]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/sanitizer_common/sanitizer_allocator.h
MFV: r277654
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / sanitizer_common / sanitizer_allocator.h
1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef SANITIZER_ALLOCATOR_H
15 #define SANITIZER_ALLOCATOR_H
16
17 #include "sanitizer_internal_defs.h"
18 #include "sanitizer_common.h"
19 #include "sanitizer_libc.h"
20 #include "sanitizer_list.h"
21 #include "sanitizer_mutex.h"
22 #include "sanitizer_lfstack.h"
23
24 namespace __sanitizer {
25
26 // Depending on allocator_may_return_null either return 0 or crash.
27 void *AllocatorReturnNull();
28
29 // SizeClassMap maps allocation sizes into size classes and back.
30 // Class 0 corresponds to size 0.
31 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
32 // Next 4 classes: 256 + i * 64  (i = 1 to 4).
33 // Next 4 classes: 512 + i * 128 (i = 1 to 4).
34 // ...
35 // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4).
36 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
37 //
38 // This structure of the size class map gives us:
39 //   - Efficient table-free class-to-size and size-to-class functions.
40 //   - Difference between two consequent size classes is betweed 14% and 25%
41 //
42 // This class also gives a hint to a thread-caching allocator about the amount
43 // of chunks that need to be cached per-thread:
44 //  - kMaxNumCached is the maximal number of chunks per size class.
45 //  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
46 //
47 // Part of output of SizeClassMap::Print():
48 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
49 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
50 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
51 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
52 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
53 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
54 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
55 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
56 //
57 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
58 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
59 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
60 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
61 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
62 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
63 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
64 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
65 //
66 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
67 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17
68 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18
69 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19
70 //
71 // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20
72 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21
73 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22
74 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23
75 //
76 // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24
77 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25
78 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26
79 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27
80 //
81 // ...
82 //
83 // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48
84 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49
85 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50
86 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51
87 //
88 // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52
89
90 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog>
91 class SizeClassMap {
92   static const uptr kMinSizeLog = 4;
93   static const uptr kMidSizeLog = kMinSizeLog + 4;
94   static const uptr kMinSize = 1 << kMinSizeLog;
95   static const uptr kMidSize = 1 << kMidSizeLog;
96   static const uptr kMidClass = kMidSize / kMinSize;
97   static const uptr S = 2;
98   static const uptr M = (1 << S) - 1;
99
100  public:
101   static const uptr kMaxNumCached = kMaxNumCachedT;
102   // We transfer chunks between central and thread-local free lists in batches.
103   // For small size classes we allocate batches separately.
104   // For large size classes we use one of the chunks to store the batch.
105   struct TransferBatch {
106     TransferBatch *next;
107     uptr count;
108     void *batch[kMaxNumCached];
109   };
110
111   static const uptr kMaxSize = 1UL << kMaxSizeLog;
112   static const uptr kNumClasses =
113       kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
114   COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
115   static const uptr kNumClassesRounded =
116       kNumClasses == 32  ? 32 :
117       kNumClasses <= 64  ? 64 :
118       kNumClasses <= 128 ? 128 : 256;
119
120   static uptr Size(uptr class_id) {
121     if (class_id <= kMidClass)
122       return kMinSize * class_id;
123     class_id -= kMidClass;
124     uptr t = kMidSize << (class_id >> S);
125     return t + (t >> S) * (class_id & M);
126   }
127
128   static uptr ClassID(uptr size) {
129     if (size <= kMidSize)
130       return (size + kMinSize - 1) >> kMinSizeLog;
131     if (size > kMaxSize) return 0;
132     uptr l = MostSignificantSetBitIndex(size);
133     uptr hbits = (size >> (l - S)) & M;
134     uptr lbits = size & ((1 << (l - S)) - 1);
135     uptr l1 = l - kMidSizeLog;
136     return kMidClass + (l1 << S) + hbits + (lbits > 0);
137   }
138
139   static uptr MaxCached(uptr class_id) {
140     if (class_id == 0) return 0;
141     uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
142     return Max<uptr>(1, Min(kMaxNumCached, n));
143   }
144
145   static void Print() {
146     uptr prev_s = 0;
147     uptr total_cached = 0;
148     for (uptr i = 0; i < kNumClasses; i++) {
149       uptr s = Size(i);
150       if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
151         Printf("\n");
152       uptr d = s - prev_s;
153       uptr p = prev_s ? (d * 100 / prev_s) : 0;
154       uptr l = s ? MostSignificantSetBitIndex(s) : 0;
155       uptr cached = MaxCached(i) * s;
156       Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
157              "cached: %zd %zd; id %zd\n",
158              i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
159       total_cached += cached;
160       prev_s = s;
161     }
162     Printf("Total cached: %zd\n", total_cached);
163   }
164
165   static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) {
166     return Size(class_id) < sizeof(TransferBatch) -
167         sizeof(uptr) * (kMaxNumCached - MaxCached(class_id));
168   }
169
170   static void Validate() {
171     for (uptr c = 1; c < kNumClasses; c++) {
172       // Printf("Validate: c%zd\n", c);
173       uptr s = Size(c);
174       CHECK_NE(s, 0U);
175       CHECK_EQ(ClassID(s), c);
176       if (c != kNumClasses - 1)
177         CHECK_EQ(ClassID(s + 1), c + 1);
178       CHECK_EQ(ClassID(s - 1), c);
179       if (c)
180         CHECK_GT(Size(c), Size(c-1));
181     }
182     CHECK_EQ(ClassID(kMaxSize + 1), 0);
183
184     for (uptr s = 1; s <= kMaxSize; s++) {
185       uptr c = ClassID(s);
186       // Printf("s%zd => c%zd\n", s, c);
187       CHECK_LT(c, kNumClasses);
188       CHECK_GE(Size(c), s);
189       if (c > 0)
190         CHECK_LT(Size(c-1), s);
191     }
192   }
193 };
194
195 typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap;
196 typedef SizeClassMap<17, 64,  14> CompactSizeClassMap;
197 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
198
199 // Memory allocator statistics
200 enum AllocatorStat {
201   AllocatorStatAllocated,
202   AllocatorStatMapped,
203   AllocatorStatCount
204 };
205
206 typedef uptr AllocatorStatCounters[AllocatorStatCount];
207
208 // Per-thread stats, live in per-thread cache.
