]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/builtins/README.txt
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304149, and update
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / builtins / README.txt
1 Compiler-RT
2 ================================
3
4 This directory and its subdirectories contain source code for the compiler
5 support routines.
6
7 Compiler-RT is open source software. You may freely distribute it under the
8 terms of the license agreement found in LICENSE.txt.
9
10 ================================
11
12 This is a replacement library for libgcc.  Each function is contained
13 in its own file.  Each function has a corresponding unit test under
14 test/Unit.
15
16 A rudimentary script to test each file is in the file called
17 test/Unit/test.
18
19 Here is the specification for this library:
20
21 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc
22
23 Here is a synopsis of the contents of this library:
24
25 typedef      int si_int;
26 typedef unsigned su_int;
27
28 typedef          long long di_int;
29 typedef unsigned long long du_int;
30
31 // Integral bit manipulation
32
33 di_int __ashldi3(di_int a, si_int b);      // a << b
34 ti_int __ashlti3(ti_int a, si_int b);      // a << b
35
36 di_int __ashrdi3(di_int a, si_int b);      // a >> b  arithmetic (sign fill)
37 ti_int __ashrti3(ti_int a, si_int b);      // a >> b  arithmetic (sign fill)
38 di_int __lshrdi3(di_int a, si_int b);      // a >> b  logical    (zero fill)
39 ti_int __lshrti3(ti_int a, si_int b);      // a >> b  logical    (zero fill)
40
41 si_int __clzsi2(si_int a);  // count leading zeros
42 si_int __clzdi2(di_int a);  // count leading zeros
43 si_int __clzti2(ti_int a);  // count leading zeros
44 si_int __ctzsi2(si_int a);  // count trailing zeros
45 si_int __ctzdi2(di_int a);  // count trailing zeros
46 si_int __ctzti2(ti_int a);  // count trailing zeros
47
48 si_int __ffssi2(si_int a);  // find least significant 1 bit
49 si_int __ffsdi2(di_int a);  // find least significant 1 bit
50 si_int __ffsti2(ti_int a);  // find least significant 1 bit
51
52 si_int __paritysi2(si_int a);  // bit parity
53 si_int __paritydi2(di_int a);  // bit parity
54 si_int __parityti2(ti_int a);  // bit parity
55
56 si_int __popcountsi2(si_int a);  // bit population
57 si_int __popcountdi2(di_int a);  // bit population
58 si_int __popcountti2(ti_int a);  // bit population
59
60 uint32_t __bswapsi2(uint32_t a);   // a byteswapped
61 uint64_t __bswapdi2(uint64_t a);   // a byteswapped
62
63 // Integral arithmetic
64
65 di_int __negdi2    (di_int a);                         // -a
66 ti_int __negti2    (ti_int a);                         // -a
67 di_int __muldi3    (di_int a, di_int b);               // a * b
68 ti_int __multi3    (ti_int a, ti_int b);               // a * b
69 si_int __divsi3    (si_int a, si_int b);               // a / b   signed
70 di_int __divdi3    (di_int a, di_int b);               // a / b   signed
71 ti_int __divti3    (ti_int a, ti_int b);               // a / b   signed
72 su_int __udivsi3   (su_int n, su_int d);               // a / b   unsigned
73 du_int __udivdi3   (du_int a, du_int b);               // a / b   unsigned
74 tu_int __udivti3   (tu_int a, tu_int b);               // a / b   unsigned
75 si_int __modsi3    (si_int a, si_int b);               // a % b   signed
76 di_int __moddi3    (di_int a, di_int b);               // a % b   signed
77 ti_int __modti3    (ti_int a, ti_int b);               // a % b   signed
78 su_int __umodsi3   (su_int a, su_int b);               // a % b   unsigned
79 du_int __umoddi3   (du_int a, du_int b);               // a % b   unsigned
80 tu_int __umodti3   (tu_int a, tu_int b);               // a % b   unsigned
81 du_int __udivmoddi4(du_int a, du_int b, du_int* rem);  // a / b, *rem = a % b  unsigned
82 tu_int __udivmodti4(tu_int a, tu_int b, tu_int* rem);  // a / b, *rem = a % b  unsigned
83 su_int __udivmodsi4(su_int a, su_int b, su_int* rem);  // a / b, *rem = a % b  unsigned
84 si_int __divmodsi4(si_int a, si_int b, si_int* rem);   // a / b, *rem = a % b  signed
85
86
87
88 //  Integral arithmetic with trapping overflow
89
90 si_int __absvsi2(si_int a);           // abs(a)
91 di_int __absvdi2(di_int a);           // abs(a)
