]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/sanitizer_common/sanitizer_deadlock_detector.h
Update mandoc to 1.14.5
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / sanitizer_common / sanitizer_deadlock_detector.h
1 //===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of Sanitizer runtime.
11 // The deadlock detector maintains a directed graph of lock acquisitions.
12 // When a lock event happens, the detector checks if the locks already held by
13 // the current thread are reachable from the newly acquired lock.
14 //
15 // The detector can handle only a fixed amount of simultaneously live locks
16 // (a lock is alive if it has been locked at least once and has not been
17 // destroyed). When the maximal number of locks is reached the entire graph
18 // is flushed and the new lock epoch is started. The node ids from the old
19 // epochs can not be used with any of the detector methods except for
20 // nodeBelongsToCurrentEpoch().
21 //
22 // FIXME: this is work in progress, nothing really works yet.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #ifndef SANITIZER_DEADLOCK_DETECTOR_H
27 #define SANITIZER_DEADLOCK_DETECTOR_H
28
29 #include "sanitizer_common.h"
30 #include "sanitizer_bvgraph.h"
31
32 namespace __sanitizer {
33
34 // Thread-local state for DeadlockDetector.
35 // It contains the locks currently held by the owning thread.
36 template <class BV>
37 class DeadlockDetectorTLS {
38  public:
39   // No CTOR.
40   void clear() {
41     bv_.clear();
42     epoch_ = 0;
43     n_recursive_locks = 0;
44     n_all_locks_ = 0;
45   }
46
47   bool empty() const { return bv_.empty(); }
48
49   void ensureCurrentEpoch(uptr current_epoch) {
50     if (epoch_ == current_epoch) return;
51     bv_.clear();
52     epoch_ = current_epoch;
53     n_recursive_locks = 0;
54     n_all_locks_ = 0;
55   }
56
57   uptr getEpoch() const { return epoch_; }
58
59   // Returns true if this is the first (non-recursive) acquisition of this lock.
60   bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
61     // Printf("addLock: %zx %zx stk %u\n", lock_id, current_epoch, stk);
62     CHECK_EQ(epoch_, current_epoch);
63     if (!bv_.setBit(lock_id)) {
64       // The lock is already held by this thread, it must be recursive.
65       CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
66       recursive_locks[n_recursive_locks++] = lock_id;
67       return false;
68     }
69     CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
70     // lock_id < BV::kSize, can cast to a smaller int.
71     u32 lock_id_short = static_cast<u32>(lock_id);
72     LockWithContext l = {lock_id_short, stk};
73     all_locks_with_contexts_[n_all_locks_++] = l;
74     return true;
75   }
76
77   void removeLock(uptr lock_id) {
78     if (n_recursive_locks) {
79       for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
80         if (recursive_locks[i] == lock_id) {
81           n_recursive_locks--;
82           Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
83           return;
84         }
85       }
86     }
87     // Printf("remLock: %zx %zx\n", lock_id, epoch_);
88     if (!bv_.clearBit(lock_id))
89       return;  // probably addLock happened before flush
90     if (n_all_locks_) {
91       for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
92         if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
93           Swap(all_locks_with_contexts_[i],
94                all_locks_with_contexts_[n_all_locks_ - 1]);
95           n_all_locks_--;
96           break;
97         }
98       }
99     }
100   }
101
102   u32 findLockContext(uptr lock_id) {
103     for (uptr i = 0; i < n_all_locks_; i++)
104       if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
105         return all_locks_with_contexts_[i].stk;
106     return 0;
107   }
108
109   const BV &getLocks(uptr current_epoch) const {
110     CHECK_EQ(epoch_, current_epoch);
111     return bv_;
112   }
113
114   uptr getNumLocks() const { return n_all_locks_; }
115   uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
116
117  private:
118   BV bv_;
119   uptr epoch_;
120   uptr recursive_locks[64];
121   uptr n_recursive_locks;
122   struct LockWithContext {
123     u32 lock;
124     u32 stk;
125   };
126   LockWithContext all_locks_with_contexts_[64];
127   uptr n_all_locks_;
128 };
129
130 // DeadlockDetector.
131 // For deadlock detection to work we need one global DeadlockDetector object
132 // and one DeadlockDetectorTLS object per evey thread.
133 // This class is not thread safe, all concurrent accesses should be guarded
134 // by an external lock.
135 // Most of the methods of this class are not thread-safe (i.e. should
136 // be protected by an external lock) unless explicitly told otherwise.
137 template <class BV>
138 class DeadlockDetector {
139  public:
140   typedef BV BitVector;
141
142   uptr size() const { return g_.size(); }
143
144   // No CTOR.