209 class AllocatorStats {
210  public:
211   void Init() {
212     internal_memset(this, 0, sizeof(*this));
213   }
214
215   void Add(AllocatorStat i, uptr v) {
216     v += atomic_load(&stats_[i], memory_order_relaxed);
217     atomic_store(&stats_[i], v, memory_order_relaxed);
218   }
219
220   void Sub(AllocatorStat i, uptr v) {
221     v = atomic_load(&stats_[i], memory_order_relaxed) - v;
222     atomic_store(&stats_[i], v, memory_order_relaxed);
223   }
224
225   void Set(AllocatorStat i, uptr v) {
226     atomic_store(&stats_[i], v, memory_order_relaxed);
227   }
228
229   uptr Get(AllocatorStat i) const {
230     return atomic_load(&stats_[i], memory_order_relaxed);
231   }
232
233  private:
234   friend class AllocatorGlobalStats;
235   AllocatorStats *next_;
236   AllocatorStats *prev_;
237   atomic_uintptr_t stats_[AllocatorStatCount];
238 };
239
240 // Global stats, used for aggregation and querying.
241 class AllocatorGlobalStats : public AllocatorStats {
242  public:
243   void Init() {
244     internal_memset(this, 0, sizeof(*this));
245     next_ = this;
246     prev_ = this;
247   }
248
249   void Register(AllocatorStats *s) {
250     SpinMutexLock l(&mu_);
251     s->next_ = next_;
252     s->prev_ = this;
253     next_->prev_ = s;
254     next_ = s;
255   }
256
257   void Unregister(AllocatorStats *s) {
258     SpinMutexLock l(&mu_);
259     s->prev_->next_ = s->next_;
260     s->next_->prev_ = s->prev_;
261     for (int i = 0; i < AllocatorStatCount; i++)
262       Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
263   }
264
265   void Get(AllocatorStatCounters s) const {
266     internal_memset(s, 0, AllocatorStatCount * sizeof(uptr));
267     SpinMutexLock l(&mu_);
268     const AllocatorStats *stats = this;
269     for (;;) {
270       for (int i = 0; i < AllocatorStatCount; i++)
271         s[i] += stats->Get(AllocatorStat(i));
272       stats = stats->next_;
273       if (stats == this)
274         break;
275     }
276     // All stats must be non-negative.
277     for (int i = 0; i < AllocatorStatCount; i++)
278       s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0;
279   }
280
281  private:
282   mutable SpinMutex mu_;
283 };
284
285 // Allocators call these callbacks on mmap/munmap.
286 struct NoOpMapUnmapCallback {
287   void OnMap(uptr p, uptr size) const { }
288   void OnUnmap(uptr p, uptr size) const { }
289 };
290
291 // Callback type for iterating over chunks.
292 typedef void (*ForEachChunkCallback)(uptr chunk, void *arg);
293
294 // SizeClassAllocator64 -- allocator for 64-bit address space.
295 //
296 // Space: a portion of address space of kSpaceSize bytes starting at
297 // a fixed address (kSpaceBeg). Both constants are powers of two and
298 // kSpaceBeg is kSpaceSize-aligned.
299 // At the beginning the entire space is mprotect-ed, then small parts of it
300 // are mapped on demand.
301 //
302 // Region: a part of Space dedicated to a single size class.
303 // There are kNumClasses Regions of equal size.
304 //
305 // UserChunk: a piece of memory returned to user.
306 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
307 //
308 // A Region looks like this:
309 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
310 template <const uptr kSpaceBeg, const uptr kSpaceSize,
311           const uptr kMetadataSize, class SizeClassMap,
312           class MapUnmapCallback = NoOpMapUnmapCallback>
313 class SizeClassAllocator64 {
314  public:
315   typedef typename SizeClassMap::TransferBatch Batch;
316   typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
317       SizeClassMap, MapUnmapCallback> ThisT;
318   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
319
320   void Init() {
321     CHECK_EQ(kSpaceBeg,
322              reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
323     MapWithCallback(kSpaceEnd, AdditionalSize());
324   }
325
326   void MapWithCallback(uptr beg, uptr size) {
327     CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
328     MapUnmapCallback().OnMap(beg, size);
329   }
330
331   void UnmapWithCallback(uptr beg, uptr size) {
332     MapUnmapCallback().OnUnmap(beg, size);
333     UnmapOrDie(reinterpret_cast<void *>(beg), size);
334   }
335
336   static bool CanAllocate(uptr size, uptr alignment) {
337     return size <= SizeClassMap::kMaxSize &&
338       alignment <= SizeClassMap::kMaxSize;
339   }
340
341   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
342                                 uptr class_id) {
343     CHECK_LT(class_id, kNumClasses);
344     RegionInfo *region = GetRegionInfo(class_id);
345     Batch *b = region->free_list.Pop();
346     if (b == 0)
347       b = PopulateFreeList(stat, c, class_id, region);
348     region->n_allocated += b->count;
349     return b;
350   }
351
352   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
353     RegionInfo *region = GetRegionInfo(class_id);
354     CHECK_GT(b->count, 0);
355     region->free_list.Push(b);
356     region->n_freed += b->count;
357   }
358
359   static bool PointerIsMine(const void *p) {
360     return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
361   }
362
363   static uptr GetSizeClass(const void *p) {
364     return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
365   }
366
367   void *GetBlockBegin(const void *p) {
368     uptr class_id = GetSizeClass(p);
369     uptr size = SizeClassMap::Size(class_id);
370     if (!size) return 0;
371     uptr chunk_idx = GetChunkIdx((uptr)p, size);
372     uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
373     uptr beg = chunk_idx * size;
374     uptr next_beg = beg + size;
375     if (class_id >= kNumClasses) return 0;
376     RegionInfo *region = GetRegionInfo(class_id);
377     if (region->mapped_user >= next_beg)
378       return reinterpret_cast<void*>(reg_beg + beg);
379     return 0;
380   }
381
382   static uptr GetActuallyAllocatedSize(void *p) {
383     CHECK(PointerIsMine(p));
384     return SizeClassMap::Size(GetSizeClass(p));
385   }
386
387   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
388
389   void *GetMetaData(const void *p) {
390     uptr class_id = GetSizeClass(p);
391     uptr size = SizeClassMap::Size(class_id);
392     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
393     return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
394                                    (1 + chunk_idx) * kMetadataSize);
395   }
396
397   uptr TotalMemoryUsed() {
398     uptr res = 0;
399     for (uptr i = 0; i < kNumClasses; i++)
400       res += GetRegionInfo(i)->allocated_user;
401     return res;
402   }
403
404   // Test-only.
