]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - compiler-rt/lib/builtins/fp_lib.h
Vendor import of llvm-project branch release/18.x llvmorg-18.1.3-0-gc13b7485b879.
[FreeBSD/FreeBSD.git] / compiler-rt / lib / builtins / fp_lib.h
1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a configuration header for soft-float routines in compiler-rt.
10 // This file does not provide any part of the compiler-rt interface, but defines
11 // many useful constants and utility routines that are used in the
12 // implementation of the soft-float routines in compiler-rt.
13 //
14 // Assumes that float, double and long double correspond to the IEEE-754
15 // binary32, binary64 and binary 128 types, respectively, and that integer
16 // endianness matches floating point endianness on the target platform.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef FP_LIB_HEADER
21 #define FP_LIB_HEADER
22
23 #include "int_lib.h"
24 #include "int_math.h"
25 #include "int_types.h"
26 #include <limits.h>
27 #include <stdbool.h>
28 #include <stdint.h>
29
30 #if defined SINGLE_PRECISION
31
32 typedef uint16_t half_rep_t;
33 typedef uint32_t rep_t;
34 typedef uint64_t twice_rep_t;
35 typedef int32_t srep_t;
36 typedef float fp_t;
37 #define HALF_REP_C UINT16_C
38 #define REP_C UINT32_C
39 #define significandBits 23
40
41 static __inline int rep_clz(rep_t a) { return clzsi(a); }
42
43 // 32x32 --> 64 bit multiply
44 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
45   const uint64_t product = (uint64_t)a * b;
46   *hi = product >> 32;
47   *lo = product;
48 }
49 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
50
51 #elif defined DOUBLE_PRECISION
52
53 typedef uint32_t half_rep_t;
54 typedef uint64_t rep_t;
55 typedef int64_t srep_t;
56 typedef double fp_t;
57 #define HALF_REP_C UINT32_C
58 #define REP_C UINT64_C
59 #define significandBits 52
60
61 static __inline int rep_clz(rep_t a) {
62 #if defined __LP64__
63   return __builtin_clzl(a);
64 #else
65   if (a & REP_C(0xffffffff00000000))
66     return clzsi(a >> 32);
67   else
68     return 32 + clzsi(a & REP_C(0xffffffff));
69 #endif
70 }
71
72 #define loWord(a) (a & 0xffffffffU)
73 #define hiWord(a) (a >> 32)
74
75 // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
76 // many 64-bit platforms have this operation, but they tend to have hardware
77 // floating-point, so we don't bother with a special case for them here.
78 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
79   // Each of the component 32x32 -> 64 products
80   const uint64_t plolo = loWord(a) * loWord(b);
81   const uint64_t plohi = loWord(a) * hiWord(b);
82   const uint64_t philo = hiWord(a) * loWord(b);
83   const uint64_t phihi = hiWord(a) * hiWord(b);
84   // Sum terms that contribute to lo in a way that allows us to get the carry
85   const uint64_t r0 = loWord(plolo);
86   const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
87   *lo = r0 + (r1 << 32);
88   // Sum terms contributing to hi with the carry from lo
89   *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
90 }
91 #undef loWord
92 #undef hiWord
93
94 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
95
96 #elif defined QUAD_PRECISION
97 #if defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
98 typedef uint64_t half_rep_t;
99 typedef __uint128_t rep_t;
100 typedef __int128_t srep_t;
101 typedef tf_float fp_t;
102 #define HALF_REP_C UINT64_C
103 #define REP_C (__uint128_t)
104 #if defined(CRT_HAS_IEEE_TF)
105 // Note: Since there is no explicit way to tell compiler the constant is a
106 // 128-bit integer, we let the constant be casted to 128-bit integer
107 #define significandBits 112
108 #define TF_MANT_DIG (significandBits + 1)
109
110 static __inline int rep_clz(rep_t a) {
111   const union {
112     __uint128_t ll;
113 #if _YUGA_BIG_ENDIAN
114     struct {
115       uint64_t high, low;
116     } s;
117 #else
118     struct {
119       uint64_t low, high;
120     } s;
121 #endif
122   } uu = {.ll = a};
123
124   uint64_t word;
125   uint64_t add;
126
127   if (uu.s.high) {
128     word = uu.s.high;
129     add = 0;
130   } else {
131     word = uu.s.low;
132     add = 64;
133   }
134   return __builtin_clzll(word) + add;
135 }
136
137 #define Word_LoMask UINT64_C(0x00000000ffffffff)
138 #define Word_HiMask UINT64_C(0xffffffff00000000)
139 #define Word_FullMask UINT64_C(0xffffffffffffffff)
140 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
141 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
142 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
143 #define Word_4(a) (uint64_t)(a & Word_LoMask)
144
145 // 128x128 -> 256 wide multiply for platforms that don't have such an operation;
146 // many 64-bit platforms have this operation, but they tend to have hardware
147 // floating-point, so we don't bother with a special case for them here.