92 ti_int __absvti2(ti_int a);           // abs(a)
93
94 si_int __negvsi2(si_int a);           // -a
95 di_int __negvdi2(di_int a);           // -a
96 ti_int __negvti2(ti_int a);           // -a
97
98 si_int __addvsi3(si_int a, si_int b);  // a + b
99 di_int __addvdi3(di_int a, di_int b);  // a + b
100 ti_int __addvti3(ti_int a, ti_int b);  // a + b
101
102 si_int __subvsi3(si_int a, si_int b);  // a - b
103 di_int __subvdi3(di_int a, di_int b);  // a - b
104 ti_int __subvti3(ti_int a, ti_int b);  // a - b
105
106 si_int __mulvsi3(si_int a, si_int b);  // a * b
107 di_int __mulvdi3(di_int a, di_int b);  // a * b
108 ti_int __mulvti3(ti_int a, ti_int b);  // a * b
109
110
111 // Integral arithmetic which returns if overflow
112
113 si_int __mulosi4(si_int a, si_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
114 di_int __mulodi4(di_int a, di_int b, int* overflow);  // a * b, overflow set to one if result not in signed range
115 ti_int __muloti4(ti_int a, ti_int b, int* overflow);  // a * b, overflow set to
116  one if result not in signed range
117
118
119 //  Integral comparison: a  < b -> 0
120 //                       a == b -> 1
121 //                       a  > b -> 2
122
123 si_int __cmpdi2 (di_int a, di_int b);
124 si_int __cmpti2 (ti_int a, ti_int b);
125 si_int __ucmpdi2(du_int a, du_int b);
126 si_int __ucmpti2(tu_int a, tu_int b);
127
128 //  Integral / floating point conversion
129
130 di_int __fixsfdi(      float a);
131 di_int __fixdfdi(     double a);
132 di_int __fixxfdi(long double a);
133
134 ti_int __fixsfti(      float a);
135 ti_int __fixdfti(     double a);
136 ti_int __fixxfti(long double a);
137 uint64_t __fixtfdi(long double input);  // ppc only, doesn't match documentation
138
139 su_int __fixunssfsi(      float a);
140 su_int __fixunsdfsi(     double a);
141 su_int __fixunsxfsi(long double a);
142
143 du_int __fixunssfdi(      float a);
144 du_int __fixunsdfdi(     double a);
145 du_int __fixunsxfdi(long double a);
146
147 tu_int __fixunssfti(      float a);
148 tu_int __fixunsdfti(     double a);
149 tu_int __fixunsxfti(long double a);
150 uint64_t __fixunstfdi(long double input);  // ppc only
151
152 float       __floatdisf(di_int a);
153 double      __floatdidf(di_int a);
154 long double __floatdixf(di_int a);
155 long double __floatditf(int64_t a);        // ppc only
156
157 float       __floattisf(ti_int a);
158 double      __floattidf(ti_int a);
159 long double __floattixf(ti_int a);
160
161 float       __floatundisf(du_int a);
162 double      __floatundidf(du_int a);
163 long double __floatundixf(du_int a);
164 long double __floatunditf(uint64_t a);     // ppc only
165
166 float       __floatuntisf(tu_int a);
167 double      __floatuntidf(tu_int a);
168 long double __floatuntixf(tu_int a);
169
170 //  Floating point raised to integer power
171
172 float       __powisf2(      float a, si_int b);  // a ^ b
173 double      __powidf2(     double a, si_int b);  // a ^ b
174 long double __powixf2(long double a, si_int b);  // a ^ b
175 long double __powitf2(long double a, si_int b);  // ppc only, a ^ b
176
177 //  Complex arithmetic
178
179 //  (a + ib) * (c + id)
180
181       float _Complex __mulsc3( float a,  float b,  float c,  float d);
182      double _Complex __muldc3(double a, double b, double c, double d);
183 long double _Complex __mulxc3(long double a, long double b,
184                               long double c, long double d);
185 long double _Complex __multc3(long double a, long double b,
186                               long double c, long double d); // ppc only
187
188 //  (a + ib) / (c + id)
189
190       float _Complex __divsc3( float a,  float b,  float c,  float d);
191      double _Complex __divdc3(double a, double b, double c, double d);
192 long double _Complex __divxc3(long double a, long double b,
193                               long double c, long double d);
194 long double _Complex __divtc3(long double a, long double b,
195                               long double c, long double d);  // ppc only
196
197
198 //         Runtime support
199
200 // __clear_cache() is used to tell process that new instructions have been
201 // written to an address range.  Necessary on processors that do not have
202 // a unified instruction and data cache.