405   void TestOnlyUnmap() {
406     UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
407   }
408
409   void PrintStats() {
410     uptr total_mapped = 0;
411     uptr n_allocated = 0;
412     uptr n_freed = 0;
413     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
414       RegionInfo *region = GetRegionInfo(class_id);
415       total_mapped += region->mapped_user;
416       n_allocated += region->n_allocated;
417       n_freed += region->n_freed;
418     }
419     Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
420            "remains %zd\n",
421            total_mapped >> 20, n_allocated, n_allocated - n_freed);
422     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
423       RegionInfo *region = GetRegionInfo(class_id);
424       if (region->mapped_user == 0) continue;
425       Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
426              class_id,
427              SizeClassMap::Size(class_id),
428              region->mapped_user >> 10,
429              region->n_allocated,
430              region->n_allocated - region->n_freed);
431     }
432   }
433
434   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
435   // introspection API.
436   void ForceLock() {
437     for (uptr i = 0; i < kNumClasses; i++) {
438       GetRegionInfo(i)->mutex.Lock();
439     }
440   }
441
442   void ForceUnlock() {
443     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
444       GetRegionInfo(i)->mutex.Unlock();
445     }
446   }
447
448   // Iterate over all existing chunks.
449   // The allocator must be locked when calling this function.
450   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
451     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
452       RegionInfo *region = GetRegionInfo(class_id);
453       uptr chunk_size = SizeClassMap::Size(class_id);
454       uptr region_beg = kSpaceBeg + class_id * kRegionSize;
455       for (uptr chunk = region_beg;
456            chunk < region_beg + region->allocated_user;
457            chunk += chunk_size) {
458         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
459         callback(chunk, arg);
460       }
461     }
462   }
463
464   static uptr AdditionalSize() {
465     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
466                      GetPageSizeCached());
467   }
468
469   typedef SizeClassMap SizeClassMapT;
470   static const uptr kNumClasses = SizeClassMap::kNumClasses;
471   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
472
473  private:
474   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
475   static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
476   COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
477   // kRegionSize must be >= 2^32.
478   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
479   // Populate the free list with at most this number of bytes at once
480   // or with one element if its size is greater.
481   static const uptr kPopulateSize = 1 << 14;
482   // Call mmap for user memory with at least this size.
483   static const uptr kUserMapSize = 1 << 16;
484   // Call mmap for metadata memory with at least this size.
485   static const uptr kMetaMapSize = 1 << 16;
486
487   struct RegionInfo {
488     BlockingMutex mutex;
489     LFStack<Batch> free_list;
490     uptr allocated_user;  // Bytes allocated for user memory.
491     uptr allocated_meta;  // Bytes allocated for metadata.
492     uptr mapped_user;  // Bytes mapped for user memory.
493     uptr mapped_meta;  // Bytes mapped for metadata.
494     uptr n_allocated, n_freed;  // Just stats.
495   };
496   COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
497
498   RegionInfo *GetRegionInfo(uptr class_id) {
499     CHECK_LT(class_id, kNumClasses);
500     RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
501     return &regions[class_id];
502   }
503
504   static uptr GetChunkIdx(uptr chunk, uptr size) {
505     uptr offset = chunk % kRegionSize;
506     // Here we divide by a non-constant. This is costly.
507     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
508     if (offset >> (SANITIZER_WORDSIZE / 2))
509       return offset / size;
510     return (u32)offset / (u32)size;
511   }
512
513   NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
514                                    uptr class_id, RegionInfo *region) {
515     BlockingMutexLock l(&region->mutex);
516     Batch *b = region->free_list.Pop();
517     if (b)
518       return b;
519     uptr size = SizeClassMap::Size(class_id);
520     uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
521     uptr beg_idx = region->allocated_user;
522     uptr end_idx = beg_idx + count * size;
523     uptr region_beg = kSpaceBeg + kRegionSize * class_id;
524     if (end_idx + size > region->mapped_user) {
525       // Do the mmap for the user memory.
526       uptr map_size = kUserMapSize;
527       while (end_idx + size > region->mapped_user + map_size)
528         map_size += kUserMapSize;
529       CHECK_GE(region->mapped_user + map_size, end_idx);
530       MapWithCallback(region_beg + region->mapped_user, map_size);
531       stat->Add(AllocatorStatMapped, map_size);
532       region->mapped_user += map_size;
533     }
534     uptr total_count = (region->mapped_user - beg_idx - size)
535         / size / count * count;
536     region->allocated_meta += total_count * kMetadataSize;
537     if (region->allocated_meta > region->mapped_meta) {
538       uptr map_size = kMetaMapSize;
539       while (region->allocated_meta > region->mapped_meta + map_size)
540         map_size += kMetaMapSize;
541       // Do the mmap for the metadata.