148 static __inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
149
150   const uint64_t product11 = Word_1(a) * Word_1(b);
151   const uint64_t product12 = Word_1(a) * Word_2(b);
152   const uint64_t product13 = Word_1(a) * Word_3(b);
153   const uint64_t product14 = Word_1(a) * Word_4(b);
154   const uint64_t product21 = Word_2(a) * Word_1(b);
155   const uint64_t product22 = Word_2(a) * Word_2(b);
156   const uint64_t product23 = Word_2(a) * Word_3(b);
157   const uint64_t product24 = Word_2(a) * Word_4(b);
158   const uint64_t product31 = Word_3(a) * Word_1(b);
159   const uint64_t product32 = Word_3(a) * Word_2(b);
160   const uint64_t product33 = Word_3(a) * Word_3(b);
161   const uint64_t product34 = Word_3(a) * Word_4(b);
162   const uint64_t product41 = Word_4(a) * Word_1(b);
163   const uint64_t product42 = Word_4(a) * Word_2(b);
164   const uint64_t product43 = Word_4(a) * Word_3(b);
165   const uint64_t product44 = Word_4(a) * Word_4(b);
166
167   const __uint128_t sum0 = (__uint128_t)product44;
168   const __uint128_t sum1 = (__uint128_t)product34 + (__uint128_t)product43;
169   const __uint128_t sum2 =
170       (__uint128_t)product24 + (__uint128_t)product33 + (__uint128_t)product42;
171   const __uint128_t sum3 = (__uint128_t)product14 + (__uint128_t)product23 +
172                            (__uint128_t)product32 + (__uint128_t)product41;
173   const __uint128_t sum4 =
174       (__uint128_t)product13 + (__uint128_t)product22 + (__uint128_t)product31;
175   const __uint128_t sum5 = (__uint128_t)product12 + (__uint128_t)product21;
176   const __uint128_t sum6 = (__uint128_t)product11;
177
178   const __uint128_t r0 = (sum0 & Word_FullMask) + ((sum1 & Word_LoMask) << 32);
179   const __uint128_t r1 = (sum0 >> 64) + ((sum1 >> 32) & Word_FullMask) +
180                          (sum2 & Word_FullMask) + ((sum3 << 32) & Word_HiMask);
181
182   *lo = r0 + (r1 << 64);
183   *hi = (r1 >> 64) + (sum1 >> 96) + (sum2 >> 64) + (sum3 >> 32) + sum4 +
184         (sum5 << 32) + (sum6 << 64);
185 }
186 #undef Word_1
187 #undef Word_2
188 #undef Word_3
189 #undef Word_4
190 #undef Word_HiMask
191 #undef Word_LoMask
192 #undef Word_FullMask
193 #endif // defined(CRT_HAS_IEEE_TF)
194 #else
195 typedef long double fp_t;
196 #endif // defined(CRT_HAS_F128) && defined(CRT_HAS_128BIT)
197 #else
198 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
199 #endif
200
201 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) ||                  \
202     (defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE))
203 #define typeWidth (sizeof(rep_t) * CHAR_BIT)
204
205 static __inline rep_t toRep(fp_t x) {
206   const union {
207     fp_t f;
208     rep_t i;
209   } rep = {.f = x};
210   return rep.i;
211 }
212
213 static __inline fp_t fromRep(rep_t x) {
214   const union {
215     fp_t f;
216     rep_t i;
217   } rep = {.i = x};
218   return rep.f;
219 }
220
221 #if !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
222 #define exponentBits (typeWidth - significandBits - 1)
223 #define maxExponent ((1 << exponentBits) - 1)
224 #define exponentBias (maxExponent >> 1)
225
226 #define implicitBit (REP_C(1) << significandBits)
227 #define significandMask (implicitBit - 1U)
228 #define signBit (REP_C(1) << (significandBits + exponentBits))
229 #define absMask (signBit - 1U)
230 #define exponentMask (absMask ^ significandMask)
231 #define oneRep ((rep_t)exponentBias << significandBits)
232 #define infRep exponentMask