145   void clear() {
146     current_epoch_ = 0;
147     available_nodes_.clear();
148     recycled_nodes_.clear();
149     g_.clear();
150     n_edges_ = 0;
151   }
152
153   // Allocate new deadlock detector node.
154   // If we are out of available nodes first try to recycle some.
155   // If there is nothing to recycle, flush the graph and increment the epoch.
156   // Associate 'data' (opaque user's object) with the new node.
157   uptr newNode(uptr data) {
158     if (!available_nodes_.empty())
159       return getAvailableNode(data);
160     if (!recycled_nodes_.empty()) {
161       // Printf("recycling: n_edges_ %zd\n", n_edges_);
162       for (sptr i = n_edges_ - 1; i >= 0; i--) {
163         if (recycled_nodes_.getBit(edges_[i].from) ||
164             recycled_nodes_.getBit(edges_[i].to)) {
165           Swap(edges_[i], edges_[n_edges_ - 1]);
166           n_edges_--;
167         }
168       }
169       CHECK(available_nodes_.empty());
170       // removeEdgesFrom was called in removeNode.
171       g_.removeEdgesTo(recycled_nodes_);
172       available_nodes_.setUnion(recycled_nodes_);
173       recycled_nodes_.clear();
174       return getAvailableNode(data);
175     }
176     // We are out of vacant nodes. Flush and increment the current_epoch_.
177     current_epoch_ += size();
178     recycled_nodes_.clear();
179     available_nodes_.setAll();
180     g_.clear();
181     n_edges_ = 0;
182     return getAvailableNode(data);
183   }
184
185   // Get data associated with the node created by newNode().
186   uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
187
188   bool nodeBelongsToCurrentEpoch(uptr node) {
189     return node && (node / size() * size()) == current_epoch_;
190   }
191
192   void removeNode(uptr node) {
193     uptr idx = nodeToIndex(node);
194     CHECK(!available_nodes_.getBit(idx));
195     CHECK(recycled_nodes_.setBit(idx));
196     g_.removeEdgesFrom(idx);
197   }
198
199   void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
200     dtls->ensureCurrentEpoch(current_epoch_);
201   }
202
203   // Returns true if there is a cycle in the graph after this lock event.
204   // Ideally should be called before the lock is acquired so that we can
205   // report a deadlock before a real deadlock happens.
206   bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
207     ensureCurrentEpoch(dtls);
208     uptr cur_idx = nodeToIndex(cur_node);
209     return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
210   }
211
212   u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
213     return dtls->findLockContext(nodeToIndex(node));
214   }
215
216   // Add cur_node to the set of locks held currently by dtls.
217   void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
218     ensureCurrentEpoch(dtls);
219     uptr cur_idx = nodeToIndex(cur_node);
220     dtls->addLock(cur_idx, current_epoch_, stk);
221   }
222
223   // Experimental *racy* fast path function.
224   // Returns true if all edges from the currently held locks to cur_node exist.
225   bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
226     uptr local_epoch = dtls->getEpoch();
227     // Read from current_epoch_ is racy.
228     if (cur_node && local_epoch == current_epoch_ &&
229         local_epoch == nodeToEpoch(cur_node)) {
230       uptr cur_idx = nodeToIndexUnchecked(cur_node);
231       for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
232         if (!g_.hasEdge(dtls->getLock(i), cur_idx))
233           return false;
234       }
235       return true;
236     }
237     return false;
238   }
239
240   // Adds edges from currently held locks to cur_node,
241   // returns the number of added edges, and puts the sources of added edges
242   // into added_edges[].
243   // Should be called before onLockAfter.
244   uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
245                 int unique_tid) {
246     ensureCurrentEpoch(dtls);
247     uptr cur_idx = nodeToIndex(cur_node);
248     uptr added_edges[40];
249     uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
250                                      added_edges, ARRAY_SIZE(added_edges));
251     for (uptr i = 0; i < n_added_edges; i++) {
252       if (n_edges_ < ARRAY_SIZE(edges_)) {
253         Edge e = {(u16)added_edges[i], (u16)cur_idx,
254                   dtls->findLockContext(added_edges[i]), stk,
255                   unique_tid};
256         edges_[n_edges_++] = e;
257       }
258       // Printf("Edge%zd: %u %zd=>%zd in T%d\n",
259       //        n_edges_, stk, added_edges[i], cur_idx, unique_tid);
260     }
261     return n_added_edges;
262   }
263
264   bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
265                 int *unique_tid) {
266     uptr from_idx = nodeToIndex(from_node);
267     uptr to_idx = nodeToIndex(to_node);
268     for (uptr i = 0; i < n_edges_; i++) {
269       if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
270         *stk_from = edges_[i].stk_from;
271         *stk_to = edges_[i].stk_to;
272         *unique_tid = edges_[i].unique_tid;
273         return true;
274       }
275     }
276     return false;
277   }
278
279   // Test-only function. Handles the before/after lock events,
280   // returns true if there is a cycle.