542       CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
543       MapWithCallback(region_beg + kRegionSize -
544                       region->mapped_meta - map_size, map_size);
545       region->mapped_meta += map_size;
546     }
547     CHECK_LE(region->allocated_meta, region->mapped_meta);
548     if (region->mapped_user + region->mapped_meta > kRegionSize) {
549       Printf("%s: Out of memory. Dying. ", SanitizerToolName);
550       Printf("The process has exhausted %zuMB for size class %zu.\n",
551           kRegionSize / 1024 / 1024, size);
552       Die();
553     }
554     for (;;) {
555       if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
556         b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
557       else
558         b = (Batch*)(region_beg + beg_idx);
559       b->count = count;
560       for (uptr i = 0; i < count; i++)
561         b->batch[i] = (void*)(region_beg + beg_idx + i * size);
562       region->allocated_user += count * size;
563       CHECK_LE(region->allocated_user, region->mapped_user);
564       beg_idx += count * size;
565       if (beg_idx + count * size + size > region->mapped_user)
566         break;
567       CHECK_GT(b->count, 0);
568       region->free_list.Push(b);
569     }
570     return b;
571   }
572 };
573
574 // Maps integers in rage [0, kSize) to u8 values.
575 template<u64 kSize>
576 class FlatByteMap {
577  public:
578   void TestOnlyInit() {
579     internal_memset(map_, 0, sizeof(map_));
580   }
581
582   void set(uptr idx, u8 val) {
583     CHECK_LT(idx, kSize);
584     CHECK_EQ(0U, map_[idx]);
585     map_[idx] = val;
586   }
587   u8 operator[] (uptr idx) {
588     CHECK_LT(idx, kSize);
589     // FIXME: CHECK may be too expensive here.
590     return map_[idx];
591   }
592  private:
593   u8 map_[kSize];
594 };
595
596 // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values.
597 // It is implemented as a two-dimensional array: array of kSize1 pointers
598 // to kSize2-byte arrays. The secondary arrays are mmaped on demand.
599 // Each value is initially zero and can be set to something else only once.
600 // Setting and getting values from multiple threads is safe w/o extra locking.
601 template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback>
602 class TwoLevelByteMap {
603  public:
604   void TestOnlyInit() {
605     internal_memset(map1_, 0, sizeof(map1_));
606     mu_.Init();
607   }
608   void TestOnlyUnmap() {
609     for (uptr i = 0; i < kSize1; i++) {
610       u8 *p = Get(i);
611       if (!p) continue;
612       MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2);
613       UnmapOrDie(p, kSize2);
614     }
615   }
616
617   uptr size() const { return kSize1 * kSize2; }
618   uptr size1() const { return kSize1; }
619   uptr size2() const { return kSize2; }
620
621   void set(uptr idx, u8 val) {
622     CHECK_LT(idx, kSize1 * kSize2);
623     u8 *map2 = GetOrCreate(idx / kSize2);
624     CHECK_EQ(0U, map2[idx % kSize2]);
625     map2[idx % kSize2] = val;
626   }
627
628   u8 operator[] (uptr idx) const {
629     CHECK_LT(idx, kSize1 * kSize2);
630     u8 *map2 = Get(idx / kSize2);
631     if (!map2) return 0;
632     return map2[idx % kSize2];
633   }
634
635  private:
636   u8 *Get(uptr idx) const {
637     CHECK_LT(idx, kSize1);
638     return reinterpret_cast<u8 *>(
639         atomic_load(&map1_[idx], memory_order_acquire));
640   }
641
642   u8 *GetOrCreate(uptr idx) {
643     u8 *res = Get(idx);
644     if (!res) {
645       SpinMutexLock l(&mu_);
646       if (!(res = Get(idx))) {
647         res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap");
648         MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
649         atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
650                      memory_order_release);
651       }
652     }
653     return res;
654   }
655
656   atomic_uintptr_t map1_[kSize1];
657   StaticSpinMutex mu_;
658 };
659
660 // SizeClassAllocator32 -- allocator for 32-bit address space.
661 // This allocator can theoretically be used on 64-bit arch, but there it is less
662 // efficient than SizeClassAllocator64.
663 //
664 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
665 // be returned by MmapOrDie().
666 //
667 // Region:
668 //   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
669 // Since the regions are aligned by kRegionSize, there are exactly
670 // kNumPossibleRegions possible regions in the address space and so we keep
671 // a ByteMap possible_regions to store the size classes of each Region.
672 // 0 size class means the region is not used by the allocator.
673 //
674 // One Region is used to allocate chunks of a single size class.
675 // A Region looks like this:
676 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
677 //
678 // In order to avoid false sharing the objects of this class should be
679 // chache-line aligned.
