]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_interceptors_mac.cc
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_interceptors_mac.cc
1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Mac-specific interceptors.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_MAC
17
18 #include "interception/interception.h"
19 #include "tsan_interceptors.h"
20 #include "tsan_interface.h"
21 #include "tsan_interface_ann.h"
22
23 #include <libkern/OSAtomic.h>
24
25 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
26 #include <xpc/xpc.h>
27 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
28
29 typedef long long_t;  // NOLINT
30
31 namespace __tsan {
32
33 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
34 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
35 // actually aliases of each other, and we cannot have different interceptors for
36 // them, because they're actually the same function.  Thus, we have to stay
37 // conservative and treat the non-barrier versions as mo_acq_rel.
38 static const morder kMacOrderBarrier = mo_acq_rel;
39 static const morder kMacOrderNonBarrier = mo_acq_rel;
40
41 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
42   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
43     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
44     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
45   }
46
47 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
48   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
49     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
50     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
51   }
52
53 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
54   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
55     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
56     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
57   }
58
59 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
60                                      mo)                                    \
61   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
62     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
63     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
64   }
65
66 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
67   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
68     kMacOrderNonBarrier)                                                       \
69   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
70     kMacOrderBarrier)                                                          \
71   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
72     kMacOrderNonBarrier)                                                       \
73   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
74     kMacOrderBarrier)
75
76 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
77   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
78     kMacOrderNonBarrier)                                                       \
79   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
80     kMacOrderBarrier)                                                          \
81   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
82     kMacOrderNonBarrier)                                                       \
83   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
84     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
85
86 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
87                                  OSATOMIC_INTERCEPTOR_PLUS_X)
88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
89                                  OSATOMIC_INTERCEPTOR_PLUS_1)
90 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
91                                  OSATOMIC_INTERCEPTOR_MINUS_1)
92 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
93                               OSATOMIC_INTERCEPTOR)
94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
95                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
96 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
97                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
98
99 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
100   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
101     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
102     return tsan_atomic_f##_compare_exchange_strong(                         \
103         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
104         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
105   }                                                                         \
106                                                                             \
107   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
108                    t volatile *ptr) {                                       \
109     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
110     return tsan_atomic_f##_compare_exchange_strong(                         \
111         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
112         kMacOrderBarrier, kMacOrderNonBarrier);                             \
113   }
114
115 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
116 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
117                           long_t)
118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
119                           void *)
120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
121                           int32_t)
122 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
123                           int64_t)
124
125 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)          \
126   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
127     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                       \
128     char *byte_ptr = ((char *)ptr) + (n >> 3);                \
129     char bit = 0x80u >> (n & 7);                              \
130     char mask = clear ? ~bit : bit;                           \
131     char orig_byte = op((a8 *)byte_ptr, mask, mo);            \
132     return orig_byte & bit;                                   \
133   }
134
135 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
136   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
137   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
138
139 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
140 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
141                             true)
142
143 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
144                  size_t offset) {
145   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
146   __tsan_release(item);
147   REAL(OSAtomicEnqueue)(list, item, offset);
148 }
149
150 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
151   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
152   void *item = REAL(OSAtomicDequeue)(list, offset);
153   if (item) __tsan_acquire(item);
154   return item;
155 }
156
157 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
158 #if !SANITIZER_IOS
159
160 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
161                  size_t offset) {
162   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
163   __tsan_release(item);
164   REAL(OSAtomicFifoEnqueue)(list, item, offset);
165 }
166
167 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
168                  size_t offset) {
169   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
170   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
171   if (item) __tsan_acquire(item);
172   return item;
173 }
174
175 #endif
176
177 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
178   CHECK(!cur_thread()->is_dead);
