]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/asan/asan_allocator.cc
Merging ^/head r279596 through r279758.
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / asan / asan_allocator.cc
1 //===-- asan_allocator.cc -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Implementation of ASan's memory allocator, 2-nd version.
13 // This variant uses the allocator from sanitizer_common, i.e. the one shared
14 // with ThreadSanitizer and MemorySanitizer.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "asan_allocator.h"
18
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "sanitizer_common/sanitizer_allocator_interface.h"
25 #include "sanitizer_common/sanitizer_flags.h"
26 #include "sanitizer_common/sanitizer_internal_defs.h"
27 #include "sanitizer_common/sanitizer_list.h"
28 #include "sanitizer_common/sanitizer_stackdepot.h"
29 #include "sanitizer_common/sanitizer_quarantine.h"
30 #include "lsan/lsan_common.h"
31
32 namespace __asan {
33
34 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
35 // We use adaptive redzones: for larger allocation larger redzones are used.
36 static u32 RZLog2Size(u32 rz_log) {
37   CHECK_LT(rz_log, 8);
38   return 16 << rz_log;
39 }
40
41 static u32 RZSize2Log(u32 rz_size) {
42   CHECK_GE(rz_size, 16);
43   CHECK_LE(rz_size, 2048);
44   CHECK(IsPowerOfTwo(rz_size));
45   u32 res = Log2(rz_size) - 4;
46   CHECK_EQ(rz_size, RZLog2Size(res));
47   return res;
48 }
49
50 static AsanAllocator &get_allocator();
51
52 // The memory chunk allocated from the underlying allocator looks like this:
53 // L L L L L L H H U U U U U U R R
54 //   L -- left redzone words (0 or more bytes)
55 //   H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
56 //   U -- user memory.
57 //   R -- right redzone (0 or more bytes)
58 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
59 // memory.
60
61 // If the left redzone is greater than the ChunkHeader size we store a magic
62 // value in the first uptr word of the memory block and store the address of
63 // ChunkBase in the next uptr.
64 // M B L L L L L L L L L  H H U U U U U U
65 //   |                    ^
66 //   ---------------------|
67 //   M -- magic value kAllocBegMagic
68 //   B -- address of ChunkHeader pointing to the first 'H'
69 static const uptr kAllocBegMagic = 0xCC6E96B9;
70
71 struct ChunkHeader {
72   // 1-st 8 bytes.
73   u32 chunk_state       : 8;  // Must be first.
74   u32 alloc_tid         : 24;
75
76   u32 free_tid          : 24;
77   u32 from_memalign     : 1;
78   u32 alloc_type        : 2;
79   u32 rz_log            : 3;
80   u32 lsan_tag          : 2;
81   // 2-nd 8 bytes
82   // This field is used for small sizes. For large sizes it is equal to
83   // SizeClassMap::kMaxSize and the actual size is stored in the
84   // SecondaryAllocator's metadata.
85   u32 user_requested_size;
86   u32 alloc_context_id;
87 };
88
89 struct ChunkBase : ChunkHeader {
90   // Header2, intersects with user memory.
91   u32 free_context_id;
92 };
93
94 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
95 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
96 COMPILER_CHECK(kChunkHeaderSize == 16);
97 COMPILER_CHECK(kChunkHeader2Size <= 16);
98
99 // Every chunk of memory allocated by this allocator can be in one of 3 states:
100 // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
101 // CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
102 // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
103 enum {
104   CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
105   CHUNK_ALLOCATED  = 2,
106   CHUNK_QUARANTINE = 3
107 };
108
109 struct AsanChunk: ChunkBase {
110   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
111   uptr UsedSize(bool locked_version = false) {
112     if (user_requested_size != SizeClassMap::kMaxSize)
113       return user_requested_size;
114     return *reinterpret_cast<uptr *>(
115                get_allocator().GetMetaData(AllocBeg(locked_version)));
116   }
117   void *AllocBeg(bool locked_version = false) {
118     if (from_memalign) {
119       if (locked_version)
120         return get_allocator().GetBlockBeginFastLocked(
121             reinterpret_cast<void *>(this));
122       return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
123     }
124     return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
125   }
126   bool AddrIsInside(uptr addr, bool locked_version = false) {
127     return (addr >= Beg()) && (addr < Beg() + UsedSize(locked_version));
128   }
129 };
130
131 struct QuarantineCallback {
132   explicit QuarantineCallback(AllocatorCache *cache)
133       : cache_(cache) {
134   }
135
136   void Recycle(AsanChunk *m) {
137     CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
138     atomic_store((atomic_uint8_t*)m, CHUNK_AVAILABLE, memory_order_relaxed);
139     CHECK_NE(m->alloc_tid, kInvalidTid);
140     CHECK_NE(m->free_tid, kInvalidTid);
141     PoisonShadow(m->Beg(),
142                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
143                  kAsanHeapLeftRedzoneMagic);
144     void *p = reinterpret_cast<void *>(m->AllocBeg());
145     if (p != m) {
146       uptr *alloc_magic = reinterpret_cast<uptr *>(p);
147       CHECK_EQ(alloc_magic[0], kAllocBegMagic);
148       // Clear the magic value, as allocator internals may overwrite the
149       // contents of deallocated chunk, confusing GetAsanChunk lookup.