680 template <const uptr kSpaceBeg, const u64 kSpaceSize,
681           const uptr kMetadataSize, class SizeClassMap,
682           const uptr kRegionSizeLog,
683           class ByteMap,
684           class MapUnmapCallback = NoOpMapUnmapCallback>
685 class SizeClassAllocator32 {
686  public:
687   typedef typename SizeClassMap::TransferBatch Batch;
688   typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
689       SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT;
690   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
691
692   void Init() {
693     possible_regions.TestOnlyInit();
694     internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
695   }
696
697   void *MapWithCallback(uptr size) {
698     size = RoundUpTo(size, GetPageSizeCached());
699     void *res = MmapOrDie(size, "SizeClassAllocator32");
700     MapUnmapCallback().OnMap((uptr)res, size);
701     return res;
702   }
703
704   void UnmapWithCallback(uptr beg, uptr size) {
705     MapUnmapCallback().OnUnmap(beg, size);
706     UnmapOrDie(reinterpret_cast<void *>(beg), size);
707   }
708
709   static bool CanAllocate(uptr size, uptr alignment) {
710     return size <= SizeClassMap::kMaxSize &&
711       alignment <= SizeClassMap::kMaxSize;
712   }
713
714   void *GetMetaData(const void *p) {
715     CHECK(PointerIsMine(p));
716     uptr mem = reinterpret_cast<uptr>(p);
717     uptr beg = ComputeRegionBeg(mem);
718     uptr size = SizeClassMap::Size(GetSizeClass(p));
719     u32 offset = mem - beg;
720     uptr n = offset / (u32)size;  // 32-bit division
721     uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
722     return reinterpret_cast<void*>(meta);
723   }
724
725   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
726                                 uptr class_id) {
727     CHECK_LT(class_id, kNumClasses);
728     SizeClassInfo *sci = GetSizeClassInfo(class_id);
729     SpinMutexLock l(&sci->mutex);
730     if (sci->free_list.empty())
731       PopulateFreeList(stat, c, sci, class_id);
732     CHECK(!sci->free_list.empty());
733     Batch *b = sci->free_list.front();
734     sci->free_list.pop_front();
735     return b;
736   }
737
738   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
739     CHECK_LT(class_id, kNumClasses);
740     SizeClassInfo *sci = GetSizeClassInfo(class_id);
741     SpinMutexLock l(&sci->mutex);
742     CHECK_GT(b->count, 0);
743     sci->free_list.push_front(b);
744   }
745
746   bool PointerIsMine(const void *p) {
747     return GetSizeClass(p) != 0;
748   }
749
750   uptr GetSizeClass(const void *p) {
751     return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
752   }
753
754   void *GetBlockBegin(const void *p) {
755     CHECK(PointerIsMine(p));
756     uptr mem = reinterpret_cast<uptr>(p);
757     uptr beg = ComputeRegionBeg(mem);
758     uptr size = SizeClassMap::Size(GetSizeClass(p));
759     u32 offset = mem - beg;
760     u32 n = offset / (u32)size;  // 32-bit division
761     uptr res = beg + (n * (u32)size);
762     return reinterpret_cast<void*>(res);
763   }
764
765   uptr GetActuallyAllocatedSize(void *p) {
766     CHECK(PointerIsMine(p));
767     return SizeClassMap::Size(GetSizeClass(p));
768   }
769
770   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
771
772   uptr TotalMemoryUsed() {
773     // No need to lock here.
774     uptr res = 0;
775     for (uptr i = 0; i < kNumPossibleRegions; i++)
776       if (possible_regions[i])
777         res += kRegionSize;
778     return res;
779   }
780
781   void TestOnlyUnmap() {
782     for (uptr i = 0; i < kNumPossibleRegions; i++)
783       if (possible_regions[i])
784         UnmapWithCallback((i * kRegionSize), kRegionSize);
785   }
786
787   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
788   // introspection API.
789   void ForceLock() {
790     for (uptr i = 0; i < kNumClasses; i++) {
791       GetSizeClassInfo(i)->mutex.Lock();
792     }
793   }
794
795   void ForceUnlock() {
796     for (int i = kNumClasses - 1; i >= 0; i--) {
797       GetSizeClassInfo(i)->mutex.Unlock();
798     }
799   }
800
801   // Iterate over all existing chunks.
802   // The allocator must be locked when calling this function.
803   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
804     for (uptr region = 0; region < kNumPossibleRegions; region++)
805       if (possible_regions[region]) {
806         uptr chunk_size = SizeClassMap::Size(possible_regions[region]);
807         uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
808         uptr region_beg = region * kRegionSize;
809         for (uptr chunk = region_beg;
810              chunk < region_beg + max_chunks_in_region * chunk_size;
811              chunk += chunk_size) {
812           // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
813           callback(chunk, arg);
814         }
815       }
816   }
817
818   void PrintStats() {
819   }
820
821   typedef SizeClassMap SizeClassMapT;
822   static const uptr kNumClasses = SizeClassMap::kNumClasses;
823
824  private:
825   static const uptr kRegionSize = 1 << kRegionSizeLog;
826   static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
827
828   struct SizeClassInfo {
829     SpinMutex mutex;
830     IntrusiveList<Batch> free_list;
831     char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
832   };
833   COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
834
835   uptr ComputeRegionId(uptr mem) {
836     uptr res = mem >> kRegionSizeLog;
837     CHECK_LT(res, kNumPossibleRegions);
838     return res;
839   }
840
841   uptr ComputeRegionBeg(uptr mem) {
842     return mem & ~(kRegionSize - 1);
843   }
844
845   uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
846     CHECK_LT(class_id, kNumClasses);
847     uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
848                                       "SizeClassAllocator32"));
849     MapUnmapCallback().OnMap(res, kRegionSize);
850     stat->Add(AllocatorStatMapped, kRegionSize);
851     CHECK_EQ(0U, (res & (kRegionSize - 1)));
852     possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
853     return res;
854   }
855
856   SizeClassInfo *GetSizeClassInfo(uptr class_id) {
857     CHECK_LT(class_id, kNumClasses);
858     return &size_class_info_array[class_id];
859   }
860
861   void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
862                         SizeClassInfo *sci, uptr class_id) {
863     uptr size = SizeClassMap::Size(class_id);
864     uptr reg = AllocateRegion(stat, class_id);
865     uptr n_chunks = kRegionSize / (size + kMetadataSize);
866     uptr max_count = SizeClassMap::MaxCached(class_id);
867     Batch *b = 0;
868     for (uptr i = reg; i < reg + n_chunks * size; i += size) {
869       if (b == 0) {
870         if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
871           b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
872         else
873           b = (Batch*)i;
874         b->count = 0;
875       }
876       b->batch[b->count++] = (void*)i;
877       if (b->count == max_count) {
878         CHECK_GT(b->count, 0);
879         sci->free_list.push_back(b);
880         b = 0;
881       }
882     }
883     if (b) {
884       CHECK_GT(b->count, 0);
885       sci->free_list.push_back(b);
886     }
887   }
888
889   ByteMap possible_regions;
890   SizeClassInfo size_class_info_array[kNumClasses];
891 };
892
893 // Objects of this type should be used as local caches for SizeClassAllocator64
894 // or SizeClassAllocator32. Since the typical use of this class is to have one
895 // object per thread in TLS, is has to be POD.
