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1736                                     bool HasQualifier, bool HasFoundDecl,
1737                                     bool HasTemplateKWAndArgsInfo,
1738                                     unsigned NumTemplateArgs) {
1739   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1740          "template args but no template arg info?");
1741   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1742   std::size_t Size =
1743       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1744                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1745                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1746                                             NumTemplateArgs);
1747   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1748   return new (Mem) MemberExpr(EmptyShell());
1749 }
1750
1751 SourceLocation MemberExpr::getBeginLoc() const {
1752   if (isImplicitAccess()) {
1753     if (hasQualifier())
1754       return getQualifierLoc().getBeginLoc();
1755     return MemberLoc;
1756   }
1757
1758   // FIXME: We don't want this to happen. Rather, we should be able to
1759   // detect all kinds of implicit accesses more cleanly.
1760   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1761   if (BaseStartLoc.isValid())
1762     return BaseStartLoc;
1763   return MemberLoc;
1764 }
1765 SourceLocation MemberExpr::getEndLoc() const {
1766   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1767   if (hasExplicitTemplateArgs())
1768     EndLoc = getRAngleLoc();
1769   else if (EndLoc.isInvalid())
1770     EndLoc = getBase()->getEndLoc();
1771   return EndLoc;
1772 }
1773
1774 bool CastExpr::CastConsistency() const {
1775   switch (getCastKind()) {
1776   case CK_DerivedToBase:
1777   case CK_UncheckedDerivedToBase:
1778   case CK_DerivedToBaseMemberPointer:
1779   case CK_BaseToDerived:
1780   case CK_BaseToDerivedMemberPointer:
1781     assert(!path_empty() && "Cast kind should have a base path!");
1782     break;
1783
1784   case CK_CPointerToObjCPointerCast:
1785     assert(getType()->isObjCObjectPointerType());
1786     assert(getSubExpr()->getType()->isPointerType());
1787     goto CheckNoBasePath;
1788
1789   case CK_BlockPointerToObjCPointerCast:
1790     assert(getType()->isObjCObjectPointerType());
1791     assert(getSubExpr()->getType()->isBlockPointerType());
1792     goto CheckNoBasePath;
1793
1794   case CK_ReinterpretMemberPointer:
1795     assert(getType()->isMemberPointerType());
1796     assert(getSubExpr()->getType()->isMemberPointerType());
1797     goto CheckNoBasePath;
1798
1799   case CK_BitCast:
1800     // Arbitrary casts to C pointer types count as bitcasts.
1801     // Otherwise, we should only have block and ObjC pointer casts
1802     // here if they stay within the type kind.
1803     if (!getType()->isPointerType()) {
1804       assert(getType()->isObjCObjectPointerType() ==
1805              getSubExpr()->getType()->isObjCObjectPointerType());
1806       assert(getType()->isBlockPointerType() ==
1807              getSubExpr()->getType()->isBlockPointerType());
1808     }
1809     goto CheckNoBasePath;
1810
1811   case CK_AnyPointerToBlockPointerCast:
1812     assert(getType()->isBlockPointerType());
1813     assert(getSubExpr()->getType()->isAnyPointerType() &&
1814            !getSubExpr()->getType()->isBlockPointerType());
1815     goto CheckNoBasePath;
1816
1817   case CK_CopyAndAutoreleaseBlockObject:
1818     assert(getType()->isBlockPointerType());
1819     assert(getSubExpr()->getType()->isBlockPointerType());
1820     goto CheckNoBasePath;
1821
1822   case CK_FunctionToPointerDecay:
1823     assert(getType()->isPointerType());
1824     assert(getSubExpr()->getType()->isFunctionType());
1825     goto CheckNoBasePath;
1826
1827   case CK_AddressSpaceConversion: {
1828     auto Ty = getType();
1829     auto SETy = getSubExpr()->getType();
1830     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1831     if (isRValue()) {
1832       Ty = Ty->getPointeeType();
1833       SETy = SETy->getPointeeType();
1834     }
1835     assert(!Ty.isNull() && !SETy.isNull() &&
1836            Ty.getAddressSpace() != SETy.getAddressSpace());
1837     goto CheckNoBasePath;
1838   }
1839   // These should not have an inheritance path.
1840   case CK_Dynamic:
1841   case CK_ToUnion:
1842   case CK_ArrayToPointerDecay:
1843   case CK_NullToMemberPointer:
1844   case CK_NullToPointer:
1845   case CK_ConstructorConversion:
1846   case CK_IntegralToPointer:
1847   case CK_PointerToIntegral:
1848   case CK_ToVoid:
1849   case CK_VectorSplat:
1850   case CK_IntegralCast:
1851   case CK_BooleanToSignedIntegral:
1852   case CK_IntegralToFloating:
1853   case CK_FloatingToIntegral:
1854   case CK_FloatingCast:
1855   case CK_ObjCObjectLValueCast:
1856   case CK_FloatingRealToComplex:
1857   case CK_FloatingComplexToReal:
1858   case CK_FloatingComplexCast:
1859   case CK_FloatingComplexToIntegralComplex:
1860   case CK_IntegralRealToComplex:
1861   case CK_IntegralComplexToReal:
1862   case CK_IntegralComplexCast:
1863   case CK_IntegralComplexToFloatingComplex:
1864   case CK_ARCProduceObject:
1865   case CK_ARCConsumeObject:
1866   case CK_ARCReclaimReturnedObject:
1867   case CK_ARCExtendBlockObject:
1868   case CK_ZeroToOCLOpaqueType:
1869   case CK_IntToOCLSampler:
1870   case CK_FixedPointCast:
1871   case CK_FixedPointToIntegral:
1872   case CK_IntegralToFixedPoint:
1873     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1874     goto CheckNoBasePath;
1875
1876   case CK_Dependent:
1877   case CK_LValueToRValue:
1878   case CK_NoOp:
1879   case CK_AtomicToNonAtomic:
1880   case CK_NonAtomicToAtomic:
1881   case CK_PointerToBoolean:
1882   case CK_IntegralToBoolean:
1883   case CK_FloatingToBoolean:
1884   case CK_MemberPointerToBoolean:
1885   case CK_FloatingComplexToBoolean:
1886   case CK_IntegralComplexToBoolean:
1887   case CK_LValueBitCast:            // -> bool&
1888   case CK_LValueToRValueBitCast:
1889   case CK_UserDefinedConversion:    // operator bool()
1890   case CK_BuiltinFnToFnPtr:
1891   case CK_FixedPointToBoolean:
1892   CheckNoBasePath:
1893     assert(path_empty() && "Cast kind should not have a base path!");
1894     break;
1895   }
1896   return true;
1897 }
1898
1899 const char *CastExpr::getCastKindName(CastKind CK) {
1900   switch (CK) {
1901 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1902 #include "clang/AST/OperationKinds.def"
1903   }
1904   llvm_unreachable("Unhandled cast kind!");
1905 }
1906
1907 namespace {
1908   const Expr *skipImplicitTemporary(const Expr *E) {
1909     // Skip through reference binding to temporary.
1910     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1911       E = Materialize->getSubExpr();
1912
1913     // Skip any temporary bindings; they're implicit.
1914     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1915       E = Binder->getSubExpr();
1916
1917     return E;
1918   }
1919 }
1920
1921 Expr *CastExpr::getSubExprAsWritten() {
1922   const Expr *SubExpr = nullptr;
1923   const CastExpr *E = this;
1924   do {
1925     SubExpr = skipImplicitTemporary(E->getSubExpr());
1926
1927     // Conversions by constructor and conversion functions have a
1928     // subexpression describing the call; strip it off.
1929     if (E->getCastKind() == CK_ConstructorConversion)
1930       SubExpr =
1931         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1932     else if (E->getCastKind() == CK_UserDefinedConversion) {
1933       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1934               isa<BlockExpr>(SubExpr)) &&
1935              "Unexpected SubExpr for CK_UserDefinedConversion.");
1936       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1937         SubExpr = MCE->getImplicitObjectArgument();
1938     }
1939
1940     // If the subexpression we're left with is an implicit cast, look
1941     // through that, too.
1942   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1943
1944   return const_cast<Expr*>(SubExpr);
1945 }
1946
1947 NamedDecl *CastExpr::getConversionFunction() const {
1948   const Expr *SubExpr = nullptr;
1949
1950   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1951     SubExpr = skipImplicitTemporary(E->getSubExpr());
1952
1953     if (E->getCastKind() == CK_ConstructorConversion)
1954       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1955
1956     if (E->getCastKind() == CK_UserDefinedConversion) {
1957       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1958         return MCE->getMethodDecl();
1959     }
1960   }
1961
1962   return nullptr;
1963 }
1964
1965 CXXBaseSpecifier **CastExpr::path_buffer() {
1966   switch (getStmtClass()) {
1967 #define ABSTRACT_STMT(x)
1968 #define CASTEXPR(Type, Base)                                                   \
1969   case Stmt::Type##Class:                                                      \
1970     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1971 #define STMT(Type, Base)
1972 #include "clang/AST/StmtNodes.inc"
1973   default:
1974     llvm_unreachable("non-cast expressions not possible here");
1975   }
1976 }
1977
1978 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1979                                                         QualType opType) {
1980   auto RD = unionType->castAs<RecordType>()->getDecl();
1981   return getTargetFieldForToUnionCast(RD, opType);
1982 }
1983
1984 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1985                                                         QualType OpType) {
1986   auto &Ctx = RD->getASTContext();
1987   RecordDecl::field_iterator Field, FieldEnd;
1988   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1989        Field != FieldEnd; ++Field) {
1990     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1991         !Field->isUnnamedBitfield()) {
1992       return *Field;
1993     }
1994   }
1995   return nullptr;
1996 }
1997
1998 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1999                                            CastKind Kind, Expr *Operand,
2000                                            const CXXCastPath *BasePath,
2001                                            ExprValueKind VK) {
2002   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2003   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2004   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2005   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2006   assert((Kind != CK_LValueToRValue ||
2007           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2008          "invalid type for lvalue-to-rvalue conversion");
2009   ImplicitCastExpr *E =
2010     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
2011   if (PathSize)
2012     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2013                               E->getTrailingObjects<CXXBaseSpecifier *>());
2014   return E;
2015 }
2016
2017 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2018                                                 unsigned PathSize) {
2019   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2020   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
2021 }
2022
2023
2024 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2025                                        ExprValueKind VK, CastKind K, Expr *Op,
2026                                        const CXXCastPath *BasePath,
2027                                        TypeSourceInfo *WrittenTy,
2028                                        SourceLocation L, SourceLocation R) {
2029   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2030   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2031   CStyleCastExpr *E =
2032     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
2033   if (PathSize)
2034     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2035                               E->getTrailingObjects<CXXBaseSpecifier *>());
2036   return E;
2037 }
2038
2039 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2040                                             unsigned PathSize) {
2041   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2042   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
2043 }
2044
2045 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2046 /// corresponds to, e.g. "<<=".