150       alloc_magic[0] = 0;
151       CHECK_EQ(alloc_magic[1], reinterpret_cast<uptr>(m));
152     }
153
154     // Statistics.
155     AsanStats &thread_stats = GetCurrentThreadStats();
156     thread_stats.real_frees++;
157     thread_stats.really_freed += m->UsedSize();
158
159     get_allocator().Deallocate(cache_, p);
160   }
161
162   void *Allocate(uptr size) {
163     return get_allocator().Allocate(cache_, size, 1, false);
164   }
165
166   void Deallocate(void *p) {
167     get_allocator().Deallocate(cache_, p);
168   }
169
170   AllocatorCache *cache_;
171 };
172
173 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
174 typedef AsanQuarantine::Cache QuarantineCache;
175
176 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
177   PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
178   // Statistics.
179   AsanStats &thread_stats = GetCurrentThreadStats();
180   thread_stats.mmaps++;
181   thread_stats.mmaped += size;
182 }
183 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
184   PoisonShadow(p, size, 0);
185   // We are about to unmap a chunk of user memory.
186   // Mark the corresponding shadow memory as not needed.
187   FlushUnneededASanShadowMemory(p, size);
188   // Statistics.
189   AsanStats &thread_stats = GetCurrentThreadStats();
190   thread_stats.munmaps++;
191   thread_stats.munmaped += size;
192 }
193
194 // We can not use THREADLOCAL because it is not supported on some of the
195 // platforms we care about (OSX 10.6, Android).
196 // static THREADLOCAL AllocatorCache cache;
197 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
198   CHECK(ms);
199   return &ms->allocator_cache;
200 }
201
202 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
203   CHECK(ms);
204   CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
205   return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
206 }
207
208 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
209   quarantine_size_mb = f->quarantine_size_mb;
210   min_redzone = f->redzone;
211   max_redzone = f->max_redzone;
212   may_return_null = cf->allocator_may_return_null;
213   alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
214 }
215
216 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
217   f->quarantine_size_mb = quarantine_size_mb;
218   f->redzone = min_redzone;
219   f->max_redzone = max_redzone;
220   cf->allocator_may_return_null = may_return_null;
221   f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
222 }
223
224 struct Allocator {
225   static const uptr kMaxAllowedMallocSize =
226       FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
227   static const uptr kMaxThreadLocalQuarantine =
228       FIRST_32_SECOND_64(1 << 18, 1 << 20);
229
230   AsanAllocator allocator;
231   AsanQuarantine quarantine;
232   StaticSpinMutex fallback_mutex;
233   AllocatorCache fallback_allocator_cache;
234   QuarantineCache fallback_quarantine_cache;
235
236   // ------------------- Options --------------------------
237   atomic_uint16_t min_redzone;
238   atomic_uint16_t max_redzone;
239   atomic_uint8_t alloc_dealloc_mismatch;
240
241   // ------------------- Initialization ------------------------
242   explicit Allocator(LinkerInitialized)
243       : quarantine(LINKER_INITIALIZED),
244         fallback_quarantine_cache(LINKER_INITIALIZED) {}
245
246   void CheckOptions(const AllocatorOptions &options) const {
247     CHECK_GE(options.min_redzone, 16);
248     CHECK_GE(options.max_redzone, options.min_redzone);
249     CHECK_LE(options.max_redzone, 2048);
250     CHECK(IsPowerOfTwo(options.min_redzone));
251     CHECK(IsPowerOfTwo(options.max_redzone));
252   }
253
254   void SharedInitCode(const AllocatorOptions &options) {
255     CheckOptions(options);
256     quarantine.Init((uptr)options.quarantine_size_mb << 20,
257                     kMaxThreadLocalQuarantine);
258     atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
259                  memory_order_release);
260     atomic_store(&min_redzone, options.min_redzone, memory_order_release);