203 void __clear_cache(void* start, void* end);
204
205 // __enable_execute_stack() is used with nested functions when a trampoline
206 // function is written onto the stack and that page range needs to be made
207 // executable.
208 void __enable_execute_stack(void* addr);
209
210 // __gcc_personality_v0() is normally only called by the system unwinder.
211 // C code (as opposed to C++) normally does not need a personality function
212 // because there are no catch clauses or destructors to be run.  But there
213 // is a C language extension __attribute__((cleanup(func))) which marks local
214 // variables as needing the cleanup function "func" to be run when the
215 // variable goes out of scope.  That includes when an exception is thrown,
216 // so a personality handler is needed.  
217 _Unwind_Reason_Code __gcc_personality_v0(int version, _Unwind_Action actions,
218          uint64_t exceptionClass, struct _Unwind_Exception* exceptionObject,
219          _Unwind_Context_t context);
220
221 // for use with some implementations of assert() in <assert.h>
222 void __eprintf(const char* format, const char* assertion_expression,
223                                 const char* line, const char* file);
224
225 // for systems with emulated thread local storage
226 void* __emutls_get_address(struct __emutls_control*);
227
228
229 //   Power PC specific functions
230
231 // There is no C interface to the saveFP/restFP functions.  They are helper
232 // functions called by the prolog and epilog of functions that need to save
233 // a number of non-volatile float point registers.  
234 saveFP
235 restFP
236
237 // PowerPC has a standard template for trampoline functions.  This function
238 // generates a custom trampoline function with the specific realFunc
239 // and localsPtr values.
240 void __trampoline_setup(uint32_t* trampOnStack, int trampSizeAllocated, 
241                                 const void* realFunc, void* localsPtr);
242
243 // adds two 128-bit double-double precision values ( x + y )
244 long double __gcc_qadd(long double x, long double y);  
245
246 // subtracts two 128-bit double-double precision values ( x - y )
247 long double __gcc_qsub(long double x, long double y); 
248
249 // multiples two 128-bit double-double precision values ( x * y )
250 long double __gcc_qmul(long double x, long double y);  
251
252 // divides two 128-bit double-double precision values ( x / y )
253 long double __gcc_qdiv(long double a, long double b);  
254
255
256 //    ARM specific functions
257
258 // There is no C interface to the switch* functions.  These helper functions
259 // are only needed by Thumb1 code for efficient switch table generation.
260 switch16
261 switch32
262 switch8
263 switchu8
264
265 // There is no C interface to the *_vfp_d8_d15_regs functions.  There are
266 // called in the prolog and epilog of Thumb1 functions.  When the C++ ABI use
267 // SJLJ for exceptions, each function with a catch clause or destuctors needs
268 // to save and restore all registers in it prolog and epliog.  But there is 
269 // no way to access vector and high float registers from thumb1 code, so the 
270 // compiler must add call outs to these helper functions in the prolog and 
271 // epilog.