2047 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2048   switch (Op) {
2049 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2050 #include "clang/AST/OperationKinds.def"
2051   }
2052   llvm_unreachable("Invalid OpCode!");
2053 }
2054
2055 BinaryOperatorKind
2056 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2057   switch (OO) {
2058   default: llvm_unreachable("Not an overloadable binary operator");
2059   case OO_Plus: return BO_Add;
2060   case OO_Minus: return BO_Sub;
2061   case OO_Star: return BO_Mul;
2062   case OO_Slash: return BO_Div;
2063   case OO_Percent: return BO_Rem;
2064   case OO_Caret: return BO_Xor;
2065   case OO_Amp: return BO_And;
2066   case OO_Pipe: return BO_Or;
2067   case OO_Equal: return BO_Assign;
2068   case OO_Spaceship: return BO_Cmp;
2069   case OO_Less: return BO_LT;
2070   case OO_Greater: return BO_GT;
2071   case OO_PlusEqual: return BO_AddAssign;
2072   case OO_MinusEqual: return BO_SubAssign;
2073   case OO_StarEqual: return BO_MulAssign;
2074   case OO_SlashEqual: return BO_DivAssign;
2075   case OO_PercentEqual: return BO_RemAssign;
2076   case OO_CaretEqual: return BO_XorAssign;
2077   case OO_AmpEqual: return BO_AndAssign;
2078   case OO_PipeEqual: return BO_OrAssign;
2079   case OO_LessLess: return BO_Shl;
2080   case OO_GreaterGreater: return BO_Shr;
2081   case OO_LessLessEqual: return BO_ShlAssign;
2082   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2083   case OO_EqualEqual: return BO_EQ;
2084   case OO_ExclaimEqual: return BO_NE;
2085   case OO_LessEqual: return BO_LE;
2086   case OO_GreaterEqual: return BO_GE;
2087   case OO_AmpAmp: return BO_LAnd;
2088   case OO_PipePipe: return BO_LOr;
2089   case OO_Comma: return BO_Comma;
2090   case OO_ArrowStar: return BO_PtrMemI;
2091   }
2092 }
2093
2094 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2095   static const OverloadedOperatorKind OverOps[] = {
2096     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2097     OO_Star, OO_Slash, OO_Percent,
2098     OO_Plus, OO_Minus,
2099     OO_LessLess, OO_GreaterGreater,
2100     OO_Spaceship,
2101     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2102     OO_EqualEqual, OO_ExclaimEqual,
2103     OO_Amp,
2104     OO_Caret,
2105     OO_Pipe,
2106     OO_AmpAmp,
2107     OO_PipePipe,
2108     OO_Equal, OO_StarEqual,
2109     OO_SlashEqual, OO_PercentEqual,
2110     OO_PlusEqual, OO_MinusEqual,
2111     OO_LessLessEqual, OO_GreaterGreaterEqual,
2112     OO_AmpEqual, OO_CaretEqual,
2113     OO_PipeEqual,
2114     OO_Comma
2115   };
2116   return OverOps[Opc];
2117 }
2118
2119 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2120                                                       Opcode Opc,
2121                                                       Expr *LHS, Expr *RHS) {
2122   if (Opc != BO_Add)
2123     return false;
2124
2125   // Check that we have one pointer and one integer operand.
2126   Expr *PExp;
2127   if (LHS->getType()->isPointerType()) {
2128     if (!RHS->getType()->isIntegerType())
2129       return false;
2130     PExp = LHS;
2131   } else if (RHS->getType()->isPointerType()) {
2132     if (!LHS->getType()->isIntegerType())
2133       return false;
2134     PExp = RHS;
2135   } else {
2136     return false;
2137   }
2138
2139   // Check that the pointer is a nullptr.
2140   if (!PExp->IgnoreParenCasts()
2141           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2142     return false;
2143
2144   // Check that the pointee type is char-sized.
2145   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2146   if (!PTy || !PTy->getPointeeType()->isCharType())
2147     return false;
2148
2149   return true;
2150 }
2151
2152 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2153                                             SourceLocExpr::IdentKind Kind) {
2154   switch (Kind) {
2155   case SourceLocExpr::File:
2156   case SourceLocExpr::Function: {
2157     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2158     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2159   }
2160   case SourceLocExpr::Line:
2161   case SourceLocExpr::Column:
2162     return Ctx.UnsignedIntTy;
2163   }
2164   llvm_unreachable("unhandled case");
2165 }
2166
2167 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2168                              SourceLocation BLoc, SourceLocation RParenLoc,
2169                              DeclContext *ParentContext)
2170     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2171            VK_RValue, OK_Ordinary, false, false, false, false),
2172       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2173   SourceLocExprBits.Kind = Kind;
2174 }
2175
2176 StringRef SourceLocExpr::getBuiltinStr() const {
2177   switch (getIdentKind()) {
2178   case File:
2179     return "__builtin_FILE";
2180   case Function:
2181     return "__builtin_FUNCTION";
2182   case Line:
2183     return "__builtin_LINE";
2184   case Column:
2185     return "__builtin_COLUMN";
2186   }
2187   llvm_unreachable("unexpected IdentKind!");
2188 }
2189
2190 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2191                                          const Expr *DefaultExpr) const {
2192   SourceLocation Loc;
2193   const DeclContext *Context;
2194
2195   std::tie(Loc,
2196            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2197     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2198       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2199     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2200       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2201     return {this->getLocation(), this->getParentContext()};
2202   }();
2203
2204   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2205       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2206
2207   auto MakeStringLiteral = [&](StringRef Tmp) {
2208     using LValuePathEntry = APValue::LValuePathEntry;
2209     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2210     // Decay the string to a pointer to the first character.
2211     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2212     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2213   };
2214
2215   switch (getIdentKind()) {
2216   case SourceLocExpr::File:
2217     return MakeStringLiteral(PLoc.getFilename());
2218   case SourceLocExpr::Function: {
2219     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2220     return MakeStringLiteral(
2221         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2222                 : std::string(""));
2223   }
2224   case SourceLocExpr::Line:
2225   case SourceLocExpr::Column: {
2226     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2227                         /*isUnsigned=*/true);
2228     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2229                                                    : PLoc.getColumn();
2230     return APValue(IntVal);
2231   }
2232   }
2233   llvm_unreachable("unhandled case");
2234 }
2235
2236 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2237                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
2238   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
2239          false, false),
2240     InitExprs(C, initExprs.size()),
2241     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
2242 {
2243   sawArrayRangeDesignator(false);
2244   for (unsigned I = 0; I != initExprs.size(); ++I) {
2245     if (initExprs[I]->isTypeDependent())
2246       ExprBits.TypeDependent = true;
2247     if (initExprs[I]->isValueDependent())
2248       ExprBits.ValueDependent = true;
2249     if (initExprs[I]->isInstantiationDependent())
2250       ExprBits.InstantiationDependent = true;
2251     if (initExprs[I]->containsUnexpandedParameterPack())
2252       ExprBits.ContainsUnexpandedParameterPack = true;
2253   }
2254
2255   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2256 }
2257
2258 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2259   if (NumInits > InitExprs.size())
2260     InitExprs.reserve(C, NumInits);
2261 }
2262
2263 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2264   InitExprs.resize(C, NumInits, nullptr);
2265 }
2266
2267 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2268   if (Init >= InitExprs.size()) {
2269     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2270     setInit(Init, expr);
2271     return nullptr;
2272   }
2273
2274   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2275   setInit(Init, expr);
2276   return Result;
2277 }
2278
2279 void InitListExpr::setArrayFiller(Expr *filler) {
2280   assert(!hasArrayFiller() && "Filler already set!");
2281   ArrayFillerOrUnionFieldInit = filler;
2282   // Fill out any "holes" in the array due to designated initializers.
2283   Expr **inits = getInits();
2284   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2285     if (inits[i] == nullptr)
2286       inits[i] = filler;
2287 }
2288
2289 bool InitListExpr::isStringLiteralInit() const {
2290   if (getNumInits() != 1)
2291     return false;
2292   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2293   if (!AT || !AT->getElementType()->isIntegerType())
2294     return false;
2295   // It is possible for getInit() to return null.
2296   const Expr *Init = getInit(0);
2297   if (!Init)
2298     return false;
2299   Init = Init->IgnoreParens();
2300   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2301 }
2302
2303 bool InitListExpr::isTransparent() const {
2304   assert(isSemanticForm() && "syntactic form never semantically transparent");
2305
2306   // A glvalue InitListExpr is always just sugar.
2307   if (isGLValue()) {
2308     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2309     return true;
2310   }
2311
2312   // Otherwise, we're sugar if and only if we have exactly one initializer that
2313   // is of the same type.
2314   if (getNumInits() != 1 || !getInit(0))
2315     return false;
2316
2317   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2318   // transparent struct copy.
2319   if (!getInit(0)->isRValue() && getType()->isRecordType())
2320     return false;
2321
2322   return getType().getCanonicalType() ==
2323          getInit(0)->getType().getCanonicalType();
2324 }
2325
2326 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2327   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2328
2329   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2330     return false;
2331   }
2332
2333   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2334   return Lit && Lit->getValue() == 0;
2335 }
2336
2337 SourceLocation InitListExpr::getBeginLoc() const {
2338   if (InitListExpr *SyntacticForm = getSyntacticForm())
2339     return SyntacticForm->getBeginLoc();
2340   SourceLocation Beg = LBraceLoc;
2341   if (Beg.isInvalid()) {
2342     // Find the first non-null initializer.
2343     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2344                                      E = InitExprs.end();
2345       I != E; ++I) {
2346       if (Stmt *S = *I) {
2347         Beg = S->getBeginLoc();
2348         break;
2349       }
2350     }
2351   }
2352   return Beg;
2353 }
2354
2355 SourceLocation InitListExpr::getEndLoc() const {
2356   if (InitListExpr *SyntacticForm = getSyntacticForm())
2357     return SyntacticForm->getEndLoc();
2358   SourceLocation End = RBraceLoc;
2359   if (End.isInvalid()) {
2360     // Find the first non-null initializer from the end.
2361     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2362          E = InitExprs.rend();
2363          I != E; ++I) {
2364       if (Stmt *S = *I) {
2365         End = S->getEndLoc();
2366         break;
2367       }
2368     }
2369   }
2370   return End;
2371 }
2372
2373 /// getFunctionType - Return the underlying function type for this block.
2374 ///
2375 const FunctionProtoType *BlockExpr::getFunctionType() const {
2376   // The block pointer is never sugared, but the function type might be.
2377   return cast<BlockPointerType>(getType())
2378            ->getPointeeType()->castAs<FunctionProtoType>();
2379 }
2380
2381 SourceLocation BlockExpr::getCaretLocation() const {
2382   return TheBlock->getCaretLocation();
2383 }
2384 const Stmt *BlockExpr::getBody() const {
2385   return TheBlock->getBody();
2386 }
2387 Stmt *BlockExpr::getBody() {
2388   return TheBlock->getBody();
2389 }
2390
2391
2392 //===----------------------------------------------------------------------===//
2393 // Generic Expression Routines
2394 //===----------------------------------------------------------------------===//
2395
2396 /// isUnusedResultAWarning - Return true if this immediate expression should
2397 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2398 /// with location to warn on and the source range[s] to report with the
2399 /// warning.
2400 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2401                                   SourceRange &R1, SourceRange &R2,
2402                                   ASTContext &Ctx) const {
2403   // Don't warn if the expr is type dependent. The type could end up
2404   // instantiating to void.
2405   if (isTypeDependent())
2406     return false;
2407
2408   switch (getStmtClass()) {
2409   default:
2410     if (getType()->isVoidType())
2411       return false;
2412     WarnE = this;
2413     Loc = getExprLoc();
2414     R1 = getSourceRange();
2415     return true;
2416   case ParenExprClass:
2417     return cast<ParenExpr>(this)->getSubExpr()->
2418       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2419   case GenericSelectionExprClass:
2420     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2421       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2422   case CoawaitExprClass:
2423   case CoyieldExprClass:
2424     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2425       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2426   case ChooseExprClass:
2427     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2428       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2429   case UnaryOperatorClass: {
2430     const UnaryOperator *UO = cast<UnaryOperator>(this);
2431
2432     switch (UO->getOpcode()) {
2433     case UO_Plus:
2434     case UO_Minus:
2435     case UO_AddrOf:
2436     case UO_Not:
2437     case UO_LNot:
2438     case UO_Deref:
2439       break;
2440     case UO_Coawait:
2441       // This is just the 'operator co_await' call inside the guts of a
2442       // dependent co_await call.
2443     case UO_PostInc:
2444     case UO_PostDec:
2445     case UO_PreInc:
2446     case UO_PreDec:                 // ++/--
2447       return false;  // Not a warning.