261     atomic_store(&max_redzone, options.max_redzone, memory_order_release);
262   }
263
264   void Initialize(const AllocatorOptions &options) {
265     allocator.Init(options.may_return_null);
266     SharedInitCode(options);
267   }
268
269   void ReInitialize(const AllocatorOptions &options) {
270     allocator.SetMayReturnNull(options.may_return_null);
271     SharedInitCode(options);
272   }
273
274   void GetOptions(AllocatorOptions *options) const {
275     options->quarantine_size_mb = quarantine.GetSize() >> 20;
276     options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
277     options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
278     options->may_return_null = allocator.MayReturnNull();
279     options->alloc_dealloc_mismatch =
280         atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
281   }
282
283   // -------------------- Helper methods. -------------------------
284   uptr ComputeRZLog(uptr user_requested_size) {
285     u32 rz_log =
286       user_requested_size <= 64        - 16   ? 0 :
287       user_requested_size <= 128       - 32   ? 1 :
288       user_requested_size <= 512       - 64   ? 2 :
289       user_requested_size <= 4096      - 128  ? 3 :
290       user_requested_size <= (1 << 14) - 256  ? 4 :
291       user_requested_size <= (1 << 15) - 512  ? 5 :
292       user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
293     u32 min_rz = atomic_load(&min_redzone, memory_order_acquire);
294     u32 max_rz = atomic_load(&max_redzone, memory_order_acquire);
295     return Min(Max(rz_log, RZSize2Log(min_rz)), RZSize2Log(max_rz));
296   }
297
298   // We have an address between two chunks, and we want to report just one.
299   AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
300                          AsanChunk *right_chunk) {
301     // Prefer an allocated chunk over freed chunk and freed chunk
302     // over available chunk.
303     if (left_chunk->chunk_state != right_chunk->chunk_state) {
304       if (left_chunk->chunk_state == CHUNK_ALLOCATED)
305         return left_chunk;
306       if (right_chunk->chunk_state == CHUNK_ALLOCATED)
307         return right_chunk;
308       if (left_chunk->chunk_state == CHUNK_QUARANTINE)
309         return left_chunk;
310       if (right_chunk->chunk_state == CHUNK_QUARANTINE)
311         return right_chunk;
312     }
313     // Same chunk_state: choose based on offset.
314     sptr l_offset = 0, r_offset = 0;
315     CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
316     CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
317     if (l_offset < r_offset)
318       return left_chunk;
319     return right_chunk;
320   }
321
322   // -------------------- Allocation/Deallocation routines ---------------
323   void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
324                  AllocType alloc_type, bool can_fill) {
325     if (UNLIKELY(!asan_inited))
326       AsanInitFromRtl();
327     Flags &fl = *flags();
328     CHECK(stack);
329     const uptr min_alignment = SHADOW_GRANULARITY;
330     if (alignment < min_alignment)
331       alignment = min_alignment;
332     if (size == 0) {
333       // We'd be happy to avoid allocating memory for zero-size requests, but
334       // some programs/tests depend on this behavior and assume that malloc
335       // would not return NULL even for zero-size allocations. Moreover, it
336       // looks like operator new should never return NULL, and results of
337       // consecutive "new" calls must be different even if the allocated size
338       // is zero.
339       size = 1;
340     }
341     CHECK(IsPowerOfTwo(alignment));
342     uptr rz_log = ComputeRZLog(size);
343     uptr rz_size = RZLog2Size(rz_log);
344     uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
345     uptr needed_size = rounded_size + rz_size;
346     if (alignment > min_alignment)
347       needed_size += alignment;
348     bool using_primary_allocator = true;
349     // If we are allocating from the secondary allocator, there will be no
350     // automatic right redzone, so add the right redzone manually.
