]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/lsan/lsan_allocator.cc
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / lsan / lsan_allocator.cc
1 //=-- lsan_allocator.cc ---------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // See lsan_allocator.h for details.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_allocator.h"
16
17 #include "sanitizer_common/sanitizer_allocator.h"
18 #include "sanitizer_common/sanitizer_allocator_checks.h"
19 #include "sanitizer_common/sanitizer_allocator_interface.h"
20 #include "sanitizer_common/sanitizer_allocator_report.h"
21 #include "sanitizer_common/sanitizer_errno.h"
22 #include "sanitizer_common/sanitizer_internal_defs.h"
23 #include "sanitizer_common/sanitizer_stackdepot.h"
24 #include "sanitizer_common/sanitizer_stacktrace.h"
25 #include "lsan_common.h"
26
27 extern "C" void *memset(void *ptr, int value, uptr num);
28
29 namespace __lsan {
30 #if defined(__i386__) || defined(__arm__)
31 static const uptr kMaxAllowedMallocSize = 1UL << 30;
32 #elif defined(__mips64) || defined(__aarch64__)
33 static const uptr kMaxAllowedMallocSize = 4UL << 30;
34 #else
35 static const uptr kMaxAllowedMallocSize = 8UL << 30;
36 #endif
37 typedef LargeMmapAllocator<> SecondaryAllocator;
38 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
39           SecondaryAllocator> Allocator;
40
41 static Allocator allocator;
42
43 void InitializeAllocator() {
44   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
45   allocator.InitLinkerInitialized(
46       common_flags()->allocator_release_to_os_interval_ms);
47 }
48
49 void AllocatorThreadFinish() {
50   allocator.SwallowCache(GetAllocatorCache());
51 }
52
53 static ChunkMetadata *Metadata(const void *p) {
54   return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
55 }
56
57 static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
58   if (!p) return;
59   ChunkMetadata *m = Metadata(p);
60   CHECK(m);
61   m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
62   m->stack_trace_id = StackDepotPut(stack);
63   m->requested_size = size;
64   atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
65 }
66
67 static void RegisterDeallocation(void *p) {
68   if (!p) return;
69   ChunkMetadata *m = Metadata(p);
70   CHECK(m);
71   atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
72 }
73
74 static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
75   if (AllocatorMayReturnNull()) {
76     Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
77     return nullptr;
78   }
79   ReportAllocationSizeTooBig(size, kMaxAllowedMallocSize, &stack);
80 }
81
82 void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
83                bool cleared) {
84   if (size == 0)
85     size = 1;
86   if (size > kMaxAllowedMallocSize)
87     return ReportAllocationSizeTooBig(size, stack);
88   void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
89   if (UNLIKELY(!p)) {
90     SetAllocatorOutOfMemory();
91     if (AllocatorMayReturnNull())
92       return nullptr;
93     ReportOutOfMemory(size, &stack);
94   }
95   // Do not rely on the allocator to clear the memory (it's slow).
96   if (cleared && allocator.FromPrimary(p))
97     memset(p, 0, size);
98   RegisterAllocation(stack, p, size);
99   if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(p, size);
100   RunMallocHooks(p, size);
101   return p;
102 }
103
104 static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
105   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
106     if (AllocatorMayReturnNull())
107       return nullptr;
108     ReportCallocOverflow(nmemb, size, &stack);
109   }
110   size *= nmemb;
111   return Allocate(stack, size, 1, true);
112 }
113
114 void Deallocate(void *p) {
115   if (&__sanitizer_free_hook) __sanitizer_free_hook(p);
116   RunFreeHooks(p);
117   RegisterDeallocation(p);
118   allocator.Deallocate(GetAllocatorCache(), p);
119 }
120
121 void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
122                  uptr alignment) {
123   RegisterDeallocation(p);
124   if (new_size > kMaxAllowedMallocSize) {
125     allocator.Deallocate(GetAllocatorCache(), p);
126     return ReportAllocationSizeTooBig(new_size, stack);
127   }
128   p = allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
129   RegisterAllocation(stack, p, new_size);
130   return p;
131 }
132
133 void GetAllocatorCacheRange(uptr *begin, uptr *end) {
134   *begin = (uptr)GetAllocatorCache();
135   *end = *begin + sizeof(AllocatorCache);
136 }
137
138 uptr GetMallocUsableSize(const void *p) {
139   ChunkMetadata *m = Metadata(p);
140   if (!m) return 0;
141   return m->requested_size;
142 }
143
144 int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
145                         const StackTrace &stack) {
146   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
147     if (AllocatorMayReturnNull())
148       return errno_EINVAL;
149     ReportInvalidPosixMemalignAlignment(alignment, &stack);
150   }
151   void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
152   if (UNLIKELY(!ptr))
153     // OOM error is already taken care of by Allocate.