2448     case UO_Real:
2449     case UO_Imag:
2450       // accessing a piece of a volatile complex is a side-effect.
2451       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2452           .isVolatileQualified())
2453         return false;
2454       break;
2455     case UO_Extension:
2456       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2457     }
2458     WarnE = this;
2459     Loc = UO->getOperatorLoc();
2460     R1 = UO->getSubExpr()->getSourceRange();
2461     return true;
2462   }
2463   case BinaryOperatorClass: {
2464     const BinaryOperator *BO = cast<BinaryOperator>(this);
2465     switch (BO->getOpcode()) {
2466       default:
2467         break;
2468       // Consider the RHS of comma for side effects. LHS was checked by
2469       // Sema::CheckCommaOperands.
2470       case BO_Comma:
2471         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2472         // lvalue-ness) of an assignment written in a macro.
2473         if (IntegerLiteral *IE =
2474               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2475           if (IE->getValue() == 0)
2476             return false;
2477         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2478       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2479       case BO_LAnd:
2480       case BO_LOr:
2481         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2482             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2483           return false;
2484         break;
2485     }
2486     if (BO->isAssignmentOp())
2487       return false;
2488     WarnE = this;
2489     Loc = BO->getOperatorLoc();
2490     R1 = BO->getLHS()->getSourceRange();
2491     R2 = BO->getRHS()->getSourceRange();
2492     return true;
2493   }
2494   case CompoundAssignOperatorClass:
2495   case VAArgExprClass:
2496   case AtomicExprClass:
2497     return false;
2498
2499   case ConditionalOperatorClass: {
2500     // If only one of the LHS or RHS is a warning, the operator might
2501     // be being used for control flow. Only warn if both the LHS and
2502     // RHS are warnings.
2503     const auto *Exp = cast<ConditionalOperator>(this);
2504     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2505            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2506   }
2507   case BinaryConditionalOperatorClass: {
2508     const auto *Exp = cast<BinaryConditionalOperator>(this);
2509     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2510   }
2511
2512   case MemberExprClass:
2513     WarnE = this;
2514     Loc = cast<MemberExpr>(this)->getMemberLoc();
2515     R1 = SourceRange(Loc, Loc);
2516     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2517     return true;
2518
2519   case ArraySubscriptExprClass:
2520     WarnE = this;
2521     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2522     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2523     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2524     return true;
2525
2526   case CXXOperatorCallExprClass: {
2527     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2528     // overloads as there is no reasonable way to define these such that they
2529     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2530     // warning: operators == and != are commonly typo'ed, and so warning on them
2531     // provides additional value as well. If this list is updated,
2532     // DiagnoseUnusedComparison should be as well.
2533     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2534     switch (Op->getOperator()) {
2535     default:
2536       break;
2537     case OO_EqualEqual:
2538     case OO_ExclaimEqual:
2539     case OO_Less:
2540     case OO_Greater:
2541     case OO_GreaterEqual:
2542     case OO_LessEqual:
2543       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2544           Op->getCallReturnType(Ctx)->isVoidType())
2545         break;
2546       WarnE = this;
2547       Loc = Op->getOperatorLoc();
2548       R1 = Op->getSourceRange();
2549       return true;
2550     }
2551
2552     // Fallthrough for generic call handling.
2553     LLVM_FALLTHROUGH;
2554   }
2555   case CallExprClass:
2556   case CXXMemberCallExprClass:
2557   case UserDefinedLiteralClass: {
2558     // If this is a direct call, get the callee.
2559     const CallExpr *CE = cast<CallExpr>(this);
2560     if (const Decl *FD = CE->getCalleeDecl()) {
2561       // If the callee has attribute pure, const, or warn_unused_result, warn
2562       // about it. void foo() { strlen("bar"); } should warn.
2563       //
2564       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2565       // updated to match for QoI.
2566       if (CE->hasUnusedResultAttr(Ctx) ||
2567           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2568         WarnE = this;
2569         Loc = CE->getCallee()->getBeginLoc();
2570         R1 = CE->getCallee()->getSourceRange();
2571
2572         if (unsigned NumArgs = CE->getNumArgs())
2573           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2574                            CE->getArg(NumArgs - 1)->getEndLoc());
2575         return true;
2576       }
2577     }
2578     return false;
2579   }
2580
2581   // If we don't know precisely what we're looking at, let's not warn.
2582   case UnresolvedLookupExprClass:
2583   case CXXUnresolvedConstructExprClass:
2584     return false;
2585
2586   case CXXTemporaryObjectExprClass:
2587   case CXXConstructExprClass: {
2588     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2589       const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2590       if (Type->hasAttr<WarnUnusedAttr>() ||
2591           (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2592         WarnE = this;
2593         Loc = getBeginLoc();
2594         R1 = getSourceRange();
2595         return true;
2596       }
2597     }
2598
2599     const auto *CE = cast<CXXConstructExpr>(this);
2600     if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2601       const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2602       if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2603         WarnE = this;
2604         Loc = getBeginLoc();
2605         R1 = getSourceRange();
2606
2607         if (unsigned NumArgs = CE->getNumArgs())
2608           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2609                            CE->getArg(NumArgs - 1)->getEndLoc());
2610         return true;
2611       }
2612     }
2613
2614     return false;
2615   }
2616
2617   case ObjCMessageExprClass: {
2618     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2619     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2620         ME->isInstanceMessage() &&
2621         !ME->getType()->isVoidType() &&
2622         ME->getMethodFamily() == OMF_init) {
2623       WarnE = this;
2624       Loc = getExprLoc();
2625       R1 = ME->getSourceRange();
2626       return true;
2627     }
2628
2629     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2630       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2631         WarnE = this;
2632         Loc = getExprLoc();
2633         return true;
2634       }
2635
2636     return false;
2637   }
2638
2639   case ObjCPropertyRefExprClass:
2640     WarnE = this;
2641     Loc = getExprLoc();
2642     R1 = getSourceRange();
2643     return true;
2644
2645   case PseudoObjectExprClass: {
2646     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2647
2648     // Only complain about things that have the form of a getter.
2649     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2650         isa<BinaryOperator>(PO->getSyntacticForm()))
2651       return false;
2652
2653     WarnE = this;
2654     Loc = getExprLoc();
2655     R1 = getSourceRange();
2656     return true;
2657   }
2658
2659   case StmtExprClass: {
2660     // Statement exprs don't logically have side effects themselves, but are
2661     // sometimes used in macros in ways that give them a type that is unused.
2662     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2663     // however, if the result of the stmt expr is dead, we don't want to emit a
2664     // warning.
2665     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2666     if (!CS->body_empty()) {
2667       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2668         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2669       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2670         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2671           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2672     }
2673
2674     if (getType()->isVoidType())
2675       return false;
2676     WarnE = this;
2677     Loc = cast<StmtExpr>(this)->getLParenLoc();
2678     R1 = getSourceRange();
2679     return true;
2680   }
2681   case CXXFunctionalCastExprClass:
2682   case CStyleCastExprClass: {
2683     // Ignore an explicit cast to void unless the operand is a non-trivial
2684     // volatile lvalue.
2685     const CastExpr *CE = cast<CastExpr>(this);
2686     if (CE->getCastKind() == CK_ToVoid) {
2687       if (CE->getSubExpr()->isGLValue() &&
2688           CE->getSubExpr()->getType().isVolatileQualified()) {
2689         const DeclRefExpr *DRE =
2690             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2691         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2692               cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2693             !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2694           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2695                                                           R1, R2, Ctx);
2696         }
2697       }
2698       return false;
2699     }
2700
2701     // If this is a cast to a constructor conversion, check the operand.
2702     // Otherwise, the result of the cast is unused.
2703     if (CE->getCastKind() == CK_ConstructorConversion)
2704       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2705
2706     WarnE = this;
2707     if (const CXXFunctionalCastExpr *CXXCE =
2708             dyn_cast<CXXFunctionalCastExpr>(this)) {
2709       Loc = CXXCE->getBeginLoc();
2710       R1 = CXXCE->getSubExpr()->getSourceRange();
2711     } else {
2712       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2713       Loc = CStyleCE->getLParenLoc();
2714       R1 = CStyleCE->getSubExpr()->getSourceRange();
2715     }
2716     return true;
2717   }
2718   case ImplicitCastExprClass: {
2719     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2720
2721     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2722     if (ICE->getCastKind() == CK_LValueToRValue &&
2723         ICE->getSubExpr()->getType().isVolatileQualified())
2724       return false;
2725
2726     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2727   }
2728   case CXXDefaultArgExprClass:
2729     return (cast<CXXDefaultArgExpr>(this)
2730             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2731   case CXXDefaultInitExprClass:
2732     return (cast<CXXDefaultInitExpr>(this)
2733             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2734
2735   case CXXNewExprClass:
2736     // FIXME: In theory, there might be new expressions that don't have side
2737     // effects (e.g. a placement new with an uninitialized POD).
2738   case CXXDeleteExprClass:
2739     return false;
2740   case MaterializeTemporaryExprClass:
2741     return cast<MaterializeTemporaryExpr>(this)
2742         ->getSubExpr()
2743         ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2744   case CXXBindTemporaryExprClass:
2745     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2746                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2747   case ExprWithCleanupsClass:
2748     return cast<ExprWithCleanups>(this)->getSubExpr()
2749                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2750   }
2751 }
2752
2753 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2754 /// returns true, if it is; false otherwise.
2755 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2756   const Expr *E = IgnoreParens();
2757   switch (E->getStmtClass()) {
2758   default:
2759     return false;
2760   case ObjCIvarRefExprClass:
2761     return true;
2762   case Expr::UnaryOperatorClass:
2763     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2764   case ImplicitCastExprClass:
2765     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2766   case MaterializeTemporaryExprClass:
2767     return cast<MaterializeTemporaryExpr>(E)->getSubExpr()->isOBJCGCCandidate(
2768         Ctx);
2769   case CStyleCastExprClass:
2770     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2771   case DeclRefExprClass: {
2772     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2773
2774     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2775       if (VD->hasGlobalStorage())
2776         return true;
2777       QualType T = VD->getType();
2778       // dereferencing to a  pointer is always a gc'able candidate,
2779       // unless it is __weak.
2780       return T->isPointerType() &&
2781              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2782     }
2783     return false;
2784   }
2785   case MemberExprClass: {
2786     const MemberExpr *M = cast<MemberExpr>(E);
2787     return M->getBase()->isOBJCGCCandidate(Ctx);
2788   }
2789   case ArraySubscriptExprClass:
2790     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2791   }
2792 }
2793
2794 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2795   if (isTypeDependent())
2796     return false;
2797   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2798 }
2799
2800 QualType Expr::findBoundMemberType(const Expr *expr) {
2801   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2802
2803   // Bound member expressions are always one of these possibilities:
2804   //   x->m      x.m      x->*y      x.*y
2805   // (possibly parenthesized)
2806
2807   expr = expr->IgnoreParens();
2808   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2809     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2810     return mem->getMemberDecl()->getType();
2811   }
2812
2813   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2814     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2815                       ->getPointeeType();
2816     assert(type->isFunctionType());
2817     return type;
2818   }
2819
2820   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2821   return QualType();
2822 }
2823
2824 static Expr *IgnoreImpCastsSingleStep(Expr *E) {
2825   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2826     return ICE->getSubExpr();
2827
2828   if (auto *FE = dyn_cast<FullExpr>(E))
2829     return FE->getSubExpr();
2830
2831   return E;
2832 }
2833
2834 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
2835   // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
2836   // addition to what IgnoreImpCasts() skips to account for the current
2837   // behaviour of IgnoreParenImpCasts().