233 #define quietBit (implicitBit >> 1)
234 #define qnanRep (exponentMask | quietBit)
235
236 static __inline int normalize(rep_t *significand) {
237   const int shift = rep_clz(*significand) - rep_clz(implicitBit);
238   *significand <<= shift;
239   return 1 - shift;
240 }
241
242 static __inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
243   *hi = *hi << count | *lo >> (typeWidth - count);
244   *lo = *lo << count;
245 }
246
247 static __inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo,
248                                               unsigned int count) {
249   if (count < typeWidth) {
250     const bool sticky = (*lo << (typeWidth - count)) != 0;
251     *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
252     *hi = *hi >> count;
253   } else if (count < 2 * typeWidth) {
254     const bool sticky = *hi << (2 * typeWidth - count) | *lo;
255     *lo = *hi >> (count - typeWidth) | sticky;
256     *hi = 0;
257   } else {
258     const bool sticky = *hi | *lo;
259     *lo = sticky;
260     *hi = 0;
261   }
262 }
263
264 // Implements logb methods (logb, logbf, logbl) for IEEE-754. This avoids
265 // pulling in a libm dependency from compiler-rt, but is not meant to replace
266 // it (i.e. code calling logb() should get the one from libm, not this), hence
267 // the __compiler_rt prefix.
268 static __inline fp_t __compiler_rt_logbX(fp_t x) {
269   rep_t rep = toRep(x);
270   int exp = (rep & exponentMask) >> significandBits;
271
272   // Abnormal cases:
273   // 1) +/- inf returns +inf; NaN returns NaN
274   // 2) 0.0 returns -inf
275   if (exp == maxExponent) {
276     if (((rep & signBit) == 0) || (x != x)) {
277       return x; // NaN or +inf: return x
278     } else {
279       return -x; // -inf: return -x
280     }
281   } else if (x == 0.0) {
282     // 0.0: return -inf
283     return fromRep(infRep | signBit);
284   }
285
286   if (exp != 0) {
287     // Normal number
288     return exp - exponentBias; // Unbias exponent
289   } else {
290     // Subnormal number; normalize and repeat
291     rep &= absMask;
292     const int shift = 1 - normalize(&rep);
293     exp = (rep & exponentMask) >> significandBits;
294     return exp - exponentBias - shift; // Unbias exponent
295   }
296 }
297
298 // Avoid using scalbn from libm. Unlike libc/libm scalbn, this function never
299 // sets errno on underflow/overflow.
300 static __inline fp_t __compiler_rt_scalbnX(fp_t x, int y) {
301   const rep_t rep = toRep(x);
302   int exp = (rep & exponentMask) >> significandBits;
303
304   if (x == 0.0 || exp == maxExponent)
305     return x; // +/- 0.0, NaN, or inf: return x
306
307   // Normalize subnormal input.
308   rep_t sig = rep & significandMask;
309   if (exp == 0) {
310     exp += normalize(&sig);
311     sig &= ~implicitBit; // clear the implicit bit again
312   }
313
314   if (__builtin_sadd_overflow(exp, y, &exp)) {
315     // Saturate the exponent, which will guarantee an underflow/overflow below.
316     exp = (y >= 0) ? INT_MAX : INT_MIN;
317   }
318
319   // Return this value: [+/-] 1.sig * 2 ** (exp - exponentBias).
320   const rep_t sign = rep & signBit;
321   if (exp >= maxExponent) {
322     // Overflow, which could produce infinity or the largest-magnitude value,
323     // depending on the rounding mode.
324     return fromRep(sign | ((rep_t)(maxExponent - 1) << significandBits)) * 2.0f;
325   } else if (exp <= 0) {
326     // Subnormal or underflow. Use floating-point multiply to handle truncation
327     // correctly.