272 restore_vfp_d8_d15_regs
273 save_vfp_d8_d15_regs
274
275
276 // Note: long ago ARM processors did not have floating point hardware support.
277 // Floating point was done in software and floating point parameters were 
278 // passed in integer registers.  When hardware support was added for floating
279 // point, new *vfp functions were added to do the same operations but with 
280 // floating point parameters in floating point registers.
281
282 // Undocumented functions
283
284 float  __addsf3vfp(float a, float b);   // Appears to return a + b
285 double __adddf3vfp(double a, double b); // Appears to return a + b
286 float  __divsf3vfp(float a, float b);   // Appears to return a / b
287 double __divdf3vfp(double a, double b); // Appears to return a / b
288 int    __eqsf2vfp(float a, float b);    // Appears to return  one
289                                         //     iff a == b and neither is NaN.
290 int    __eqdf2vfp(double a, double b);  // Appears to return  one
291                                         //     iff a == b and neither is NaN.
292 double __extendsfdf2vfp(float a);       // Appears to convert from
293                                         //     float to double.
294 int    __fixdfsivfp(double a);          // Appears to convert from
295                                         //     double to int.
296 int    __fixsfsivfp(float a);           // Appears to convert from
297                                         //     float to int.
298 unsigned int __fixunssfsivfp(float a);  // Appears to convert from
299                                         //     float to unsigned int.
300 unsigned int __fixunsdfsivfp(double a); // Appears to convert from
301                                         //     double to unsigned int.
302 double __floatsidfvfp(int a);           // Appears to convert from
303                                         //     int to double.
304 float __floatsisfvfp(int a);            // Appears to convert from
305                                         //     int to float.
306 double __floatunssidfvfp(unsigned int a); // Appears to convert from
307                                         //     unisgned int to double.
308 float __floatunssisfvfp(unsigned int a); // Appears to convert from
309                                         //     unisgned int to float.
310 int __gedf2vfp(double a, double b);     // Appears to return __gedf2
311                                         //     (a >= b)
312 int __gesf2vfp(float a, float b);       // Appears to return __gesf2
313                                         //     (a >= b)
314 int __gtdf2vfp(double a, double b);     // Appears to return __gtdf2
315                                         //     (a > b)
316 int __gtsf2vfp(float a, float b);       // Appears to return __gtsf2
317                                         //     (a > b)
318 int __ledf2vfp(double a, double b);     // Appears to return __ledf2
319                                         //     (a <= b)
320 int __lesf2vfp(float a, float b);       // Appears to return __lesf2
321                                         //     (a <= b)
322 int __ltdf2vfp(double a, double b);     // Appears to return __ltdf2
323                                         //     (a < b)
324 int __ltsf2vfp(float a, float b);       // Appears to return __ltsf2
325                                         //     (a < b)
326 double __muldf3vfp(double a, double b); // Appears to return a * b
327 float __mulsf3vfp(float a, float b);    // Appears to return a * b
328 int __nedf2vfp(double a, double b);     // Appears to return __nedf2
329                                         //     (a != b)
330 double __negdf2vfp(double a);           // Appears to return -a
331 float __negsf2vfp(float a);             // Appears to return -a
332 float __negsf2vfp(float a);             // Appears to return -a
333 double __subdf3vfp(double a, double b); // Appears to return a - b
334 float __subsf3vfp(float a, float b);    // Appears to return a - b
335 float __truncdfsf2vfp(double a);        // Appears to convert from
336                                         //     double to float.
337 int __unorddf2vfp(double a, double b);  // Appears to return __unorddf2
338 int __unordsf2vfp(float a, float b);    // Appears to return __unordsf2
339
340
341 Preconditions are listed for each function at the definition when there are any.
342 Any preconditions reflect the specification at
343 http://gcc.gnu.org/onlinedocs/gccint/Libgcc.html#Libgcc.
344
345 Assumptions are listed in "int_lib.h", and in individual files.  Where possible
346 assumptions are checked at compile time.