179   if (!cur_thread()->is_inited) {
180     return REAL(OSSpinLockLock)(lock);
181   }
182   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
183   REAL(OSSpinLockLock)(lock);
184   Acquire(thr, pc, (uptr)lock);
185 }
186
187 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
188   CHECK(!cur_thread()->is_dead);
189   if (!cur_thread()->is_inited) {
190     return REAL(OSSpinLockTry)(lock);
191   }
192   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
193   bool result = REAL(OSSpinLockTry)(lock);
194   if (result)
195     Acquire(thr, pc, (uptr)lock);
196   return result;
197 }
198
199 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
200   CHECK(!cur_thread()->is_dead);
201   if (!cur_thread()->is_inited) {
202     return REAL(OSSpinLockUnlock)(lock);
203   }
204   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
205   Release(thr, pc, (uptr)lock);
206   REAL(OSSpinLockUnlock)(lock);
207 }
208
209 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
210   CHECK(!cur_thread()->is_dead);
211   if (!cur_thread()->is_inited) {
212     return REAL(os_lock_lock)(lock);
213   }
214   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
215   REAL(os_lock_lock)(lock);
216   Acquire(thr, pc, (uptr)lock);
217 }
218
219 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
220   CHECK(!cur_thread()->is_dead);
221   if (!cur_thread()->is_inited) {
222     return REAL(os_lock_trylock)(lock);
223   }
224   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
225   bool result = REAL(os_lock_trylock)(lock);
226   if (result)
227     Acquire(thr, pc, (uptr)lock);
228   return result;
229 }
230
231 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
232   CHECK(!cur_thread()->is_dead);
233   if (!cur_thread()->is_inited) {
234     return REAL(os_lock_unlock)(lock);
235   }
236   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
237   Release(thr, pc, (uptr)lock);
238   REAL(os_lock_unlock)(lock);
239 }
240
241 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
242
243 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
244                  xpc_connection_t connection, xpc_handler_t handler) {
245   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
246                           handler);
247   Release(thr, pc, (uptr)connection);
248   xpc_handler_t new_handler = ^(xpc_object_t object) {
249     {
250       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
251       Acquire(thr, pc, (uptr)connection);
252     }
253     handler(object);
254   };
255   REAL(xpc_connection_set_event_handler)(connection, new_handler);
256 }
257
258 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
259                  dispatch_block_t barrier) {
260   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
261   Release(thr, pc, (uptr)connection);
262   dispatch_block_t new_barrier = ^() {
263     {
264       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
265       Acquire(thr, pc, (uptr)connection);
266     }
267     barrier();
268   };
269   REAL(xpc_connection_send_barrier)(connection, new_barrier);
270 }
271
272 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
273                  xpc_connection_t connection, xpc_object_t message,
274                  dispatch_queue_t replyq, xpc_handler_t handler) {
275   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
276                           message, replyq, handler);
277   Release(thr, pc, (uptr)connection);
278   xpc_handler_t new_handler = ^(xpc_object_t object) {
279     {
280       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
281       Acquire(thr, pc, (uptr)connection);
282     }
283     handler(object);
284   };
285   REAL(xpc_connection_send_message_with_reply)
286   (connection, message, replyq, new_handler);
287 }
288
289 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
290   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
291   Release(thr, pc, (uptr)connection);
292   REAL(xpc_connection_cancel)(connection);
293 }
294
295 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
296
297 // On macOS, libc++ is always linked dynamically, so intercepting works the
298 // usual way.
299 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
300
301 namespace {
302 struct fake_shared_weak_count {
303   volatile a64 shared_owners;
304   volatile a64 shared_weak_owners;
305   virtual void _unused_0x0() = 0;
306   virtual void _unused_0x8() = 0;
307   virtual void on_zero_shared() = 0;
308   virtual void _unused_0x18() = 0;
309   virtual void on_zero_shared_weak() = 0;
310 };
311 }  // namespace
312
313 // The following code adds libc++ interceptors for:
314 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
315 //     bool __shared_count::__release_shared() _NOEXCEPT;
316 // Shared and weak pointers in C++ maintain reference counts via atomics in
317 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
318 // destructor code. These interceptors re-implements the whole functions so that
319 // the mo_acq_rel semantics of the atomic decrement are visible.
320 //
321 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
322 // object and call the original function, because it would have a race between
323 // the sync and the destruction of the object.  Calling both under a lock will
324 // not work because the destructor can invoke this interceptor again (and even
325 // in a different thread, so recursive locks don't help).
326
327 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
328                    fake_shared_weak_count *o) {
329   if (!flags()->shared_ptr_interceptor)
330     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
331
332   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
333                           o);
334   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
335     Acquire(thr, pc, (uptr)&o->shared_owners);
336     o->on_zero_shared();
337     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
338         0) {
339       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
340       o->on_zero_shared_weak();
341     }
342   }
343 }
344
345 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
346                    fake_shared_weak_count *o) {
347   if (!flags()->shared_ptr_interceptor)
348     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
349
350   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
351   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
352     Acquire(thr, pc, (uptr)&o->shared_owners);
353     o->on_zero_shared();
354     return true;
355   }
356   return false;
357 }
358
359 namespace {
360 struct call_once_callback_args {
361   void (*orig_func)(void *arg);
362   void *orig_arg;
363   void *flag;
364 };
365
366 void call_once_callback_wrapper(void *arg) {
367   call_once_callback_args *new_args = (call_once_callback_args *)arg;
368   new_args->orig_func(new_args->orig_arg);
369   __tsan_release(new_args->flag);
370 }
371 }  // namespace
372
373 // This adds a libc++ interceptor for:
374 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
375 // C++11 call_once is implemented via an internal function __call_once which is
376 // inside libc++.dylib, and the atomic release store inside it is thus
377 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
378 // function and performs an explicit Release after the user code has run.
379 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
380                    void *arg, void (*func)(void *arg)) {
381   call_once_callback_args new_args = {func, arg, flag};
382   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
383                                             call_once_callback_wrapper);
384 }
385
386 }  // namespace __tsan
387
388 #endif  // SANITIZER_MAC