]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_fd.cc
Update lldb to upstream trunk r242221.
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_fd.cc
1 //===-- tsan_fd.cc --------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "tsan_fd.h"
15 #include "tsan_rtl.h"
16 #include <sanitizer_common/sanitizer_atomic.h>
17
18 namespace __tsan {
19
20 const int kTableSizeL1 = 1024;
21 const int kTableSizeL2 = 1024;
22 const int kTableSize = kTableSizeL1 * kTableSizeL2;
23
24 struct FdSync {
25   atomic_uint64_t rc;
26 };
27
28 struct FdDesc {
29   FdSync *sync;
30   int creation_tid;
31   u32 creation_stack;
32 };
33
34 struct FdContext {
35   atomic_uintptr_t tab[kTableSizeL1];
36   // Addresses used for synchronization.
37   FdSync globsync;
38   FdSync filesync;
39   FdSync socksync;
40   u64 connectsync;
41 };
42
43 static FdContext fdctx;
44
45 static bool bogusfd(int fd) {
46   // Apparently a bogus fd value.
47   return fd < 0 || fd >= kTableSize;
48 }
49
50 static FdSync *allocsync(ThreadState *thr, uptr pc) {
51   FdSync *s = (FdSync*)user_alloc(thr, pc, sizeof(FdSync), kDefaultAlignment,
52       false);
53   atomic_store(&s->rc, 1, memory_order_relaxed);
54   return s;
55 }
56
57 static FdSync *ref(FdSync *s) {
58   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
59     atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
60   return s;
61 }
62
63 static void unref(ThreadState *thr, uptr pc, FdSync *s) {
64   if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
65     if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
66       CHECK_NE(s, &fdctx.globsync);
67       CHECK_NE(s, &fdctx.filesync);
68       CHECK_NE(s, &fdctx.socksync);
69       user_free(thr, pc, s, false);
70     }
71   }
72 }
73
74 static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
75   CHECK_GE(fd, 0);
76   CHECK_LT(fd, kTableSize);
77   atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
78   uptr l1 = atomic_load(pl1, memory_order_consume);
79   if (l1 == 0) {
80     uptr size = kTableSizeL2 * sizeof(FdDesc);
81     // We need this to reside in user memory to properly catch races on it.
82     void *p = user_alloc(thr, pc, size, kDefaultAlignment, false);
83     internal_memset(p, 0, size);
84     MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
85     if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
86       l1 = (uptr)p;
87     else
88       user_free(thr, pc, p, false);
89   }
90   return &((FdDesc*)l1)[fd % kTableSizeL2];  // NOLINT
91 }
92
93 // pd must be already ref'ed.
94 static void init(ThreadState *thr, uptr pc, int fd, FdSync *s) {
95   FdDesc *d = fddesc(thr, pc, fd);
96   // As a matter of fact, we don't intercept all close calls.
97   // See e.g. libc __res_iclose().
98   if (d->sync) {
99     unref(thr, pc, d->sync);
100     d->sync = 0;
101   }
102   if (flags()->io_sync == 0) {
103     unref(thr, pc, s);
104   } else if (flags()->io_sync == 1) {
105     d->sync = s;
106   } else if (flags()->io_sync == 2) {
107     unref(thr, pc, s);
108     d->sync = &fdctx.globsync;
109   }
110   d->creation_tid = thr->tid;
111   d->creation_stack = CurrentStackId(thr, pc);
112   // To catch races between fd usage and open.
113   MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
114 }
115
116 void FdInit() {
117   atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
118   atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
119   atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
120 }
121
122 void FdOnFork(ThreadState *thr, uptr pc) {
123   // On fork() we need to reset all fd's, because the child is going
124   // close all them, and that will cause races between previous read/write
125   // and the close.