154     return errno_ENOMEM;
155   CHECK(IsAligned((uptr)ptr, alignment));
156   *memptr = ptr;
157   return 0;
158 }
159
160 void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
161   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
162     errno = errno_EINVAL;
163     if (AllocatorMayReturnNull())
164       return nullptr;
165     ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
166   }
167   return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
168 }
169
170 void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
171   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
172     errno = errno_EINVAL;
173     if (AllocatorMayReturnNull())
174       return nullptr;
175     ReportInvalidAllocationAlignment(alignment, &stack);
176   }
177   return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
178 }
179
180 void *lsan_malloc(uptr size, const StackTrace &stack) {
181   return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
182 }
183
184 void lsan_free(void *p) {
185   Deallocate(p);
186 }
187
188 void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
189   return SetErrnoOnNull(Reallocate(stack, p, size, 1));
190 }
191
192 void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
193   return SetErrnoOnNull(Calloc(nmemb, size, stack));
194 }
195
196 void *lsan_valloc(uptr size, const StackTrace &stack) {
197   return SetErrnoOnNull(
198       Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
199 }
200
201 void *lsan_pvalloc(uptr size, const StackTrace &stack) {
202   uptr PageSize = GetPageSizeCached();
203   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
204     errno = errno_ENOMEM;
205     if (AllocatorMayReturnNull())
206       return nullptr;
207     ReportPvallocOverflow(size, &stack);
208   }
209   // pvalloc(0) should allocate one page.
210   size = size ? RoundUpTo(size, PageSize) : PageSize;
211   return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
212 }
213
214 uptr lsan_mz_size(const void *p) {
215   return GetMallocUsableSize(p);
216 }
217
218 ///// Interface to the common LSan module. /////
219
220 void LockAllocator() {
221   allocator.ForceLock();
222 }
223
224 void UnlockAllocator() {
225   allocator.ForceUnlock();
226 }
227
228 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
229   *begin = (uptr)&allocator;
230   *end = *begin + sizeof(allocator);
231 }
232
233 uptr PointsIntoChunk(void* p) {
234   uptr addr = reinterpret_cast<uptr>(p);
235   uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
236   if (!chunk) return 0;
237   // LargeMmapAllocator considers pointers to the meta-region of a chunk to be
238   // valid, but we don't want that.
239   if (addr < chunk) return 0;
240   ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
241   CHECK(m);
242   if (!m->allocated)
243     return 0;
244   if (addr < chunk + m->requested_size)
245     return chunk;
246   if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
247     return chunk;
248   return 0;
249 }
250
251 uptr GetUserBegin(uptr chunk) {
252   return chunk;
253 }
254
255 LsanMetadata::LsanMetadata(uptr chunk) {
256   metadata_ = Metadata(reinterpret_cast<void *>(chunk));
257   CHECK(metadata_);
258 }
259
260 bool LsanMetadata::allocated() const {
261   return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
262 }
263
264 ChunkTag LsanMetadata::tag() const {
265   return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
266 }
267
268 void LsanMetadata::set_tag(ChunkTag value) {
269   reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
270 }
271
272 uptr LsanMetadata::requested_size() const {
273   return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
274 }
275
276 u32 LsanMetadata::stack_trace_id() const {
277   return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
278 }
279
280 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
281   allocator.ForEachChunk(callback, arg);
282 }
283
284 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
285   void *chunk = allocator.GetBlockBegin(p);
286   if (!chunk || p < chunk) return kIgnoreObjectInvalid;
287   ChunkMetadata *m = Metadata(chunk);
288   CHECK(m);
289   if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
290     if (m->tag == kIgnored)
291       return kIgnoreObjectAlreadyIgnored;
292     m->tag = kIgnored;
293     return kIgnoreObjectSuccess;
294   } else {
295     return kIgnoreObjectInvalid;
296   }
297 }
298 } // namespace __lsan
299
300 using namespace __lsan;
301
302 extern "C" {
303 SANITIZER_INTERFACE_ATTRIBUTE
304 uptr __sanitizer_get_current_allocated_bytes() {
305   uptr stats[AllocatorStatCount];
306   allocator.GetStats(stats);
307   return stats[AllocatorStatAllocated];
308 }
309
310 SANITIZER_INTERFACE_ATTRIBUTE
311 uptr __sanitizer_get_heap_size() {
312   uptr stats[AllocatorStatCount];
313   allocator.GetStats(stats);
314   return stats[AllocatorStatMapped];
315 }
316
317 SANITIZER_INTERFACE_ATTRIBUTE
318 uptr __sanitizer_get_free_bytes() { return 0; }
319
320 SANITIZER_INTERFACE_ATTRIBUTE
321 uptr __sanitizer_get_unmapped_bytes() { return 0; }
322
323 SANITIZER_INTERFACE_ATTRIBUTE
324 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
325
326 SANITIZER_INTERFACE_ATTRIBUTE
327 int __sanitizer_get_ownership(const void *p) { return Metadata(p) != nullptr; }
328
329 SANITIZER_INTERFACE_ATTRIBUTE
330 uptr __sanitizer_get_allocated_size(const void *p) {
331   return GetMallocUsableSize(p);
332 }
333
334 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
335 // Provide default (no-op) implementation of malloc hooks.
336 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
337 void __sanitizer_malloc_hook(void *ptr, uptr size) {
338   (void)ptr;
339   (void)size;
340 }
341 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
342 void __sanitizer_free_hook(void *ptr) {
343   (void)ptr;
344 }
345 #endif
346 } // extern "C"