2838   Expr *SubE = IgnoreImpCastsSingleStep(E);
2839   if (SubE != E)
2840     return SubE;
2841
2842   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2843     return MTE->getSubExpr();
2844
2845   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2846     return NTTP->getReplacement();
2847
2848   return E;
2849 }
2850
2851 static Expr *IgnoreCastsSingleStep(Expr *E) {
2852   if (auto *CE = dyn_cast<CastExpr>(E))
2853     return CE->getSubExpr();
2854
2855   if (auto *FE = dyn_cast<FullExpr>(E))
2856     return FE->getSubExpr();
2857
2858   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2859     return MTE->getSubExpr();
2860
2861   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2862     return NTTP->getReplacement();
2863
2864   return E;
2865 }
2866
2867 static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
2868   // Skip what IgnoreCastsSingleStep skips, except that only
2869   // lvalue-to-rvalue casts are skipped.
2870   if (auto *CE = dyn_cast<CastExpr>(E))
2871     if (CE->getCastKind() != CK_LValueToRValue)
2872       return E;
2873
2874   return IgnoreCastsSingleStep(E);
2875 }
2876
2877 static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
2878   if (auto *CE = dyn_cast<CastExpr>(E))
2879     if (CE->getCastKind() == CK_DerivedToBase ||
2880         CE->getCastKind() == CK_UncheckedDerivedToBase ||
2881         CE->getCastKind() == CK_NoOp)
2882       return CE->getSubExpr();
2883
2884   return E;
2885 }
2886
2887 static Expr *IgnoreImplicitSingleStep(Expr *E) {
2888   Expr *SubE = IgnoreImpCastsSingleStep(E);
2889   if (SubE != E)
2890     return SubE;
2891
2892   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2893     return MTE->getSubExpr();
2894
2895   if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2896     return BTE->getSubExpr();
2897
2898   return E;
2899 }
2900
2901 static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) {
2902   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2903     return ICE->getSubExprAsWritten();
2904
2905   return IgnoreImplicitSingleStep(E);
2906 }
2907
2908 static Expr *IgnoreParensSingleStep(Expr *E) {
2909   if (auto *PE = dyn_cast<ParenExpr>(E))
2910     return PE->getSubExpr();
2911
2912   if (auto *UO = dyn_cast<UnaryOperator>(E)) {
2913     if (UO->getOpcode() == UO_Extension)
2914       return UO->getSubExpr();
2915   }
2916
2917   else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
2918     if (!GSE->isResultDependent())
2919       return GSE->getResultExpr();
2920   }
2921
2922   else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
2923     if (!CE->isConditionDependent())
2924       return CE->getChosenSubExpr();
2925   }
2926
2927   else if (auto *CE = dyn_cast<ConstantExpr>(E))
2928     return CE->getSubExpr();
2929
2930   return E;
2931 }
2932
2933 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
2934   if (auto *CE = dyn_cast<CastExpr>(E)) {
2935     // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2936     // ptr<->int casts of the same width. We also ignore all identity casts.
2937     Expr *SubExpr = CE->getSubExpr();
2938     bool IsIdentityCast =
2939         Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2940     bool IsSameWidthCast =
2941         (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
2942         (SubExpr->getType()->isPointerType() ||
2943          SubExpr->getType()->isIntegralType(Ctx)) &&
2944         (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
2945
2946     if (IsIdentityCast || IsSameWidthCast)
2947       return SubExpr;
2948   }
2949
2950   else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2951     return NTTP->getReplacement();
2952
2953   return E;
2954 }
2955
2956 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
2957 template <typename FnTy, typename... FnTys>
2958 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
2959   return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
2960 }
2961
2962 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
2963 /// Recursively apply each of the functions to E until reaching a fixed point.
2964 /// Note that a null E is valid; in this case nothing is done.
2965 template <typename... FnTys>
2966 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
2967   Expr *LastE = nullptr;
2968   while (E != LastE) {
2969     LastE = E;
2970     E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
2971   }
2972   return E;
2973 }
2974
2975 Expr *Expr::IgnoreImpCasts() {
2976   return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
2977 }
2978
2979 Expr *Expr::IgnoreCasts() {
2980   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2981 }
2982
2983 Expr *Expr::IgnoreImplicit() {
2984   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2985 }
2986
2987 Expr *Expr::IgnoreImplicitAsWritten() {
2988   return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep);
2989 }
2990
2991 Expr *Expr::IgnoreParens() {
2992   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2993 }
2994
2995 Expr *Expr::IgnoreParenImpCasts() {
2996   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2997                          IgnoreImpCastsExtraSingleStep);
2998 }
2999
3000 Expr *Expr::IgnoreParenCasts() {
3001   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
3002 }
3003
3004 Expr *Expr::IgnoreConversionOperator() {
3005   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
3006     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
3007       return MCE->getImplicitObjectArgument();
3008   }
3009   return this;
3010 }
3011
3012 Expr *Expr::IgnoreParenLValueCasts() {
3013   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3014                          IgnoreLValueCastsSingleStep);
3015 }
3016
3017 Expr *Expr::ignoreParenBaseCasts() {
3018   return IgnoreExprNodes(this, IgnoreParensSingleStep,
3019                          IgnoreBaseCastsSingleStep);
3020 }
3021
3022 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3023   return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
3024     return IgnoreNoopCastsSingleStep(Ctx, E);
3025   });
3026 }
3027
3028 Expr *Expr::IgnoreUnlessSpelledInSource() {
3029   Expr *E = this;
3030
3031   Expr *LastE = nullptr;
3032   while (E != LastE) {
3033     LastE = E;
3034     E = E->IgnoreParenImpCasts();
3035
3036     auto SR = E->getSourceRange();
3037
3038     if (auto *C = dyn_cast<CXXConstructExpr>(E)) {
3039       if (C->getNumArgs() == 1) {
3040         Expr *A = C->getArg(0);
3041         if (A->getSourceRange() == SR || !isa<CXXTemporaryObjectExpr>(C))
3042           E = A;
3043       }
3044     }
3045
3046     if (auto *C = dyn_cast<CXXMemberCallExpr>(E)) {
3047       Expr *ExprNode = C->getImplicitObjectArgument()->IgnoreParenImpCasts();
3048       if (ExprNode->getSourceRange() == SR)
3049         E = ExprNode;
3050     }
3051   }
3052
3053   return E;
3054 }
3055
3056 bool Expr::isDefaultArgument() const {
3057   const Expr *E = this;
3058   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3059     E = M->getSubExpr();
3060
3061   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3062     E = ICE->getSubExprAsWritten();
3063
3064   return isa<CXXDefaultArgExpr>(E);
3065 }
3066
3067 /// Skip over any no-op casts and any temporary-binding
3068 /// expressions.
3069 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3070   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
3071     E = M->getSubExpr();
3072
3073   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3074     if (ICE->getCastKind() == CK_NoOp)
3075       E = ICE->getSubExpr();
3076     else
3077       break;
3078   }
3079
3080   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3081     E = BE->getSubExpr();
3082
3083   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3084     if (ICE->getCastKind() == CK_NoOp)
3085       E = ICE->getSubExpr();
3086     else
3087       break;
3088   }
3089
3090   return E->IgnoreParens();
3091 }
3092
3093 /// isTemporaryObject - Determines if this expression produces a
3094 /// temporary of the given class type.
3095 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3096   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3097     return false;
3098
3099   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3100
3101   // Temporaries are by definition pr-values of class type.
3102   if (!E->Classify(C).isPRValue()) {
3103     // In this context, property reference is a message call and is pr-value.
3104     if (!isa<ObjCPropertyRefExpr>(E))
3105       return false;
3106   }
3107
3108   // Black-list a few cases which yield pr-values of class type that don't
3109   // refer to temporaries of that type:
3110
3111   // - implicit derived-to-base conversions
3112   if (isa<ImplicitCastExpr>(E)) {
3113     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3114     case CK_DerivedToBase:
3115     case CK_UncheckedDerivedToBase:
3116       return false;
3117     default:
3118       break;
3119     }
3120   }
3121
3122   // - member expressions (all)
3123   if (isa<MemberExpr>(E))
3124     return false;
3125
3126   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3127     if (BO->isPtrMemOp())
3128       return false;
3129
3130   // - opaque values (all)
3131   if (isa<OpaqueValueExpr>(E))
3132     return false;
3133
3134   return true;
3135 }
3136
3137 bool Expr::isImplicitCXXThis() const {
3138   const Expr *E = this;
3139
3140   // Strip away parentheses and casts we don't care about.
3141   while (true) {
3142     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3143       E = Paren->getSubExpr();
3144       continue;
3145     }
3146
3147     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3148       if (ICE->getCastKind() == CK_NoOp ||
3149           ICE->getCastKind() == CK_LValueToRValue ||
3150           ICE->getCastKind() == CK_DerivedToBase ||
3151           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3152         E = ICE->getSubExpr();
3153         continue;
3154       }
3155     }
3156
3157     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3158       if (UnOp->getOpcode() == UO_Extension) {
3159         E = UnOp->getSubExpr();
3160         continue;
3161       }
3162     }
3163
3164     if (const MaterializeTemporaryExpr *M
3165                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3166       E = M->getSubExpr();
3167       continue;
3168     }
3169
3170     break;
3171   }
3172
3173   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3174     return This->isImplicit();
3175
3176   return false;
3177 }
3178
3179 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3180 /// in Exprs is type-dependent.
3181 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3182   for (unsigned I = 0; I < Exprs.size(); ++I)
3183     if (Exprs[I]->isTypeDependent())
3184       return true;
3185
3186   return false;
3187 }
3188
3189 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3190                                  const Expr **Culprit) const {
3191   assert(!isValueDependent() &&
3192          "Expression evaluator can't be called on a dependent expression.");
3193
3194   // This function is attempting whether an expression is an initializer
3195   // which can be evaluated at compile-time. It very closely parallels
3196   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3197   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3198   // to isEvaluatable most of the time.
3199   //
3200   // If we ever capture reference-binding directly in the AST, we can
3201   // kill the second parameter.
3202
3203   if (IsForRef) {
3204     EvalResult Result;
3205     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3206       return true;
3207     if (Culprit)
3208       *Culprit = this;
3209     return false;
3210   }
3211
3212   switch (getStmtClass()) {
3213   default: break;
3214   case StringLiteralClass:
3215   case ObjCEncodeExprClass:
3216     return true;
3217   case CXXTemporaryObjectExprClass:
3218   case CXXConstructExprClass: {
3219     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3220
3221     if (CE->getConstructor()->isTrivial() &&
3222         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3223       // Trivial default constructor
3224       if (!CE->getNumArgs()) return true;
3225
3226       // Trivial copy constructor
3227       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3228       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3229     }
3230
3231     break;
3232   }
3233   case ConstantExprClass: {
3234     // FIXME: We should be able to return "true" here, but it can lead to extra
3235     // error messages. E.g. in Sema/array-init.c.
3236     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3237     return Exp->isConstantInitializer(Ctx, false, Culprit);
3238   }
3239   case CompoundLiteralExprClass: {
3240     // This handles gcc's extension that allows global initializers like
3241     // "struct x {int x;} x = (struct x) {};".
3242     // FIXME: This accepts other cases it shouldn't!
3243     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3244     return Exp->isConstantInitializer(Ctx, false, Culprit);
3245   }
3246   case DesignatedInitUpdateExprClass: {
3247     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3248     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3249            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3250   }
3251   case InitListExprClass: {
3252     const InitListExpr *ILE = cast<InitListExpr>(this);
3253     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3254     if (ILE->getType()->isArrayType()) {
3255       unsigned numInits = ILE->getNumInits();
3256       for (unsigned i = 0; i < numInits; i++) {
3257         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3258           return false;
3259       }
3260       return true;
3261     }
3262
3263     if (ILE->getType()->isRecordType()) {
3264       unsigned ElementNo = 0;
3265       RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3266       for (const auto *Field : RD->fields()) {
3267         // If this is a union, skip all the fields that aren't being initialized.