351     if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
352       needed_size += rz_size;
353       using_primary_allocator = false;
354     }
355     CHECK(IsAligned(needed_size, min_alignment));
356     if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
357       Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
358              (void*)size);
359       return allocator.ReturnNullOrDie();
360     }
361
362     AsanThread *t = GetCurrentThread();
363     void *allocated;
364     bool check_rss_limit = true;
365     if (t) {
366       AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
367       allocated =
368           allocator.Allocate(cache, needed_size, 8, false, check_rss_limit);
369     } else {
370       SpinMutexLock l(&fallback_mutex);
371       AllocatorCache *cache = &fallback_allocator_cache;
372       allocated =
373           allocator.Allocate(cache, needed_size, 8, false, check_rss_limit);
374     }
375
376     if (!allocated)
377       return allocator.ReturnNullOrDie();
378
379     if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
380       // Heap poisoning is enabled, but the allocator provides an unpoisoned
381       // chunk. This is possible if CanPoisonMemory() was false for some
382       // time, for example, due to flags()->start_disabled.
383       // Anyway, poison the block before using it for anything else.
384       uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
385       PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
386     }
387
388     uptr alloc_beg = reinterpret_cast<uptr>(allocated);
389     uptr alloc_end = alloc_beg + needed_size;
390     uptr beg_plus_redzone = alloc_beg + rz_size;
391     uptr user_beg = beg_plus_redzone;
392     if (!IsAligned(user_beg, alignment))
393       user_beg = RoundUpTo(user_beg, alignment);
394     uptr user_end = user_beg + size;
395     CHECK_LE(user_end, alloc_end);
396     uptr chunk_beg = user_beg - kChunkHeaderSize;
397     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
398     m->alloc_type = alloc_type;
399     m->rz_log = rz_log;
400     u32 alloc_tid = t ? t->tid() : 0;
401     m->alloc_tid = alloc_tid;
402     CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
403     m->free_tid = kInvalidTid;
404     m->from_memalign = user_beg != beg_plus_redzone;
405     if (alloc_beg != chunk_beg) {
406       CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
407       reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
408       reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
409     }
410     if (using_primary_allocator) {
411       CHECK(size);
412       m->user_requested_size = size;
413       CHECK(allocator.FromPrimary(allocated));
414     } else {
415       CHECK(!allocator.FromPrimary(allocated));
416       m->user_requested_size = SizeClassMap::kMaxSize;
417       uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
418       meta[0] = size;
419       meta[1] = chunk_beg;
420     }
421
422     m->alloc_context_id = StackDepotPut(*stack);
423
424     uptr size_rounded_down_to_granularity =
425         RoundDownTo(size, SHADOW_GRANULARITY);
426     // Unpoison the bulk of the memory region.
427     if (size_rounded_down_to_granularity)
428       PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
429     // Deal with the end of the region if size is not aligned to granularity.
430     if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
431       u8 *shadow =
432           (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
433       *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
434     }
435
436     AsanStats &thread_stats = GetCurrentThreadStats();
437     thread_stats.mallocs++;
438     thread_stats.malloced += size;
439     thread_stats.malloced_redzones += needed_size - size;
440     uptr class_id =
441         Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
442     thread_stats.malloced_by_size[class_id]++;
443     if (needed_size > SizeClassMap::kMaxSize)
444       thread_stats.malloc_large++;
445
446     void *res = reinterpret_cast<void *>(user_beg);
447     if (can_fill && fl.max_malloc_fill_size) {
448       uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
449       REAL(memset)(res, fl.malloc_fill_byte, fill_size);
450     }
451 #if CAN_SANITIZE_LEAKS
452     m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
453                                                  : __lsan::kDirectlyLeaked;
454 #endif
455     // Must be the last mutation of metadata in this function.
456     atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
457     ASAN_MALLOC_HOOK(res, size);
458     return res;
459   }
460
461   void AtomicallySetQuarantineFlag(AsanChunk *m, void *ptr,
462                                    BufferedStackTrace *stack) {
463     u8 old_chunk_state = CHUNK_ALLOCATED;
464     // Flip the chunk_state atomically to avoid race on double-free.
465     if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
466                                         CHUNK_QUARANTINE, memory_order_acquire))
467       ReportInvalidFree(ptr, old_chunk_state, stack);
468     CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
469   }
470
471   // Expects the chunk to already be marked as quarantined by using
472   // AtomicallySetQuarantineFlag.
473   void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack,
474                        AllocType alloc_type) {
475     CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
476
477     if (m->alloc_type != alloc_type) {
478       if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
479         ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
480                                 (AllocType)alloc_type);
481       }
482     }
483
484     CHECK_GE(m->alloc_tid, 0);
485     if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
486       CHECK_EQ(m->free_tid, kInvalidTid);
487     AsanThread *t = GetCurrentThread();
488     m->free_tid = t ? t->tid() : 0;
489     m->free_context_id = StackDepotPut(*stack);
490     // Poison the region.