896 template<class SizeClassAllocator>
897 struct SizeClassAllocatorLocalCache {
898   typedef SizeClassAllocator Allocator;
899   static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
900
901   void Init(AllocatorGlobalStats *s) {
902     stats_.Init();
903     if (s)
904       s->Register(&stats_);
905   }
906
907   void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
908     Drain(allocator);
909     if (s)
910       s->Unregister(&stats_);
911   }
912
913   void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
914     CHECK_NE(class_id, 0UL);
915     CHECK_LT(class_id, kNumClasses);
916     stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id));
917     PerClass *c = &per_class_[class_id];
918     if (UNLIKELY(c->count == 0))
919       Refill(allocator, class_id);
920     void *res = c->batch[--c->count];
921     PREFETCH(c->batch[c->count - 1]);
922     return res;
923   }
924
925   void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
926     CHECK_NE(class_id, 0UL);
927     CHECK_LT(class_id, kNumClasses);
928     // If the first allocator call on a new thread is a deallocation, then
929     // max_count will be zero, leading to check failure.
930     InitCache();
931     stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id));
932     PerClass *c = &per_class_[class_id];
933     CHECK_NE(c->max_count, 0UL);
934     if (UNLIKELY(c->count == c->max_count))
935       Drain(allocator, class_id);
936     c->batch[c->count++] = p;
937   }
938
939   void Drain(SizeClassAllocator *allocator) {
940     for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
941       PerClass *c = &per_class_[class_id];
942       while (c->count > 0)
943         Drain(allocator, class_id);
944     }
945   }
946
947   // private:
948   typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
949   typedef typename SizeClassMap::TransferBatch Batch;
950   struct PerClass {
951     uptr count;
952     uptr max_count;
953     void *batch[2 * SizeClassMap::kMaxNumCached];
954   };
955   PerClass per_class_[kNumClasses];
956   AllocatorStats stats_;
957
958   void InitCache() {
959     if (per_class_[1].max_count)
960       return;
961     for (uptr i = 0; i < kNumClasses; i++) {
962       PerClass *c = &per_class_[i];
963       c->max_count = 2 * SizeClassMap::MaxCached(i);
964     }
965   }
966
967   NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
968     InitCache();
969     PerClass *c = &per_class_[class_id];
970     Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
971     CHECK_GT(b->count, 0);
972     for (uptr i = 0; i < b->count; i++)
973       c->batch[i] = b->batch[i];
974     c->count = b->count;
975     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
976       Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
977   }
978
979   NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
980     InitCache();
981     PerClass *c = &per_class_[class_id];
982     Batch *b;
983     if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id))
984       b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
985     else
986       b = (Batch*)c->batch[0];
987     uptr cnt = Min(c->max_count / 2, c->count);
988     for (uptr i = 0; i < cnt; i++) {
989       b->batch[i] = c->batch[i];
990       c->batch[i] = c->batch[i + c->max_count / 2];
991     }
992     b->count = cnt;
993     c->count -= cnt;
994     CHECK_GT(b->count, 0);
995     allocator->DeallocateBatch(&stats_, class_id, b);
996   }
997 };
998
999 // This class can (de)allocate only large chunks of memory using mmap/unmap.
1000 // The main purpose of this allocator is to cover large and rare allocation
1001 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
1002 template <class MapUnmapCallback = NoOpMapUnmapCallback>
1003 class LargeMmapAllocator {
1004  public:
1005   void Init() {
1006     internal_memset(this, 0, sizeof(*this));
1007     page_size_ = GetPageSizeCached();
1008   }
1009
1010   void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
1011     CHECK(IsPowerOfTwo(alignment));
1012     uptr map_size = RoundUpMapSize(size);
1013     if (alignment > page_size_)
1014       map_size += alignment;
1015     if (map_size < size) return AllocatorReturnNull();  // Overflow.
1016     uptr map_beg = reinterpret_cast<uptr>(
1017         MmapOrDie(map_size, "LargeMmapAllocator"));
1018     CHECK(IsAligned(map_beg, page_size_));
1019     MapUnmapCallback().OnMap(map_beg, map_size);
1020     uptr map_end = map_beg + map_size;
1021     uptr res = map_beg + page_size_;
1022     if (res & (alignment - 1))  // Align.