3268         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3269           continue;
3270
3271         // Don't emit anonymous bitfields, they just affect layout.
3272         if (Field->isUnnamedBitfield())
3273           continue;
3274
3275         if (ElementNo < ILE->getNumInits()) {
3276           const Expr *Elt = ILE->getInit(ElementNo++);
3277           if (Field->isBitField()) {
3278             // Bitfields have to evaluate to an integer.
3279             EvalResult Result;
3280             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3281               if (Culprit)
3282                 *Culprit = Elt;
3283               return false;
3284             }
3285           } else {
3286             bool RefType = Field->getType()->isReferenceType();
3287             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3288               return false;
3289           }
3290         }
3291       }
3292       return true;
3293     }
3294
3295     break;
3296   }
3297   case ImplicitValueInitExprClass:
3298   case NoInitExprClass:
3299     return true;
3300   case ParenExprClass:
3301     return cast<ParenExpr>(this)->getSubExpr()
3302       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3303   case GenericSelectionExprClass:
3304     return cast<GenericSelectionExpr>(this)->getResultExpr()
3305       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3306   case ChooseExprClass:
3307     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3308       if (Culprit)
3309         *Culprit = this;
3310       return false;
3311     }
3312     return cast<ChooseExpr>(this)->getChosenSubExpr()
3313       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3314   case UnaryOperatorClass: {
3315     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3316     if (Exp->getOpcode() == UO_Extension)
3317       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3318     break;
3319   }
3320   case CXXFunctionalCastExprClass:
3321   case CXXStaticCastExprClass:
3322   case ImplicitCastExprClass:
3323   case CStyleCastExprClass:
3324   case ObjCBridgedCastExprClass:
3325   case CXXDynamicCastExprClass:
3326   case CXXReinterpretCastExprClass:
3327   case CXXConstCastExprClass: {
3328     const CastExpr *CE = cast<CastExpr>(this);
3329
3330     // Handle misc casts we want to ignore.
3331     if (CE->getCastKind() == CK_NoOp ||
3332         CE->getCastKind() == CK_LValueToRValue ||
3333         CE->getCastKind() == CK_ToUnion ||
3334         CE->getCastKind() == CK_ConstructorConversion ||
3335         CE->getCastKind() == CK_NonAtomicToAtomic ||
3336         CE->getCastKind() == CK_AtomicToNonAtomic ||
3337         CE->getCastKind() == CK_IntToOCLSampler)
3338       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3339
3340     break;
3341   }
3342   case MaterializeTemporaryExprClass:
3343     return cast<MaterializeTemporaryExpr>(this)
3344         ->getSubExpr()
3345         ->isConstantInitializer(Ctx, false, Culprit);
3346
3347   case SubstNonTypeTemplateParmExprClass:
3348     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3349       ->isConstantInitializer(Ctx, false, Culprit);
3350   case CXXDefaultArgExprClass:
3351     return cast<CXXDefaultArgExpr>(this)->getExpr()
3352       ->isConstantInitializer(Ctx, false, Culprit);
3353   case CXXDefaultInitExprClass:
3354     return cast<CXXDefaultInitExpr>(this)->getExpr()
3355       ->isConstantInitializer(Ctx, false, Culprit);
3356   }
3357   // Allow certain forms of UB in constant initializers: signed integer
3358   // overflow and floating-point division by zero. We'll give a warning on
3359   // these, but they're common enough that we have to accept them.
3360   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3361     return true;
3362   if (Culprit)
3363     *Culprit = this;
3364   return false;
3365 }
3366
3367 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3368   const FunctionDecl* FD = getDirectCallee();
3369   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3370               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3371     return false;
3372
3373   const Expr* Arg = getArg(0);
3374   bool ArgVal;
3375   return !Arg->isValueDependent() &&
3376          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3377 }
3378
3379 namespace {
3380   /// Look for any side effects within a Stmt.
3381   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3382     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3383     const bool IncludePossibleEffects;
3384     bool HasSideEffects;
3385
3386   public:
3387     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3388       : Inherited(Context),
3389         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3390
3391     bool hasSideEffects() const { return HasSideEffects; }
3392
3393     void VisitExpr(const Expr *E) {
3394       if (!HasSideEffects &&
3395           E->HasSideEffects(Context, IncludePossibleEffects))
3396         HasSideEffects = true;
3397     }
3398   };
3399 }
3400
3401 bool Expr::HasSideEffects(const ASTContext &Ctx,
3402                           bool IncludePossibleEffects) const {
3403   // In circumstances where we care about definite side effects instead of
3404   // potential side effects, we want to ignore expressions that are part of a
3405   // macro expansion as a potential side effect.
3406   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3407     return false;
3408
3409   if (isInstantiationDependent())
3410     return IncludePossibleEffects;
3411
3412   switch (getStmtClass()) {
3413   case NoStmtClass:
3414   #define ABSTRACT_STMT(Type)
3415   #define STMT(Type, Base) case Type##Class:
3416   #define EXPR(Type, Base)
3417   #include "clang/AST/StmtNodes.inc"
3418     llvm_unreachable("unexpected Expr kind");
3419
3420   case DependentScopeDeclRefExprClass:
3421   case CXXUnresolvedConstructExprClass:
3422   case CXXDependentScopeMemberExprClass:
3423   case UnresolvedLookupExprClass:
3424   case UnresolvedMemberExprClass:
3425   case PackExpansionExprClass:
3426   case SubstNonTypeTemplateParmPackExprClass:
3427   case FunctionParmPackExprClass:
3428   case TypoExprClass:
3429   case CXXFoldExprClass:
3430     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3431
3432   case DeclRefExprClass:
3433   case ObjCIvarRefExprClass:
3434   case PredefinedExprClass:
3435   case IntegerLiteralClass:
3436   case FixedPointLiteralClass:
3437   case FloatingLiteralClass:
3438   case ImaginaryLiteralClass:
3439   case StringLiteralClass:
3440   case CharacterLiteralClass:
3441   case OffsetOfExprClass:
3442   case ImplicitValueInitExprClass:
3443   case UnaryExprOrTypeTraitExprClass:
3444   case AddrLabelExprClass:
3445   case GNUNullExprClass:
3446   case ArrayInitIndexExprClass:
3447   case NoInitExprClass:
3448   case CXXBoolLiteralExprClass:
3449   case CXXNullPtrLiteralExprClass:
3450   case CXXThisExprClass:
3451   case CXXScalarValueInitExprClass:
3452   case TypeTraitExprClass:
3453   case ArrayTypeTraitExprClass:
3454   case ExpressionTraitExprClass:
3455   case CXXNoexceptExprClass:
3456   case SizeOfPackExprClass:
3457   case ObjCStringLiteralClass:
3458   case ObjCEncodeExprClass:
3459   case ObjCBoolLiteralExprClass:
3460   case ObjCAvailabilityCheckExprClass:
3461   case CXXUuidofExprClass:
3462   case OpaqueValueExprClass:
3463   case SourceLocExprClass:
3464   case ConceptSpecializationExprClass:
3465   case RequiresExprClass:
3466     // These never have a side-effect.
3467     return false;
3468
3469   case ConstantExprClass:
3470     // FIXME: Move this into the "return false;" block above.
3471     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3472         Ctx, IncludePossibleEffects);
3473
3474   case CallExprClass:
3475   case CXXOperatorCallExprClass:
3476   case CXXMemberCallExprClass:
3477   case CUDAKernelCallExprClass:
3478   case UserDefinedLiteralClass: {
3479     // We don't know a call definitely has side effects, except for calls
3480     // to pure/const functions that definitely don't.
3481     // If the call itself is considered side-effect free, check the operands.
3482     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3483     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3484     if (IsPure || !IncludePossibleEffects)
3485       break;
3486     return true;
3487   }
3488
3489   case BlockExprClass:
3490   case CXXBindTemporaryExprClass:
3491     if (!IncludePossibleEffects)
3492       break;
3493     return true;
3494
3495   case MSPropertyRefExprClass:
3496   case MSPropertySubscriptExprClass:
3497   case CompoundAssignOperatorClass:
3498   case VAArgExprClass:
3499   case AtomicExprClass:
3500   case CXXThrowExprClass:
3501   case CXXNewExprClass:
3502   case CXXDeleteExprClass:
3503   case CoawaitExprClass:
3504   case DependentCoawaitExprClass:
3505   case CoyieldExprClass:
3506     // These always have a side-effect.
3507     return true;
3508
3509   case StmtExprClass: {
3510     // StmtExprs have a side-effect if any substatement does.
3511     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3512     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3513     return Finder.hasSideEffects();
3514   }
3515
3516   case ExprWithCleanupsClass:
3517     if (IncludePossibleEffects)
3518       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3519         return true;
3520     break;
3521
3522   case ParenExprClass:
3523   case ArraySubscriptExprClass:
3524   case OMPArraySectionExprClass:
3525   case MemberExprClass:
3526   case ConditionalOperatorClass:
3527   case BinaryConditionalOperatorClass:
3528   case CompoundLiteralExprClass:
3529   case ExtVectorElementExprClass:
3530   case DesignatedInitExprClass:
3531   case DesignatedInitUpdateExprClass:
3532   case ArrayInitLoopExprClass:
3533   case ParenListExprClass:
3534   case CXXPseudoDestructorExprClass:
3535   case CXXRewrittenBinaryOperatorClass:
3536   case CXXStdInitializerListExprClass:
3537   case SubstNonTypeTemplateParmExprClass:
3538   case MaterializeTemporaryExprClass:
3539   case ShuffleVectorExprClass:
3540   case ConvertVectorExprClass:
3541   case AsTypeExprClass:
3542     // These have a side-effect if any subexpression does.
3543     break;
3544
3545   case UnaryOperatorClass:
3546     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3547       return true;
3548     break;
3549
3550   case BinaryOperatorClass:
3551     if (cast<BinaryOperator>(this)->isAssignmentOp())
3552       return true;
3553     break;
3554
3555   case InitListExprClass:
3556     // FIXME: The children for an InitListExpr doesn't include the array filler.
3557     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3558       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3559         return true;
3560     break;
3561
3562   case GenericSelectionExprClass:
3563     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3564         HasSideEffects(Ctx, IncludePossibleEffects);
3565
3566   case ChooseExprClass:
3567     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3568         Ctx, IncludePossibleEffects);
3569
3570   case CXXDefaultArgExprClass:
3571     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3572         Ctx, IncludePossibleEffects);
3573
3574   case CXXDefaultInitExprClass: {
3575     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3576     if (const Expr *E = FD->getInClassInitializer())
3577       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3578     // If we've not yet parsed the initializer, assume it has side-effects.
3579     return true;
3580   }
3581
3582   case CXXDynamicCastExprClass: {
3583     // A dynamic_cast expression has side-effects if it can throw.
3584     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3585     if (DCE->getTypeAsWritten()->isReferenceType() &&
3586         DCE->getCastKind() == CK_Dynamic)
3587       return true;
3588     }
3589     LLVM_FALLTHROUGH;
3590   case ImplicitCastExprClass:
3591   case CStyleCastExprClass:
3592   case CXXStaticCastExprClass:
3593   case CXXReinterpretCastExprClass:
3594   case CXXConstCastExprClass:
3595   case CXXFunctionalCastExprClass:
3596   case BuiltinBitCastExprClass: {
3597     // While volatile reads are side-effecting in both C and C++, we treat them
3598     // as having possible (not definite) side-effects. This allows idiomatic
3599     // code to behave without warning, such as sizeof(*v) for a volatile-
3600     // qualified pointer.
3601     if (!IncludePossibleEffects)
3602       break;
3603
3604     const CastExpr *CE = cast<CastExpr>(this);
3605     if (CE->getCastKind() == CK_LValueToRValue &&
3606         CE->getSubExpr()->getType().isVolatileQualified())
3607       return true;
3608     break;
3609   }
3610
3611   case CXXTypeidExprClass:
3612     // typeid might throw if its subexpression is potentially-evaluated, so has
3613     // side-effects in that case whether or not its subexpression does.