491     PoisonShadow(m->Beg(),
492                  RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
493                  kAsanHeapFreeMagic);
494
495     AsanStats &thread_stats = GetCurrentThreadStats();
496     thread_stats.frees++;
497     thread_stats.freed += m->UsedSize();
498
499     // Push into quarantine.
500     if (t) {
501       AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
502       AllocatorCache *ac = GetAllocatorCache(ms);
503       quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac), m,
504                            m->UsedSize());
505     } else {
506       SpinMutexLock l(&fallback_mutex);
507       AllocatorCache *ac = &fallback_allocator_cache;
508       quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac), m,
509                            m->UsedSize());
510     }
511   }
512
513   void Deallocate(void *ptr, uptr delete_size, BufferedStackTrace *stack,
514                   AllocType alloc_type) {
515     uptr p = reinterpret_cast<uptr>(ptr);
516     if (p == 0) return;
517
518     uptr chunk_beg = p - kChunkHeaderSize;
519     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
520     if (delete_size && flags()->new_delete_type_mismatch &&
521         delete_size != m->UsedSize()) {
522       ReportNewDeleteSizeMismatch(p, delete_size, stack);
523     }
524     ASAN_FREE_HOOK(ptr);
525     // Must mark the chunk as quarantined before any changes to its metadata.
526     AtomicallySetQuarantineFlag(m, ptr, stack);
527     QuarantineChunk(m, ptr, stack, alloc_type);
528   }
529
530   void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
531     CHECK(old_ptr && new_size);
532     uptr p = reinterpret_cast<uptr>(old_ptr);
533     uptr chunk_beg = p - kChunkHeaderSize;
534     AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
535
536     AsanStats &thread_stats = GetCurrentThreadStats();
537     thread_stats.reallocs++;
538     thread_stats.realloced += new_size;
539
540     void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
541     if (new_ptr) {
542       u8 chunk_state = m->chunk_state;
543       if (chunk_state != CHUNK_ALLOCATED)
544         ReportInvalidFree(old_ptr, chunk_state, stack);
545       CHECK_NE(REAL(memcpy), (void*)0);
546       uptr memcpy_size = Min(new_size, m->UsedSize());
547       // If realloc() races with free(), we may start copying freed memory.
548       // However, we will report racy double-free later anyway.
549       REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
550       Deallocate(old_ptr, 0, stack, FROM_MALLOC);
551     }
552     return new_ptr;
553   }
554
555   void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
556     if (CallocShouldReturnNullDueToOverflow(size, nmemb))
557       return allocator.ReturnNullOrDie();
558     void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
559     // If the memory comes from the secondary allocator no need to clear it
560     // as it comes directly from mmap.
561     if (ptr && allocator.FromPrimary(ptr))
562       REAL(memset)(ptr, 0, nmemb * size);
563     return ptr;
564   }
565
566   void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
567     if (chunk_state == CHUNK_QUARANTINE)
568       ReportDoubleFree((uptr)ptr, stack);
569     else
570       ReportFreeNotMalloced((uptr)ptr, stack);
571   }
572
573   void CommitBack(AsanThreadLocalMallocStorage *ms) {
574     AllocatorCache *ac = GetAllocatorCache(ms);
575     quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac));
576     allocator.SwallowCache(ac);
577   }
578
579   // -------------------------- Chunk lookup ----------------------
580
581   // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
582   AsanChunk *GetAsanChunk(void *alloc_beg) {
583     if (!alloc_beg) return 0;
584     if (!allocator.FromPrimary(alloc_beg)) {
585       uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
586       AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
587       return m;
588     }
589     uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
590     if (alloc_magic[0] == kAllocBegMagic)
591       return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
592     return reinterpret_cast<AsanChunk *>(alloc_beg);
593   }
594
595   AsanChunk *GetAsanChunkByAddr(uptr p) {
596     void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
597     return GetAsanChunk(alloc_beg);
598   }
599
600   // Allocator must be locked when this function is called.