1023       res += alignment - (res & (alignment - 1));
1024     CHECK(IsAligned(res, alignment));
1025     CHECK(IsAligned(res, page_size_));
1026     CHECK_GE(res + size, map_beg);
1027     CHECK_LE(res + size, map_end);
1028     Header *h = GetHeader(res);
1029     h->size = size;
1030     h->map_beg = map_beg;
1031     h->map_size = map_size;
1032     uptr size_log = MostSignificantSetBitIndex(map_size);
1033     CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
1034     {
1035       SpinMutexLock l(&mutex_);
1036       uptr idx = n_chunks_++;
1037       chunks_sorted_ = false;
1038       CHECK_LT(idx, kMaxNumChunks);
1039       h->chunk_idx = idx;
1040       chunks_[idx] = h;
1041       stats.n_allocs++;
1042       stats.currently_allocated += map_size;
1043       stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
1044       stats.by_size_log[size_log]++;
1045       stat->Add(AllocatorStatAllocated, map_size);
1046       stat->Add(AllocatorStatMapped, map_size);
1047     }
1048     return reinterpret_cast<void*>(res);
1049   }
1050
1051   void Deallocate(AllocatorStats *stat, void *p) {
1052     Header *h = GetHeader(p);
1053     {
1054       SpinMutexLock l(&mutex_);
1055       uptr idx = h->chunk_idx;
1056       CHECK_EQ(chunks_[idx], h);
1057       CHECK_LT(idx, n_chunks_);
1058       chunks_[idx] = chunks_[n_chunks_ - 1];
1059       chunks_[idx]->chunk_idx = idx;
1060       n_chunks_--;
1061       chunks_sorted_ = false;
1062       stats.n_frees++;
1063       stats.currently_allocated -= h->map_size;
1064       stat->Sub(AllocatorStatAllocated, h->map_size);
1065       stat->Sub(AllocatorStatMapped, h->map_size);
1066     }
1067     MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
1068     UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
1069   }
1070
1071   uptr TotalMemoryUsed() {
1072     SpinMutexLock l(&mutex_);
1073     uptr res = 0;
1074     for (uptr i = 0; i < n_chunks_; i++) {
1075       Header *h = chunks_[i];
1076       CHECK_EQ(h->chunk_idx, i);
1077       res += RoundUpMapSize(h->size);
1078     }
1079     return res;
1080   }
1081
1082   bool PointerIsMine(const void *p) {
1083     return GetBlockBegin(p) != 0;
1084   }
1085
1086   uptr GetActuallyAllocatedSize(void *p) {
1087     return RoundUpTo(GetHeader(p)->size, page_size_);
1088   }
1089
1090   // At least page_size_/2 metadata bytes is available.
1091   void *GetMetaData(const void *p) {
1092     // Too slow: CHECK_EQ(p, GetBlockBegin(p));
1093     if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) {
1094       Printf("%s: bad pointer %p\n", SanitizerToolName, p);
1095       CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
1096     }
1097     return GetHeader(p) + 1;
1098   }
1099
1100   void *GetBlockBegin(const void *ptr) {
1101     uptr p = reinterpret_cast<uptr>(ptr);
1102     SpinMutexLock l(&mutex_);
1103     uptr nearest_chunk = 0;
1104     // Cache-friendly linear search.
1105     for (uptr i = 0; i < n_chunks_; i++) {
1106       uptr ch = reinterpret_cast<uptr>(chunks_[i]);
1107       if (p < ch) continue;  // p is at left to this chunk, skip it.
1108       if (p - ch < p - nearest_chunk)
1109         nearest_chunk = ch;
1110     }
1111     if (!nearest_chunk)
1112       return 0;
1113     Header *h = reinterpret_cast<Header *>(nearest_chunk);
1114     CHECK_GE(nearest_chunk, h->map_beg);
1115     CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
1116     CHECK_LE(nearest_chunk, p);
1117     if (h->map_beg + h->map_size <= p)
1118       return 0;
1119     return GetUser(h);
1120   }
1121
1122   // This function does the same as GetBlockBegin, but is much faster.
1123   // Must be called with the allocator locked.
1124   void *GetBlockBeginFastLocked(void *ptr) {
1125     mutex_.CheckLocked();
1126     uptr p = reinterpret_cast<uptr>(ptr);
1127     uptr n = n_chunks_;
1128     if (!n) return 0;
1129     if (!chunks_sorted_) {
1130       // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate.
1131       SortArray(reinterpret_cast<uptr*>(chunks_), n);
1132       for (uptr i = 0; i < n; i++)
1133         chunks_[i]->chunk_idx = i;
1134       chunks_sorted_ = true;
1135       min_mmap_ = reinterpret_cast<uptr>(chunks_[0]);
1136       max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) +
1137           chunks_[n - 1]->map_size;
1138     }
1139     if (p < min_mmap_ || p >= max_mmap_)
1140       return 0;
1141     uptr beg = 0, end = n - 1;
1142     // This loop is a log(n) lower_bound. It does not check for the exact match
1143     // to avoid expensive cache-thrashing loads.
1144     while (end - beg >= 2) {
1145       uptr mid = (beg + end) / 2;  // Invariant: mid >= beg + 1
1146       if (p < reinterpret_cast<uptr>(chunks_[mid]))
1147         end = mid - 1;  // We are not interested in chunks_[mid].
1148       else
1149         beg = mid;  // chunks_[mid] may still be what we want.
1150     }
1151
1152     if (beg < end) {
1153       CHECK_EQ(beg + 1, end);
1154       // There are 2 chunks left, choose one.
1155       if (p >= reinterpret_cast<uptr>(chunks_[end]))
1156         beg = end;
1157     }
1158
1159     Header *h = chunks_[beg];
1160     if (h->map_beg + h->map_size <= p || p < h->map_beg)
1161       return 0;
1162     return GetUser(h);
1163   }
1164
1165   void PrintStats() {
1166     Printf("Stats: LargeMmapAllocator: allocated %zd times, "
1167            "remains %zd (%zd K) max %zd M; by size logs: ",
1168            stats.n_allocs, stats.n_allocs - stats.n_frees,
1169            stats.currently_allocated >> 10, stats.max_allocated >> 20);
1170     for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
1171       uptr c = stats.by_size_log[i];
1172       if (!c) continue;
1173       Printf("%zd:%zd; ", i, c);
1174     }
1175     Printf("\n");
1176   }
1177
1178   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1179   // introspection API.
1180   void ForceLock() {
1181     mutex_.Lock();
1182   }
1183
1184   void ForceUnlock() {
1185     mutex_.Unlock();
1186   }
1187
1188   // Iterate over all existing chunks.
1189   // The allocator must be locked when calling this function.