3614     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3615
3616   case CXXConstructExprClass:
3617   case CXXTemporaryObjectExprClass: {
3618     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3619     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3620       return true;
3621     // A trivial constructor does not add any side-effects of its own. Just look
3622     // at its arguments.
3623     break;
3624   }
3625
3626   case CXXInheritedCtorInitExprClass: {
3627     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3628     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3629       return true;
3630     break;
3631   }
3632
3633   case LambdaExprClass: {
3634     const LambdaExpr *LE = cast<LambdaExpr>(this);
3635     for (Expr *E : LE->capture_inits())
3636       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3637         return true;
3638     return false;
3639   }
3640
3641   case PseudoObjectExprClass: {
3642     // Only look for side-effects in the semantic form, and look past
3643     // OpaqueValueExpr bindings in that form.
3644     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3645     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3646                                                     E = PO->semantics_end();
3647          I != E; ++I) {
3648       const Expr *Subexpr = *I;
3649       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3650         Subexpr = OVE->getSourceExpr();
3651       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3652         return true;
3653     }
3654     return false;
3655   }
3656
3657   case ObjCBoxedExprClass:
3658   case ObjCArrayLiteralClass:
3659   case ObjCDictionaryLiteralClass:
3660   case ObjCSelectorExprClass:
3661   case ObjCProtocolExprClass:
3662   case ObjCIsaExprClass:
3663   case ObjCIndirectCopyRestoreExprClass:
3664   case ObjCSubscriptRefExprClass:
3665   case ObjCBridgedCastExprClass:
3666   case ObjCMessageExprClass:
3667   case ObjCPropertyRefExprClass:
3668   // FIXME: Classify these cases better.
3669     if (IncludePossibleEffects)
3670       return true;
3671     break;
3672   }
3673
3674   // Recurse to children.
3675   for (const Stmt *SubStmt : children())
3676     if (SubStmt &&
3677         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3678       return true;
3679
3680   return false;
3681 }
3682
3683 namespace {
3684   /// Look for a call to a non-trivial function within an expression.
3685   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3686   {
3687     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3688
3689     bool NonTrivial;
3690
3691   public:
3692     explicit NonTrivialCallFinder(const ASTContext &Context)
3693       : Inherited(Context), NonTrivial(false) { }
3694
3695     bool hasNonTrivialCall() const { return NonTrivial; }
3696
3697     void VisitCallExpr(const CallExpr *E) {
3698       if (const CXXMethodDecl *Method
3699           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3700         if (Method->isTrivial()) {
3701           // Recurse to children of the call.
3702           Inherited::VisitStmt(E);
3703           return;
3704         }
3705       }
3706
3707       NonTrivial = true;
3708     }
3709
3710     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3711       if (E->getConstructor()->isTrivial()) {
3712         // Recurse to children of the call.
3713         Inherited::VisitStmt(E);
3714         return;
3715       }
3716
3717       NonTrivial = true;
3718     }
3719
3720     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3721       if (E->getTemporary()->getDestructor()->isTrivial()) {
3722         Inherited::VisitStmt(E);
3723         return;
3724       }
3725
3726       NonTrivial = true;
3727     }
3728   };
3729 }
3730
3731 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3732   NonTrivialCallFinder Finder(Ctx);
3733   Finder.Visit(this);
3734   return Finder.hasNonTrivialCall();
3735 }
3736
3737 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3738 /// pointer constant or not, as well as the specific kind of constant detected.
3739 /// Null pointer constants can be integer constant expressions with the
3740 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3741 /// (a GNU extension).
3742 Expr::NullPointerConstantKind
3743 Expr::isNullPointerConstant(ASTContext &Ctx,
3744                             NullPointerConstantValueDependence NPC) const {
3745   if (isValueDependent() &&
3746       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3747     switch (NPC) {
3748     case NPC_NeverValueDependent:
3749       llvm_unreachable("Unexpected value dependent expression!");
3750     case NPC_ValueDependentIsNull:
3751       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3752         return NPCK_ZeroExpression;
3753       else
3754         return NPCK_NotNull;
3755
3756     case NPC_ValueDependentIsNotNull:
3757       return NPCK_NotNull;
3758     }
3759   }
3760
3761   // Strip off a cast to void*, if it exists. Except in C++.
3762   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3763     if (!Ctx.getLangOpts().CPlusPlus) {
3764       // Check that it is a cast to void*.
3765       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3766         QualType Pointee = PT->getPointeeType();
3767         Qualifiers Qs = Pointee.getQualifiers();
3768         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3769         // has non-default address space it is not treated as nullptr.
3770         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3771         // since it cannot be assigned to a pointer to constant address space.
3772         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3773              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3774             (Ctx.getLangOpts().OpenCL &&
3775              Ctx.getLangOpts().OpenCLVersion < 200 &&
3776              Pointee.getAddressSpace() == LangAS::opencl_private))
3777           Qs.removeAddressSpace();
3778
3779         if (Pointee->isVoidType() && Qs.empty() && // to void*
3780             CE->getSubExpr()->getType()->isIntegerType()) // from int
3781           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3782       }
3783     }
3784   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3785     // Ignore the ImplicitCastExpr type entirely.
3786     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3787   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3788     // Accept ((void*)0) as a null pointer constant, as many other
3789     // implementations do.
3790     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3791   } else if (const GenericSelectionExpr *GE =
3792                dyn_cast<GenericSelectionExpr>(this)) {
3793     if (GE->isResultDependent())
3794       return NPCK_NotNull;
3795     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3796   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3797     if (CE->isConditionDependent())
3798       return NPCK_NotNull;
3799     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3800   } else if (const CXXDefaultArgExpr *DefaultArg
3801                = dyn_cast<CXXDefaultArgExpr>(this)) {
3802     // See through default argument expressions.
3803     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3804   } else if (const CXXDefaultInitExpr *DefaultInit
3805                = dyn_cast<CXXDefaultInitExpr>(this)) {
3806     // See through default initializer expressions.
3807     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3808   } else if (isa<GNUNullExpr>(this)) {
3809     // The GNU __null extension is always a null pointer constant.
3810     return NPCK_GNUNull;
3811   } else if (const MaterializeTemporaryExpr *M
3812                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3813     return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3814   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3815     if (const Expr *Source = OVE->getSourceExpr())
3816       return Source->isNullPointerConstant(Ctx, NPC);
3817   }
3818
3819   // C++11 nullptr_t is always a null pointer constant.
3820   if (getType()->isNullPtrType())
3821     return NPCK_CXX11_nullptr;
3822
3823   if (const RecordType *UT = getType()->getAsUnionType())
3824     if (!Ctx.getLangOpts().CPlusPlus11 &&
3825         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3826       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3827         const Expr *InitExpr = CLE->getInitializer();
3828         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3829           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3830       }
3831   // This expression must be an integer type.
3832   if (!getType()->isIntegerType() ||
3833       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3834     return NPCK_NotNull;
3835
3836   if (Ctx.getLangOpts().CPlusPlus11) {
3837     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3838     // value zero or a prvalue of type std::nullptr_t.
3839     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3840     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3841     if (Lit && !Lit->getValue())
3842       return NPCK_ZeroLiteral;
3843     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3844       return NPCK_NotNull;
3845   } else {
3846     // If we have an integer constant expression, we need to *evaluate* it and
3847     // test for the value 0.
3848     if (!isIntegerConstantExpr(Ctx))
3849       return NPCK_NotNull;
3850   }
3851
3852   if (EvaluateKnownConstInt(Ctx) != 0)
3853     return NPCK_NotNull;
3854
3855   if (isa<IntegerLiteral>(this))
3856     return NPCK_ZeroLiteral;
3857   return NPCK_ZeroExpression;
3858 }
3859
3860 /// If this expression is an l-value for an Objective C
3861 /// property, find the underlying property reference expression.
3862 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3863   const Expr *E = this;
3864   while (true) {
3865     assert((E->getValueKind() == VK_LValue &&
3866             E->getObjectKind() == OK_ObjCProperty) &&
3867            "expression is not a property reference");
3868     E = E->IgnoreParenCasts();
3869     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3870       if (BO->getOpcode() == BO_Comma) {
3871         E = BO->getRHS();
3872         continue;
3873       }
3874     }
3875
3876     break;
3877   }
3878
3879   return cast<ObjCPropertyRefExpr>(E);
3880 }
3881
3882 bool Expr::isObjCSelfExpr() const {
3883   const Expr *E = IgnoreParenImpCasts();
3884
3885   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3886   if (!DRE)
3887     return false;
3888
3889   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3890   if (!Param)
3891     return false;
3892
3893   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3894   if (!M)
3895     return false;
3896
3897   return M->getSelfDecl() == Param;
3898 }
3899
3900 FieldDecl *Expr::getSourceBitField() {
3901   Expr *E = this->IgnoreParens();
3902
3903   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3904     if (ICE->getCastKind() == CK_LValueToRValue ||
3905         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3906       E = ICE->getSubExpr()->IgnoreParens();
3907     else
3908       break;
3909   }
3910
3911   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3912     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3913       if (Field->isBitField())
3914         return Field;
3915
3916   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3917     FieldDecl *Ivar = IvarRef->getDecl();
3918     if (Ivar->isBitField())
3919       return Ivar;
3920   }
3921
3922   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3923     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3924       if (Field->isBitField())
3925         return Field;
3926
3927     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3928       if (Expr *E = BD->getBinding())
3929         return E->getSourceBitField();
3930   }
3931
3932   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3933     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3934       return BinOp->getLHS()->getSourceBitField();
3935
3936     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3937       return BinOp->getRHS()->getSourceBitField();
3938   }
3939
3940   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3941     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3942       return UnOp->getSubExpr()->getSourceBitField();
3943
3944   return nullptr;
3945 }
3946
3947 bool Expr::refersToVectorElement() const {
3948   // FIXME: Why do we not just look at the ObjectKind here?
3949   const Expr *E = this->IgnoreParens();
3950
3951   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3952     if (ICE->getValueKind() != VK_RValue &&
3953         ICE->getCastKind() == CK_NoOp)
3954       E = ICE->getSubExpr()->IgnoreParens();
3955     else
3956       break;
3957   }
3958
3959   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3960     return ASE->getBase()->getType()->isVectorType();
3961
3962   if (isa<ExtVectorElementExpr>(E))
3963     return true;
3964
3965   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3966     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3967       if (auto *E = BD->getBinding())
3968         return E->refersToVectorElement();
3969
3970   return false;
3971 }
3972
3973 bool Expr::refersToGlobalRegisterVar() const {
3974   const Expr *E = this->IgnoreParenImpCasts();
3975
3976   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3977     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3978       if (VD->getStorageClass() == SC_Register &&
3979           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3980         return true;
3981
3982   return false;
3983 }
3984
3985 bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
3986   E1 = E1->IgnoreParens();
3987   E2 = E2->IgnoreParens();
3988
3989   if (E1->getStmtClass() != E2->getStmtClass())
3990     return false;
3991
3992   switch (E1->getStmtClass()) {
3993     default:
3994       return false;
3995     case CXXThisExprClass:
3996       return true;
3997     case DeclRefExprClass: {
3998       // DeclRefExpr without an ImplicitCastExpr can happen for integral
3999       // template parameters.
4000       const auto *DRE1 = cast<DeclRefExpr>(E1);
4001       const auto *DRE2 = cast<DeclRefExpr>(E2);
4002       return DRE1->isRValue() && DRE2->isRValue() &&
4003              DRE1->getDecl() == DRE2->getDecl();
4004     }
4005     case ImplicitCastExprClass: {
4006       // Peel off implicit casts.