601   AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
602     void *alloc_beg =
603         allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
604     return GetAsanChunk(alloc_beg);
605   }
606
607   uptr AllocationSize(uptr p) {
608     AsanChunk *m = GetAsanChunkByAddr(p);
609     if (!m) return 0;
610     if (m->chunk_state != CHUNK_ALLOCATED) return 0;
611     if (m->Beg() != p) return 0;
612     return m->UsedSize();
613   }
614
615   AsanChunkView FindHeapChunkByAddress(uptr addr) {
616     AsanChunk *m1 = GetAsanChunkByAddr(addr);
617     if (!m1) return AsanChunkView(m1);
618     sptr offset = 0;
619     if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
620       // The address is in the chunk's left redzone, so maybe it is actually
621       // a right buffer overflow from the other chunk to the left.
622       // Search a bit to the left to see if there is another chunk.
623       AsanChunk *m2 = 0;
624       for (uptr l = 1; l < GetPageSizeCached(); l++) {
625         m2 = GetAsanChunkByAddr(addr - l);
626         if (m2 == m1) continue;  // Still the same chunk.
627         break;
628       }
629       if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
630         m1 = ChooseChunk(addr, m2, m1);
631     }
632     return AsanChunkView(m1);
633   }
634
635   void PrintStats() {
636     allocator.PrintStats();
637   }
638
639   void ForceLock() {
640     allocator.ForceLock();
641     fallback_mutex.Lock();
642   }
643
644   void ForceUnlock() {
645     fallback_mutex.Unlock();
646     allocator.ForceUnlock();
647   }
648 };
649
650 static Allocator instance(LINKER_INITIALIZED);
651
652 static AsanAllocator &get_allocator() {
653   return instance.allocator;
654 }
655
656 bool AsanChunkView::IsValid() {
657   return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
658 }
659 uptr AsanChunkView::Beg() { return chunk_->Beg(); }
660 uptr AsanChunkView::End() { return Beg() + UsedSize(); }
661 uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
662 uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
663 uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
664
665 static StackTrace GetStackTraceFromId(u32 id) {
666   CHECK(id);
667   StackTrace res = StackDepotGet(id);
668   CHECK(res.trace);
669   return res;
670 }
671
672 StackTrace AsanChunkView::GetAllocStack() {
673   return GetStackTraceFromId(chunk_->alloc_context_id);
674 }
675
676 StackTrace AsanChunkView::GetFreeStack() {
677   return GetStackTraceFromId(chunk_->free_context_id);
678 }
679
680 void InitializeAllocator(const AllocatorOptions &options) {
681   instance.Initialize(options);
682 }
683
684 void ReInitializeAllocator(const AllocatorOptions &options) {
685   instance.ReInitialize(options);
686 }
687
688 void GetAllocatorOptions(AllocatorOptions *options) {
689   instance.GetOptions(options);
690 }
691
692 AsanChunkView FindHeapChunkByAddress(uptr addr) {
693   return instance.FindHeapChunkByAddress(addr);
694 }
695
696 void AsanThreadLocalMallocStorage::CommitBack() {
697   instance.CommitBack(this);
698 }
699
700 void PrintInternalAllocatorStats() {
701   instance.PrintStats();
702 }
703
704 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
705                     AllocType alloc_type) {
706   return instance.Allocate(size, alignment, stack, alloc_type, true);
707 }
708
709 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
710   instance.Deallocate(ptr, 0, stack, alloc_type);
711 }
712
713 void asan_sized_free(void *ptr, uptr size, BufferedStackTrace *stack,
714                      AllocType alloc_type) {
715   instance.Deallocate(ptr, size, stack, alloc_type);
716 }
717
718 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
719   return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
720 }
721
722 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
723   return instance.Calloc(nmemb, size, stack);
724 }
725
726 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
727   if (p == 0)
728     return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
729   if (size == 0) {
730     instance.Deallocate(p, 0, stack, FROM_MALLOC);
731     return 0;
732   }
733   return instance.Reallocate(p, size, stack);
734 }
735
736 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
737   return instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
738 }
739
740 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
741   uptr PageSize = GetPageSizeCached();
742   size = RoundUpTo(size, PageSize);
743   if (size == 0) {
744     // pvalloc(0) should allocate one page.