126   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
127     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
128     if (tab == 0)
129       break;
130     for (int l2 = 0; l2 < kTableSizeL2; l2++) {
131       FdDesc *d = &tab[l2];
132       MemoryResetRange(thr, pc, (uptr)d, 8);
133     }
134   }
135 }
136
137 bool FdLocation(uptr addr, int *fd, int *tid, u32 *stack) {
138   for (int l1 = 0; l1 < kTableSizeL1; l1++) {
139     FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
140     if (tab == 0)
141       break;
142     if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
143       int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
144       FdDesc *d = &tab[l2];
145       *fd = l1 * kTableSizeL1 + l2;
146       *tid = d->creation_tid;
147       *stack = d->creation_stack;
148       return true;
149     }
150   }
151   return false;
152 }
153
154 void FdAcquire(ThreadState *thr, uptr pc, int fd) {
155   if (bogusfd(fd))
156     return;
157   FdDesc *d = fddesc(thr, pc, fd);
158   FdSync *s = d->sync;
159   DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
160   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
161   if (s)
162     Acquire(thr, pc, (uptr)s);
163 }
164
165 void FdRelease(ThreadState *thr, uptr pc, int fd) {
166   if (bogusfd(fd))
167     return;
168   FdDesc *d = fddesc(thr, pc, fd);
169   FdSync *s = d->sync;
170   DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
171   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
172   if (s)
173     Release(thr, pc, (uptr)s);
174 }
175
176 void FdAccess(ThreadState *thr, uptr pc, int fd) {
177   DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
178   if (bogusfd(fd))
179     return;
180   FdDesc *d = fddesc(thr, pc, fd);
181   MemoryRead(thr, pc, (uptr)d, kSizeLog8);
182 }
183
184 void FdClose(ThreadState *thr, uptr pc, int fd) {
185   DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
186   if (bogusfd(fd))
187     return;
188   FdDesc *d = fddesc(thr, pc, fd);
189   // To catch races between fd usage and close.
190   MemoryWrite(thr, pc, (uptr)d, kSizeLog8);
191   // We need to clear it, because if we do not intercept any call out there
192   // that creates fd, we will hit false postives.
193   MemoryResetRange(thr, pc, (uptr)d, 8);
194   unref(thr, pc, d->sync);
195   d->sync = 0;
196   d->creation_tid = 0;
197   d->creation_stack = 0;
198 }
199
200 void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
201   DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
202   if (bogusfd(fd))
203     return;
204   init(thr, pc, fd, &fdctx.filesync);
205 }
206
207 void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd) {
208   DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
209   if (bogusfd(oldfd) || bogusfd(newfd))
210     return;
211   // Ignore the case when user dups not yet connected socket.
212   FdDesc *od = fddesc(thr, pc, oldfd);
213   MemoryRead(thr, pc, (uptr)od, kSizeLog8);
214   FdClose(thr, pc, newfd);
215   init(thr, pc, newfd, ref(od->sync));
216 }
217
218 void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
219   DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
220   FdSync *s = allocsync(thr, pc);
221   init(thr, pc, rfd, ref(s));
222   init(thr, pc, wfd, ref(s));
223   unref(thr, pc, s);
224 }
225
226 void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
227   DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
228   if (bogusfd(fd))
229     return;
230   init(thr, pc, fd, allocsync(thr, pc));
231 }
232
233 void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
234   DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
235   if (bogusfd(fd))
236     return;
237   init(thr, pc, fd, 0);
238 }
239
240 void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
241   DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
242   if (bogusfd(fd))
243     return;
244   init(thr, pc, fd, 0);
245 }
246
247 void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
248   DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
249   if (bogusfd(fd))
250     return;
251   init(thr, pc, fd, allocsync(thr, pc));
252 }
253
254 void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
255   DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
256   if (bogusfd(fd))
257     return;
258   // It can be a UDP socket.
259   init(thr, pc, fd, &fdctx.socksync);
260 }
261
262 void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
263   DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
264   if (bogusfd(fd))
265     return;
266   // Synchronize connect->accept.
267   Acquire(thr, pc, (uptr)&fdctx.connectsync);
268   init(thr, pc, newfd, &fdctx.socksync);
269 }
270
271 void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
272   DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
273   if (bogusfd(fd))
274     return;
275   // Synchronize connect->accept.
276   Release(thr, pc, (uptr)&fdctx.connectsync);
277 }
278
279 void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
280   DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
281   if (bogusfd(fd))
282     return;
283   init(thr, pc, fd, &fdctx.socksync);
284 }
285
286 uptr File2addr(const char *path) {
287   (void)path;
288   static u64 addr;
289   return (uptr)&addr;
290 }
291
292 uptr Dir2addr(const char *path) {
293   (void)path;
294   static u64 addr;
295   return (uptr)&addr;
296 }
297
298 }  //  namespace __tsan