4007       while (true) {
4008         const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
4009         const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
4010         if (!ICE1 || !ICE2)
4011           return false;
4012         if (ICE1->getCastKind() != ICE2->getCastKind())
4013           return false;
4014         E1 = ICE1->getSubExpr()->IgnoreParens();
4015         E2 = ICE2->getSubExpr()->IgnoreParens();
4016         // The final cast must be one of these types.
4017         if (ICE1->getCastKind() == CK_LValueToRValue ||
4018             ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4019             ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4020           break;
4021         }
4022       }
4023
4024       const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
4025       const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
4026       if (DRE1 && DRE2)
4027         return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4028
4029       const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
4030       const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
4031       if (Ivar1 && Ivar2) {
4032         return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4033                declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4034       }
4035
4036       const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
4037       const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
4038       if (Array1 && Array2) {
4039         if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
4040           return false;
4041
4042         auto Idx1 = Array1->getIdx();
4043         auto Idx2 = Array2->getIdx();
4044         const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
4045         const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
4046         if (Integer1 && Integer2) {
4047           if (!llvm::APInt::isSameValue(Integer1->getValue(),
4048                                         Integer2->getValue()))
4049             return false;
4050         } else {
4051           if (!isSameComparisonOperand(Idx1, Idx2))
4052             return false;
4053         }
4054
4055         return true;
4056       }
4057
4058       // Walk the MemberExpr chain.
4059       while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
4060         const auto *ME1 = cast<MemberExpr>(E1);
4061         const auto *ME2 = cast<MemberExpr>(E2);
4062         if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4063           return false;
4064         if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
4065           if (D->isStaticDataMember())
4066             return true;
4067         E1 = ME1->getBase()->IgnoreParenImpCasts();
4068         E2 = ME2->getBase()->IgnoreParenImpCasts();
4069       }
4070
4071       if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
4072         return true;
4073
4074       // A static member variable can end the MemberExpr chain with either
4075       // a MemberExpr or a DeclRefExpr.
4076       auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4077         if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
4078           return DRE->getDecl();
4079         if (const auto *ME = dyn_cast<MemberExpr>(E))
4080           return ME->getMemberDecl();
4081         return nullptr;
4082       };
4083
4084       const ValueDecl *VD1 = getAnyDecl(E1);
4085       const ValueDecl *VD2 = getAnyDecl(E2);
4086       return declaresSameEntity(VD1, VD2);
4087     }
4088   }
4089 }
4090
4091 /// isArrow - Return true if the base expression is a pointer to vector,
4092 /// return false if the base expression is a vector.
4093 bool ExtVectorElementExpr::isArrow() const {
4094   return getBase()->getType()->isPointerType();
4095 }
4096
4097 unsigned ExtVectorElementExpr::getNumElements() const {
4098   if (const VectorType *VT = getType()->getAs<VectorType>())
4099     return VT->getNumElements();
4100   return 1;
4101 }
4102
4103 /// containsDuplicateElements - Return true if any element access is repeated.
4104 bool ExtVectorElementExpr::containsDuplicateElements() const {
4105   // FIXME: Refactor this code to an accessor on the AST node which returns the
4106   // "type" of component access, and share with code below and in Sema.
4107   StringRef Comp = Accessor->getName();
4108
4109   // Halving swizzles do not contain duplicate elements.
4110   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4111     return false;
4112
4113   // Advance past s-char prefix on hex swizzles.
4114   if (Comp[0] == 's' || Comp[0] == 'S')
4115     Comp = Comp.substr(1);
4116
4117   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4118     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
4119         return true;
4120
4121   return false;
4122 }
4123
4124 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4125 void ExtVectorElementExpr::getEncodedElementAccess(
4126     SmallVectorImpl<uint32_t> &Elts) const {
4127   StringRef Comp = Accessor->getName();
4128   bool isNumericAccessor = false;
4129   if (Comp[0] == 's' || Comp[0] == 'S') {
4130     Comp = Comp.substr(1);
4131     isNumericAccessor = true;
4132   }
4133
4134   bool isHi =   Comp == "hi";
4135   bool isLo =   Comp == "lo";
4136   bool isEven = Comp == "even";
4137   bool isOdd  = Comp == "odd";
4138
4139   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4140     uint64_t Index;
4141
4142     if (isHi)
4143       Index = e + i;
4144     else if (isLo)
4145       Index = i;
4146     else if (isEven)
4147       Index = 2 * i;
4148     else if (isOdd)
4149       Index = 2 * i + 1;
4150     else
4151       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
4152
4153     Elts.push_back(Index);
4154   }
4155 }
4156
4157 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
4158                                      QualType Type, SourceLocation BLoc,
4159                                      SourceLocation RP)
4160    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
4161           Type->isDependentType(), Type->isDependentType(),
4162           Type->isInstantiationDependentType(),
4163           Type->containsUnexpandedParameterPack()),
4164      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
4165 {
4166   SubExprs = new (C) Stmt*[args.size()];
4167   for (unsigned i = 0; i != args.size(); i++) {
4168     if (args[i]->isTypeDependent())
4169       ExprBits.TypeDependent = true;
4170     if (args[i]->isValueDependent())
4171       ExprBits.ValueDependent = true;
4172     if (args[i]->isInstantiationDependent())
4173       ExprBits.InstantiationDependent = true;
4174     if (args[i]->containsUnexpandedParameterPack())
4175       ExprBits.ContainsUnexpandedParameterPack = true;
4176
4177     SubExprs[i] = args[i];
4178   }
4179 }
4180
4181 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4182   if (SubExprs) C.Deallocate(SubExprs);
4183
4184   this->NumExprs = Exprs.size();
4185   SubExprs = new (C) Stmt*[NumExprs];
4186   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
4187 }
4188
4189 GenericSelectionExpr::GenericSelectionExpr(
4190     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4191     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4192     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4193     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4194     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4195            AssocExprs[ResultIndex]->getValueKind(),
4196            AssocExprs[ResultIndex]->getObjectKind(),
4197            AssocExprs[ResultIndex]->isTypeDependent(),
4198            AssocExprs[ResultIndex]->isValueDependent(),
4199            AssocExprs[ResultIndex]->isInstantiationDependent(),
4200            ContainsUnexpandedParameterPack),
4201       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4202       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4203   assert(AssocTypes.size() == AssocExprs.size() &&
4204          "Must have the same number of association expressions"
4205          " and TypeSourceInfo!");
4206   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4207
4208   GenericSelectionExprBits.GenericLoc = GenericLoc;
4209   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4210   std::copy(AssocExprs.begin(), AssocExprs.end(),
4211             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4212   std::copy(AssocTypes.begin(), AssocTypes.end(),
4213             getTrailingObjects<TypeSourceInfo *>());
4214 }
4215
4216 GenericSelectionExpr::GenericSelectionExpr(
4217     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4218     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4219     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4220     bool ContainsUnexpandedParameterPack)
4221     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
4222            OK_Ordinary,
4223            /*isTypeDependent=*/true,
4224            /*isValueDependent=*/true,
4225            /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
4226       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4227       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4228   assert(AssocTypes.size() == AssocExprs.size() &&
4229          "Must have the same number of association expressions"
4230          " and TypeSourceInfo!");
4231
4232   GenericSelectionExprBits.GenericLoc = GenericLoc;
4233   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4234   std::copy(AssocExprs.begin(), AssocExprs.end(),
4235             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4236   std::copy(AssocTypes.begin(), AssocTypes.end(),
4237             getTrailingObjects<TypeSourceInfo *>());
4238 }
4239
4240 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4241     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4242
4243 GenericSelectionExpr *GenericSelectionExpr::Create(
4244     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4245     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4246     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4247     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4248   unsigned NumAssocs = AssocExprs.size();
4249   void *Mem = Context.Allocate(
4250       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4251       alignof(GenericSelectionExpr));
4252   return new (Mem) GenericSelectionExpr(
4253       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4254       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4255 }
4256
4257 GenericSelectionExpr *GenericSelectionExpr::Create(
4258     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4259     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4260     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4261     bool ContainsUnexpandedParameterPack) {
4262   unsigned NumAssocs = AssocExprs.size();
4263   void *Mem = Context.Allocate(
4264       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4265       alignof(GenericSelectionExpr));
4266   return new (Mem) GenericSelectionExpr(
4267       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4268       RParenLoc, ContainsUnexpandedParameterPack);
4269 }
4270
4271 GenericSelectionExpr *
4272 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4273                                   unsigned NumAssocs) {
4274   void *Mem = Context.Allocate(
4275       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4276       alignof(GenericSelectionExpr));
4277   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4278 }
4279
4280 //===----------------------------------------------------------------------===//
4281 //  DesignatedInitExpr
4282 //===----------------------------------------------------------------------===//
4283
4284 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4285   assert(Kind == FieldDesignator && "Only valid on a field designator");
4286   if (Field.NameOrField & 0x01)
4287     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
4288   else
4289     return getField()->getIdentifier();
4290 }
4291
4292 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4293                                        llvm::ArrayRef<Designator> Designators,
4294                                        SourceLocation EqualOrColonLoc,
4295                                        bool GNUSyntax,
4296                                        ArrayRef<Expr*> IndexExprs,
4297                                        Expr *Init)
4298   : Expr(DesignatedInitExprClass, Ty,
4299          Init->getValueKind(), Init->getObjectKind(),
4300          Init->isTypeDependent(), Init->isValueDependent(),
4301          Init->isInstantiationDependent(),
4302          Init->containsUnexpandedParameterPack()),
4303     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4304     NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4305   this->Designators = new (C) Designator[NumDesignators];
4306
4307   // Record the initializer itself.
4308   child_iterator Child = child_begin();
4309   *Child++ = Init;
4310
4311   // Copy the designators and their subexpressions, computing
4312   // value-dependence along the way.
4313   unsigned IndexIdx = 0;
4314   for (unsigned I = 0; I != NumDesignators; ++I) {
4315     this->Designators[I] = Designators[I];
4316
4317     if (this->Designators[I].isArrayDesignator()) {
4318       // Compute type- and value-dependence.
4319       Expr *Index = IndexExprs[IndexIdx];
4320       if (Index->isTypeDependent() || Index->isValueDependent())
4321         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
4322       if (Index->isInstantiationDependent())
4323         ExprBits.InstantiationDependent = true;
4324       // Propagate unexpanded parameter packs.
4325       if (Index->containsUnexpandedParameterPack())
4326         ExprBits.ContainsUnexpandedParameterPack = true;
4327
4328       // Copy the index expressions into permanent storage.
4329       *Child++ = IndexExprs[IndexIdx++];
4330     } else if (this->Designators[I].isArrayRangeDesignator()) {
4331       // Compute type- and value-dependence.
4332       Expr *Start = IndexExprs[IndexIdx];
4333       Expr *End = IndexExprs[IndexIdx + 1];
4334       if (Start->isTypeDependent() || Start->isValueDependent() ||
4335           End->isTypeDependent() || End->isValueDependent()) {
4336         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
4337         ExprBits.InstantiationDependent = true;
4338       } else if (Start->isInstantiationDependent() ||
4339                  End->isInstantiationDependent()) {
4340         ExprBits.InstantiationDependent = true;
4341       }
4342
4343       // Propagate unexpanded parameter packs.
4344       if (Start->containsUnexpandedParameterPack() ||
4345           End->containsUnexpandedParameterPack())
4346         ExprBits.ContainsUnexpandedParameterPack = true;
4347
4348       // Copy the start/end expressions into permanent storage.