745     size = PageSize;
746   }
747   return instance.Allocate(size, PageSize, stack, FROM_MALLOC, true);
748 }
749
750 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
751                         BufferedStackTrace *stack) {
752   void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
753   CHECK(IsAligned((uptr)ptr, alignment));
754   *memptr = ptr;
755   return 0;
756 }
757
758 uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
759   if (ptr == 0) return 0;
760   uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
761   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
762     GET_STACK_TRACE_FATAL(pc, bp);
763     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
764   }
765   return usable_size;
766 }
767
768 uptr asan_mz_size(const void *ptr) {
769   return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
770 }
771
772 void asan_mz_force_lock() {
773   instance.ForceLock();
774 }
775
776 void asan_mz_force_unlock() {
777   instance.ForceUnlock();
778 }
779
780 void AsanSoftRssLimitExceededCallback(bool exceeded) {
781   instance.allocator.SetRssLimitIsExceeded(exceeded);
782 }
783
784 }  // namespace __asan
785
786 // --- Implementation of LSan-specific functions --- {{{1
787 namespace __lsan {
788 void LockAllocator() {
789   __asan::get_allocator().ForceLock();
790 }
791
792 void UnlockAllocator() {
793   __asan::get_allocator().ForceUnlock();
794 }
795
796 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
797   *begin = (uptr)&__asan::get_allocator();
798   *end = *begin + sizeof(__asan::get_allocator());
799 }
800
801 uptr PointsIntoChunk(void* p) {
802   uptr addr = reinterpret_cast<uptr>(p);
803   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
804   if (!m) return 0;
805   uptr chunk = m->Beg();
806   if (m->chunk_state != __asan::CHUNK_ALLOCATED)
807     return 0;
808   if (m->AddrIsInside(addr, /*locked_version=*/true))
809     return chunk;
810   if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(/*locked_version*/ true),
811                                   addr))
812     return chunk;
813   return 0;
814 }
815
816 uptr GetUserBegin(uptr chunk) {
817   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
818   CHECK(m);
819   return m->Beg();
820 }
821
822 LsanMetadata::LsanMetadata(uptr chunk) {
823   metadata_ = reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize);
824 }
825
826 bool LsanMetadata::allocated() const {
827   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
828   return m->chunk_state == __asan::CHUNK_ALLOCATED;
829 }
830
831 ChunkTag LsanMetadata::tag() const {
832   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
833   return static_cast<ChunkTag>(m->lsan_tag);
834 }
835
836 void LsanMetadata::set_tag(ChunkTag value) {
837   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
838   m->lsan_tag = value;
839 }
840
841 uptr LsanMetadata::requested_size() const {
842   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
843   return m->UsedSize(/*locked_version=*/true);
844 }
845
846 u32 LsanMetadata::stack_trace_id() const {
847   __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
848   return m->alloc_context_id;
849 }
850
851 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
852   __asan::get_allocator().ForEachChunk(callback, arg);
853 }
854
855 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
856   uptr addr = reinterpret_cast<uptr>(p);
857   __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
858   if (!m) return kIgnoreObjectInvalid;
859   if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
860     if (m->lsan_tag == kIgnored)
861       return kIgnoreObjectAlreadyIgnored;
862     m->lsan_tag = __lsan::kIgnored;
863     return kIgnoreObjectSuccess;
864   } else {
865     return kIgnoreObjectInvalid;
866   }
867 }
868 }  // namespace __lsan
869
870 // ---------------------- Interface ---------------- {{{1
871 using namespace __asan;  // NOLINT
872
873 // ASan allocator doesn't reserve extra bytes, so normally we would
874 // just return "size". We don't want to expose our redzone sizes, etc here.
875 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
876   return size;
877 }
878
879 int __sanitizer_get_ownership(const void *p) {
880   uptr ptr = reinterpret_cast<uptr>(p);
881   return instance.AllocationSize(ptr) > 0;
882 }
883
884 uptr __sanitizer_get_allocated_size(const void *p) {
885   if (p == 0) return 0;
886   uptr ptr = reinterpret_cast<uptr>(p);
887   uptr allocated_size = instance.AllocationSize(ptr);
888   // Die if p is not malloced or if it is already freed.
889   if (allocated_size == 0) {
890     GET_STACK_TRACE_FATAL_HERE;
891     ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
892   }
893   return allocated_size;
894 }
895
896 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
897 // Provide default (no-op) implementation of malloc hooks.
898 extern "C" {
899 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
900 void __sanitizer_malloc_hook(void *ptr, uptr size) {
901   (void)ptr;
902   (void)size;
903 }
904 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
905 void __sanitizer_free_hook(void *ptr) {
906   (void)ptr;
907 }
908 }  // extern "C"
909 #endif