328     fp_t tmp = fromRep(sign | (REP_C(1) << significandBits) | sig);
329     exp += exponentBias - 1;
330     if (exp < 1)
331       exp = 1;
332     tmp *= fromRep((rep_t)exp << significandBits);
333     return tmp;
334   } else
335     return fromRep(sign | ((rep_t)exp << significandBits) | sig);
336 }
337
338 #endif // !defined(QUAD_PRECISION) || defined(CRT_HAS_IEEE_TF)
339
340 // Avoid using fmax from libm.
341 static __inline fp_t __compiler_rt_fmaxX(fp_t x, fp_t y) {
342   // If either argument is NaN, return the other argument. If both are NaN,
343   // arbitrarily return the second one. Otherwise, if both arguments are +/-0,
344   // arbitrarily return the first one.
345   return (crt_isnan(x) || x < y) ? y : x;
346 }
347
348 #endif
349
350 #if defined(SINGLE_PRECISION)
351
352 static __inline fp_t __compiler_rt_logbf(fp_t x) {
353   return __compiler_rt_logbX(x);
354 }
355 static __inline fp_t __compiler_rt_scalbnf(fp_t x, int y) {
356   return __compiler_rt_scalbnX(x, y);
357 }
358 static __inline fp_t __compiler_rt_fmaxf(fp_t x, fp_t y) {
359 #if defined(__aarch64__)
360   // Use __builtin_fmaxf which turns into an fmaxnm instruction on AArch64.
361   return __builtin_fmaxf(x, y);
362 #else
363   // __builtin_fmaxf frequently turns into a libm call, so inline the function.
364   return __compiler_rt_fmaxX(x, y);
365 #endif
366 }
367
368 #elif defined(DOUBLE_PRECISION)
369
370 static __inline fp_t __compiler_rt_logb(fp_t x) {
371   return __compiler_rt_logbX(x);
372 }
373 static __inline fp_t __compiler_rt_scalbn(fp_t x, int y) {
374   return __compiler_rt_scalbnX(x, y);
375 }
376 static __inline fp_t __compiler_rt_fmax(fp_t x, fp_t y) {
377 #if defined(__aarch64__)
378   // Use __builtin_fmax which turns into an fmaxnm instruction on AArch64.
379   return __builtin_fmax(x, y);
380 #else
381   // __builtin_fmax frequently turns into a libm call, so inline the function.
382   return __compiler_rt_fmaxX(x, y);
383 #endif
384 }
385
386 #elif defined(QUAD_PRECISION) && defined(CRT_HAS_TF_MODE)
387 // The generic implementation only works for ieee754 floating point. For other
388 // floating point types, continue to rely on the libm implementation for now.
389 #if defined(CRT_HAS_IEEE_TF)
390 static __inline tf_float __compiler_rt_logbtf(tf_float x) {
391   return __compiler_rt_logbX(x);
392 }
393 static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) {
394   return __compiler_rt_scalbnX(x, y);
395 }
396 static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) {
397   return __compiler_rt_fmaxX(x, y);
398 }
399 #define __compiler_rt_logbl __compiler_rt_logbtf
400 #define __compiler_rt_scalbnl __compiler_rt_scalbntf
401 #define __compiler_rt_fmaxl __compiler_rt_fmaxtf
402 #define crt_fabstf crt_fabsf128
403 #define crt_copysigntf crt_copysignf128
404 #elif defined(CRT_LDBL_128BIT)
405 static __inline tf_float __compiler_rt_logbtf(tf_float x) {
406   return crt_logbl(x);
407 }
408 static __inline tf_float __compiler_rt_scalbntf(tf_float x, int y) {
409   return crt_scalbnl(x, y);
410 }
411 static __inline tf_float __compiler_rt_fmaxtf(tf_float x, tf_float y) {
412   return crt_fmaxl(x, y);
413 }
414 #define __compiler_rt_logbl crt_logbl
415 #define __compiler_rt_scalbnl crt_scalbnl
416 #define __compiler_rt_fmaxl crt_fmaxl
417 #define crt_fabstf crt_fabsl
418 #define crt_copysigntf crt_copysignl
419 #else
420 #error Unsupported TF mode type
421 #endif
422
423 #endif // *_PRECISION
424
425 #endif // FP_LIB_HEADER