4349       *Child++ = IndexExprs[IndexIdx++];
4350       *Child++ = IndexExprs[IndexIdx++];
4351     }
4352   }
4353
4354   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4355 }
4356
4357 DesignatedInitExpr *
4358 DesignatedInitExpr::Create(const ASTContext &C,
4359                            llvm::ArrayRef<Designator> Designators,
4360                            ArrayRef<Expr*> IndexExprs,
4361                            SourceLocation ColonOrEqualLoc,
4362                            bool UsesColonSyntax, Expr *Init) {
4363   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4364                          alignof(DesignatedInitExpr));
4365   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4366                                       ColonOrEqualLoc, UsesColonSyntax,
4367                                       IndexExprs, Init);
4368 }
4369
4370 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4371                                                     unsigned NumIndexExprs) {
4372   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4373                          alignof(DesignatedInitExpr));
4374   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4375 }
4376
4377 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4378                                         const Designator *Desigs,
4379                                         unsigned NumDesigs) {
4380   Designators = new (C) Designator[NumDesigs];
4381   NumDesignators = NumDesigs;
4382   for (unsigned I = 0; I != NumDesigs; ++I)
4383     Designators[I] = Desigs[I];
4384 }
4385
4386 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4387   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4388   if (size() == 1)
4389     return DIE->getDesignator(0)->getSourceRange();
4390   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4391                      DIE->getDesignator(size() - 1)->getEndLoc());
4392 }
4393
4394 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4395   SourceLocation StartLoc;
4396   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4397   Designator &First = *DIE->getDesignator(0);
4398   if (First.isFieldDesignator()) {
4399     if (GNUSyntax)
4400       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
4401     else
4402       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
4403   } else
4404     StartLoc =
4405       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
4406   return StartLoc;
4407 }
4408
4409 SourceLocation DesignatedInitExpr::getEndLoc() const {
4410   return getInit()->getEndLoc();
4411 }
4412
4413 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4414   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4415   return getSubExpr(D.ArrayOrRange.Index + 1);
4416 }
4417
4418 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4419   assert(D.Kind == Designator::ArrayRangeDesignator &&
4420          "Requires array range designator");
4421   return getSubExpr(D.ArrayOrRange.Index + 1);
4422 }
4423
4424 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4425   assert(D.Kind == Designator::ArrayRangeDesignator &&
4426          "Requires array range designator");
4427   return getSubExpr(D.ArrayOrRange.Index + 2);
4428 }
4429
4430 /// Replaces the designator at index @p Idx with the series
4431 /// of designators in [First, Last).
4432 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4433                                           const Designator *First,
4434                                           const Designator *Last) {
4435   unsigned NumNewDesignators = Last - First;
4436   if (NumNewDesignators == 0) {
4437     std::copy_backward(Designators + Idx + 1,
4438                        Designators + NumDesignators,
4439                        Designators + Idx);
4440     --NumNewDesignators;
4441     return;
4442   } else if (NumNewDesignators == 1) {
4443     Designators[Idx] = *First;
4444     return;
4445   }
4446
4447   Designator *NewDesignators
4448     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4449   std::copy(Designators, Designators + Idx, NewDesignators);
4450   std::copy(First, Last, NewDesignators + Idx);
4451   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4452             NewDesignators + Idx + NumNewDesignators);
4453   Designators = NewDesignators;
4454   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4455 }
4456
4457 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4458     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
4459   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4460          OK_Ordinary, false, false, false, false) {
4461   BaseAndUpdaterExprs[0] = baseExpr;
4462
4463   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4464   ILE->setType(baseExpr->getType());
4465   BaseAndUpdaterExprs[1] = ILE;
4466 }
4467
4468 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4469   return getBase()->getBeginLoc();
4470 }
4471
4472 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4473   return getBase()->getEndLoc();
4474 }
4475
4476 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4477                              SourceLocation RParenLoc)
4478     : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
4479            false, false),
4480       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4481   ParenListExprBits.NumExprs = Exprs.size();
4482
4483   for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
4484     if (Exprs[I]->isTypeDependent())
4485       ExprBits.TypeDependent = true;
4486     if (Exprs[I]->isValueDependent())
4487       ExprBits.ValueDependent = true;
4488     if (Exprs[I]->isInstantiationDependent())
4489       ExprBits.InstantiationDependent = true;
4490     if (Exprs[I]->containsUnexpandedParameterPack())
4491       ExprBits.ContainsUnexpandedParameterPack = true;
4492
4493     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4494   }
4495 }
4496
4497 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4498     : Expr(ParenListExprClass, Empty) {
4499   ParenListExprBits.NumExprs = NumExprs;
4500 }
4501
4502 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4503                                      SourceLocation LParenLoc,
4504                                      ArrayRef<Expr *> Exprs,
4505                                      SourceLocation RParenLoc) {
4506   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4507                            alignof(ParenListExpr));
4508   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4509 }
4510
4511 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4512                                           unsigned NumExprs) {
4513   void *Mem =
4514       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4515   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4516 }
4517
4518 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4519   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4520     e = ewc->getSubExpr();
4521   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4522     e = m->getSubExpr();
4523   e = cast<CXXConstructExpr>(e)->getArg(0);
4524   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4525     e = ice->getSubExpr();
4526   return cast<OpaqueValueExpr>(e);
4527 }
4528
4529 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4530                                            EmptyShell sh,
4531                                            unsigned numSemanticExprs) {
4532   void *buffer =
4533       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4534                        alignof(PseudoObjectExpr));
4535   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4536 }
4537
4538 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4539   : Expr(PseudoObjectExprClass, shell) {
4540   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4541 }
4542
4543 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4544                                            ArrayRef<Expr*> semantics,
4545                                            unsigned resultIndex) {
4546   assert(syntax && "no syntactic expression!");
4547   assert(semantics.size() && "no semantic expressions!");
4548
4549   QualType type;
4550   ExprValueKind VK;
4551   if (resultIndex == NoResult) {
4552     type = C.VoidTy;
4553     VK = VK_RValue;
4554   } else {
4555     assert(resultIndex < semantics.size());
4556     type = semantics[resultIndex]->getType();
4557     VK = semantics[resultIndex]->getValueKind();
4558     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4559   }
4560
4561   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4562                             alignof(PseudoObjectExpr));
4563   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4564                                       resultIndex);
4565 }
4566
4567 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4568                                    Expr *syntax, ArrayRef<Expr*> semantics,
4569                                    unsigned resultIndex)
4570   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4571          /*filled in at end of ctor*/ false, false, false, false) {
4572   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4573   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4574
4575   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4576     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4577     getSubExprsBuffer()[i] = E;
4578
4579     if (E->isTypeDependent())
4580       ExprBits.TypeDependent = true;
4581     if (E->isValueDependent())
4582       ExprBits.ValueDependent = true;
4583     if (E->isInstantiationDependent())
4584       ExprBits.InstantiationDependent = true;
4585     if (E->containsUnexpandedParameterPack())
4586       ExprBits.ContainsUnexpandedParameterPack = true;
4587
4588     if (isa<OpaqueValueExpr>(E))
4589       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4590              "opaque-value semantic expressions for pseudo-object "
4591              "operations must have sources");
4592   }
4593 }
4594
4595 //===----------------------------------------------------------------------===//
4596 //  Child Iterators for iterating over subexpressions/substatements
4597 //===----------------------------------------------------------------------===//
4598
4599 // UnaryExprOrTypeTraitExpr
4600 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4601   const_child_range CCR =
4602       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4603   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4604 }
4605
4606 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4607   // If this is of a type and the type is a VLA type (and not a typedef), the
4608   // size expression of the VLA needs to be treated as an executable expression.
4609   // Why isn't this weirdness documented better in StmtIterator?
4610   if (isArgumentType()) {
4611     if (const VariableArrayType *T =
4612             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4613       return const_child_range(const_child_iterator(T), const_child_iterator());
4614     return const_child_range(const_child_iterator(), const_child_iterator());
4615   }
4616   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4617 }
4618
4619 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4620                        QualType t, AtomicOp op, SourceLocation RP)
4621   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4622          false, false, false, false),
4623     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4624 {
4625   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4626   for (unsigned i = 0; i != args.size(); i++) {
4627     if (args[i]->isTypeDependent())
4628       ExprBits.TypeDependent = true;
4629     if (args[i]->isValueDependent())
4630       ExprBits.ValueDependent = true;
4631     if (args[i]->isInstantiationDependent())
4632       ExprBits.InstantiationDependent = true;
4633     if (args[i]->containsUnexpandedParameterPack())
4634       ExprBits.ContainsUnexpandedParameterPack = true;
4635
4636     SubExprs[i] = args[i];
4637   }
4638 }
4639
4640 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4641   switch (Op) {
4642   case AO__c11_atomic_init:
4643   case AO__opencl_atomic_init:
4644   case AO__c11_atomic_load:
4645   case AO__atomic_load_n:
4646     return 2;
4647
4648   case AO__opencl_atomic_load:
4649   case AO__c11_atomic_store:
4650   case AO__c11_atomic_exchange:
4651   case AO__atomic_load:
4652   case AO__atomic_store:
4653   case AO__atomic_store_n:
4654   case AO__atomic_exchange_n:
4655   case AO__c11_atomic_fetch_add:
4656   case AO__c11_atomic_fetch_sub:
4657   case AO__c11_atomic_fetch_and:
4658   case AO__c11_atomic_fetch_or:
4659   case AO__c11_atomic_fetch_xor:
4660   case AO__c11_atomic_fetch_max:
4661   case AO__c11_atomic_fetch_min:
4662   case AO__atomic_fetch_add:
4663   case AO__atomic_fetch_sub:
4664   case AO__atomic_fetch_and:
4665   case AO__atomic_fetch_or:
4666   case AO__atomic_fetch_xor:
4667   case AO__atomic_fetch_nand:
4668   case AO__atomic_add_fetch:
4669   case AO__atomic_sub_fetch:
4670   case AO__atomic_and_fetch:
4671   case AO__atomic_or_fetch:
4672   case AO__atomic_xor_fetch:
4673   case AO__atomic_nand_fetch:
4674   case AO__atomic_min_fetch:
4675   case AO__atomic_max_fetch:
4676   case AO__atomic_fetch_min:
4677   case AO__atomic_fetch_max:
4678     return 3;
4679
4680   case AO__opencl_atomic_store:
4681   case AO__opencl_atomic_exchange:
4682   case AO__opencl_atomic_fetch_add:
4683   case AO__opencl_atomic_fetch_sub:
4684   case AO__opencl_atomic_fetch_and:
4685   case AO__opencl_atomic_fetch_or:
4686   case AO__opencl_atomic_fetch_xor:
4687   case AO__opencl_atomic_fetch_min:
4688   case AO__opencl_atomic_fetch_max:
4689   case AO__atomic_exchange:
4690     return 4;
4691
4692   case AO__c11_atomic_compare_exchange_strong:
4693   case AO__c11_atomic_compare_exchange_weak:
4694     return 5;
4695
4696   case AO__opencl_atomic_compare_exchange_strong:
4697   case AO__opencl_atomic_compare_exchange_weak:
4698   case AO__atomic_compare_exchange:
4699   case AO__atomic_compare_exchange_n:
4700     return 6;
4701   }
4702   llvm_unreachable("unknown atomic op");
4703 }
4704
4705 QualType AtomicExpr::getValueType() const {
4706   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4707   if (auto AT = T->getAs<AtomicType>())
4708     return AT->getValueType();
4709   return T;
4710 }
4711
4712 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4713   unsigned ArraySectionCount = 0;
4714   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4715     Base = OASE->getBase();
4716     ++ArraySectionCount;
4717   }
4718   while (auto *ASE =
4719              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4720     Base = ASE->getBase();
4721     ++ArraySectionCount;
4722   }
4723   Base = Base->IgnoreParenImpCasts();
4724   auto OriginalTy = Base->getType();
4725   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4726     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4727       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4728
4729   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4730     if (OriginalTy->isAnyPointerType())
4731       OriginalTy = OriginalTy->getPointeeType();
4732     else {
4733       assert (OriginalTy->isArrayType());
4734       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4735     }
4736   }
4737   return OriginalTy;
4738 }