281   bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
282     ensureCurrentEpoch(dtls);
283     bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
284     addEdges(dtls, cur_node, stk, 0);
285     onLockAfter(dtls, cur_node, stk);
286     return is_reachable;
287   }
288
289   // Handles the try_lock event, returns false.
290   // When a try_lock event happens (i.e. a try_lock call succeeds) we need
291   // to add this lock to the currently held locks, but we should not try to
292   // change the lock graph or to detect a cycle.  We may want to investigate
293   // whether a more aggressive strategy is possible for try_lock.
294   bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
295     ensureCurrentEpoch(dtls);
296     uptr cur_idx = nodeToIndex(cur_node);
297     dtls->addLock(cur_idx, current_epoch_, stk);
298     return false;
299   }
300
301   // Returns true iff dtls is empty (no locks are currently held) and we can
302   // add the node to the currently held locks w/o chanding the global state.
303   // This operation is thread-safe as it only touches the dtls.
304   bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
305     if (!dtls->empty()) return false;
306     if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
307       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
308       return true;
309     }
310     return false;
311   }
312
313   // Finds a path between the lock 'cur_node' (currently not held in dtls)
314   // and some currently held lock, returns the length of the path
315   // or 0 on failure.
316   uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
317                       uptr path_size) {
318     tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
319     uptr idx = nodeToIndex(cur_node);
320     CHECK(!tmp_bv_.getBit(idx));
321     uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
322     for (uptr i = 0; i < res; i++)
323       path[i] = indexToNode(path[i]);
324     if (res)
325       CHECK_EQ(path[0], cur_node);
326     return res;
327   }
328
329   // Handle the unlock event.
330   // This operation is thread-safe as it only touches the dtls.
331   void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
332     if (dtls->getEpoch() == nodeToEpoch(node))
333       dtls->removeLock(nodeToIndexUnchecked(node));
334   }
335
336   // Tries to handle the lock event w/o writing to global state.
337   // Returns true on success.
338   // This operation is thread-safe as it only touches the dtls
339   // (modulo racy nature of hasAllEdges).
340   bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
341     if (hasAllEdges(dtls, node)) {
342       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
343       return true;
344     }
345     return false;
346   }
347
348   bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
349     return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
350   }
351
352   uptr testOnlyGetEpoch() const { return current_epoch_; }
353   bool testOnlyHasEdge(uptr l1, uptr l2) {
354     return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
355   }
356   // idx1 and idx2 are raw indices to g_, not lock IDs.
357   bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
358     return g_.hasEdge(idx1, idx2);
359   }
360
361   void Print() {
362     for (uptr from = 0; from < size(); from++)
363       for (uptr to = 0; to < size(); to++)
364         if (g_.hasEdge(from, to))
365           Printf("  %zx => %zx\n", from, to);
366   }
367
368  private:
369   void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
370
371   void check_node(uptr node) const {
372     CHECK_GE(node, size());
373     CHECK_EQ(current_epoch_, nodeToEpoch(node));
374   }
375
376   uptr indexToNode(uptr idx) const {
377     check_idx(idx);
378     return idx + current_epoch_;
379   }
380
381   uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
382
383   uptr nodeToIndex(uptr node) const {
384     check_node(node);
385     return nodeToIndexUnchecked(node);
386   }
387
388   uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
389
390   uptr getAvailableNode(uptr data) {
391     uptr idx = available_nodes_.getAndClearFirstOne();
392     data_[idx] = data;
393     return indexToNode(idx);
394   }
395
396   struct Edge {
397     u16 from;
398     u16 to;
399     u32 stk_from;
400     u32 stk_to;
401     int unique_tid;
402   };
403
404   uptr current_epoch_;
405   BV available_nodes_;
406   BV recycled_nodes_;
407   BV tmp_bv_;
408   BVGraph<BV> g_;
409   uptr data_[BV::kSize];
410   Edge edges_[BV::kSize * 32];
411   uptr n_edges_;
412 };
413
414 } // namespace __sanitizer
415
416 #endif // SANITIZER_DEADLOCK_DETECTOR_H