1190   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1191     for (uptr i = 0; i < n_chunks_; i++)
1192       callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg);
1193   }
1194
1195  private:
1196   static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
1197   struct Header {
1198     uptr map_beg;
1199     uptr map_size;
1200     uptr size;
1201     uptr chunk_idx;
1202   };
1203
1204   Header *GetHeader(uptr p) {
1205     CHECK(IsAligned(p, page_size_));
1206     return reinterpret_cast<Header*>(p - page_size_);
1207   }
1208   Header *GetHeader(const void *p) {
1209     return GetHeader(reinterpret_cast<uptr>(p));
1210   }
1211
1212   void *GetUser(Header *h) {
1213     CHECK(IsAligned((uptr)h, page_size_));
1214     return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1215   }
1216
1217   uptr RoundUpMapSize(uptr size) {
1218     return RoundUpTo(size, page_size_) + page_size_;
1219   }
1220
1221   uptr page_size_;
1222   Header *chunks_[kMaxNumChunks];
1223   uptr n_chunks_;
1224   uptr min_mmap_, max_mmap_;
1225   bool chunks_sorted_;
1226   struct Stats {
1227     uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1228   } stats;
1229   SpinMutex mutex_;
1230 };
1231
1232 // This class implements a complete memory allocator by using two
1233 // internal allocators:
1234 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1235 //  When allocating 2^x bytes it should return 2^x aligned chunk.
1236 // PrimaryAllocator is used via a local AllocatorCache.
1237 // SecondaryAllocator can allocate anything, but is not efficient.
1238 template <class PrimaryAllocator, class AllocatorCache,
1239           class SecondaryAllocator>  // NOLINT
1240 class CombinedAllocator {
1241  public:
1242   void Init() {
1243     primary_.Init();
1244     secondary_.Init();
1245     stats_.Init();
1246   }
1247
1248   void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1249                  bool cleared = false) {
1250     // Returning 0 on malloc(0) may break a lot of code.
1251     if (size == 0)
1252       size = 1;
1253     if (size + alignment < size)
1254       return AllocatorReturnNull();
1255     if (alignment > 8)
1256       size = RoundUpTo(size, alignment);
1257     void *res;
1258     bool from_primary = primary_.CanAllocate(size, alignment);
1259     if (from_primary)
1260       res = cache->Allocate(&primary_, primary_.ClassID(size));
1261     else
1262       res = secondary_.Allocate(&stats_, size, alignment);
1263     if (alignment > 8)
1264       CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1265     if (cleared && res && from_primary)
1266       internal_bzero_aligned16(res, RoundUpTo(size, 16));
1267     return res;
1268   }
1269
1270   void Deallocate(AllocatorCache *cache, void *p) {
1271     if (!p) return;
1272     if (primary_.PointerIsMine(p))
1273       cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1274     else
1275       secondary_.Deallocate(&stats_, p);
1276   }
1277
1278   void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1279                    uptr alignment) {
1280     if (!p)
1281       return Allocate(cache, new_size, alignment);
1282     if (!new_size) {
1283       Deallocate(cache, p);
1284       return 0;
1285     }
1286     CHECK(PointerIsMine(p));
1287     uptr old_size = GetActuallyAllocatedSize(p);
1288     uptr memcpy_size = Min(new_size, old_size);
1289     void *new_p = Allocate(cache, new_size, alignment);
1290     if (new_p)
1291       internal_memcpy(new_p, p, memcpy_size);
1292     Deallocate(cache, p);
1293     return new_p;
1294   }
1295
1296   bool PointerIsMine(void *p) {
1297     if (primary_.PointerIsMine(p))
1298       return true;
1299     return secondary_.PointerIsMine(p);
1300   }
1301
1302   bool FromPrimary(void *p) {
1303     return primary_.PointerIsMine(p);
1304   }
1305
1306   void *GetMetaData(const void *p) {
1307     if (primary_.PointerIsMine(p))
1308       return primary_.GetMetaData(p);
1309     return secondary_.GetMetaData(p);
1310   }
1311
1312   void *GetBlockBegin(const void *p) {
1313     if (primary_.PointerIsMine(p))
1314       return primary_.GetBlockBegin(p);
1315     return secondary_.GetBlockBegin(p);
1316   }
1317
1318   // This function does the same as GetBlockBegin, but is much faster.
1319   // Must be called with the allocator locked.
1320   void *GetBlockBeginFastLocked(void *p) {
1321     if (primary_.PointerIsMine(p))
1322       return primary_.GetBlockBegin(p);
1323     return secondary_.GetBlockBeginFastLocked(p);
1324   }
1325
1326   uptr GetActuallyAllocatedSize(void *p) {
1327     if (primary_.PointerIsMine(p))
1328       return primary_.GetActuallyAllocatedSize(p);
1329     return secondary_.GetActuallyAllocatedSize(p);
1330   }
1331
1332   uptr TotalMemoryUsed() {
1333     return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1334   }
1335
1336   void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1337
1338   void InitCache(AllocatorCache *cache) {
1339     cache->Init(&stats_);
1340   }
1341
1342   void DestroyCache(AllocatorCache *cache) {
1343     cache->Destroy(&primary_, &stats_);
1344   }
1345
1346   void SwallowCache(AllocatorCache *cache) {
1347     cache->Drain(&primary_);
1348   }
1349
1350   void GetStats(AllocatorStatCounters s) const {
1351     stats_.Get(s);
1352   }
1353
1354   void PrintStats() {
1355     primary_.PrintStats();
1356     secondary_.PrintStats();
1357   }
1358
1359   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1360   // introspection API.
1361   void ForceLock() {
1362     primary_.ForceLock();
1363     secondary_.ForceLock();
1364   }
1365
1366   void ForceUnlock() {
1367     secondary_.ForceUnlock();
1368     primary_.ForceUnlock();
1369   }
1370
1371   // Iterate over all existing chunks.
1372   // The allocator must be locked when calling this function.
1373   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1374     primary_.ForEachChunk(callback, arg);
1375     secondary_.ForEachChunk(callback, arg);
1376   }
1377
1378  private:
1379   PrimaryAllocator primary_;
1380   SecondaryAllocator secondary_;
1381   AllocatorGlobalStats stats_;
1382 };
1383
1384 // Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1385 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1386
1387 }  // namespace __sanitizer
1388
1389 #endif  // SANITIZER_ALLOCATOR_H
1390