]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_interceptors_mac.cc
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_interceptors_mac.cc
1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Mac-specific interceptors.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_MAC
17
18 #include "interception/interception.h"
19 #include "tsan_interceptors.h"
20 #include "tsan_interface.h"
21 #include "tsan_interface_ann.h"
22 #include "sanitizer_common/sanitizer_addrhashmap.h"
23
24 #include <libkern/OSAtomic.h>
25 #include <objc/objc-sync.h>
26
27 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
28 #include <xpc/xpc.h>
29 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
30
31 typedef long long_t;  // NOLINT
32
33 namespace __tsan {
34
35 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
36 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
37 // actually aliases of each other, and we cannot have different interceptors for
38 // them, because they're actually the same function.  Thus, we have to stay
39 // conservative and treat the non-barrier versions as mo_acq_rel.
40 static const morder kMacOrderBarrier = mo_acq_rel;
41 static const morder kMacOrderNonBarrier = mo_acq_rel;
42
43 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
44   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
45     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
46     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
47   }
48
49 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
50   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
51     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
52     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
53   }
54
55 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
56   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
57     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
58     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
59   }
60
61 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
62                                      mo)                                    \
63   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
64     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
65     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
66   }
67
68 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
69   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
70     kMacOrderNonBarrier)                                                       \
71   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
72     kMacOrderBarrier)                                                          \
73   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
74     kMacOrderNonBarrier)                                                       \
75   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
76     kMacOrderBarrier)
77
78 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
79   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
80     kMacOrderNonBarrier)                                                       \
81   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
82     kMacOrderBarrier)                                                          \
83   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
84     kMacOrderNonBarrier)                                                       \
85   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
86     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
87
88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
89                                  OSATOMIC_INTERCEPTOR_PLUS_X)
90 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
91                                  OSATOMIC_INTERCEPTOR_PLUS_1)
92 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
93                                  OSATOMIC_INTERCEPTOR_MINUS_1)
94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
95                               OSATOMIC_INTERCEPTOR)
96 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
97                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
98 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
99                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
100
101 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
102   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
103     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
104     return tsan_atomic_f##_compare_exchange_strong(                         \
105         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
106         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
107   }                                                                         \
108                                                                             \
109   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
110                    t volatile *ptr) {                                       \
111     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
112     return tsan_atomic_f##_compare_exchange_strong(                         \
113         (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,    \
114         kMacOrderBarrier, kMacOrderNonBarrier);                             \
115   }
116
117 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
119                           long_t)
120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
121                           void *)
122 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
123                           int32_t)
124 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
125                           int64_t)
126
127 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)             \
128   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) {    \
129     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                          \
130     volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
131     char bit = 0x80u >> (n & 7);                                 \
132     char mask = clear ? ~bit : bit;                              \
133     char orig_byte = op((volatile a8 *)byte_ptr, mask, mo);      \
134     return orig_byte & bit;                                      \
135   }
136
137 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
138   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
139   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
140
141 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
142 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
143                             true)
144
145 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
146                  size_t offset) {
147   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
148   __tsan_release(item);
149   REAL(OSAtomicEnqueue)(list, item, offset);
150 }
151
152 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
153   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
154   void *item = REAL(OSAtomicDequeue)(list, offset);
155   if (item) __tsan_acquire(item);
156   return item;
157 }
158
159 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
160 #if !SANITIZER_IOS
161
162 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
163                  size_t offset) {
164   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
165   __tsan_release(item);
166   REAL(OSAtomicFifoEnqueue)(list, item, offset);
167 }
168
169 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
170                  size_t offset) {
171   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
172   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
173   if (item) __tsan_acquire(item);
174   return item;
175 }
176
177 #endif
178
179 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
180   CHECK(!cur_thread()->is_dead);
181   if (!cur_thread()->is_inited) {
182     return REAL(OSSpinLockLock)(lock);
183   }
184   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
185   REAL(OSSpinLockLock)(lock);
186   Acquire(thr, pc, (uptr)lock);
187 }
188
189 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
190   CHECK(!cur_thread()->is_dead);
191   if (!cur_thread()->is_inited) {
192     return REAL(OSSpinLockTry)(lock);
193   }
194   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
195   bool result = REAL(OSSpinLockTry)(lock);
196   if (result)
197     Acquire(thr, pc, (uptr)lock);
198   return result;
199 }
200
201 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
202   CHECK(!cur_thread()->is_dead);
203   if (!cur_thread()->is_inited) {
204     return REAL(OSSpinLockUnlock)(lock);
205   }
206   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
207   Release(thr, pc, (uptr)lock);
208   REAL(OSSpinLockUnlock)(lock);
209 }
210
211 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
212   CHECK(!cur_thread()->is_dead);
213   if (!cur_thread()->is_inited) {
214     return REAL(os_lock_lock)(lock);
215   }
216   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
217   REAL(os_lock_lock)(lock);
218   Acquire(thr, pc, (uptr)lock);
219 }
220
221 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
222   CHECK(!cur_thread()->is_dead);
223   if (!cur_thread()->is_inited) {
224     return REAL(os_lock_trylock)(lock);
225   }
226   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
227   bool result = REAL(os_lock_trylock)(lock);
228   if (result)
229     Acquire(thr, pc, (uptr)lock);
230   return result;
231 }
232
233 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
234   CHECK(!cur_thread()->is_dead);
235   if (!cur_thread()->is_inited) {
236     return REAL(os_lock_unlock)(lock);
237   }
238   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
239   Release(thr, pc, (uptr)lock);
240   REAL(os_lock_unlock)(lock);
241 }
242
243 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
244
245 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
246                  xpc_connection_t connection, xpc_handler_t handler) {
247   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
248                           handler);
249   Release(thr, pc, (uptr)connection);
250   xpc_handler_t new_handler = ^(xpc_object_t object) {
251     {
252       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
253       Acquire(thr, pc, (uptr)connection);
254     }
255     handler(object);
256   };
257   REAL(xpc_connection_set_event_handler)(connection, new_handler);
258 }
259
260 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
261                  dispatch_block_t barrier) {
262   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
263   Release(thr, pc, (uptr)connection);
264   dispatch_block_t new_barrier = ^() {
265     {
266       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
267       Acquire(thr, pc, (uptr)connection);
268     }
269     barrier();
270   };
271   REAL(xpc_connection_send_barrier)(connection, new_barrier);
272 }
273
274 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
275                  xpc_connection_t connection, xpc_object_t message,
276                  dispatch_queue_t replyq, xpc_handler_t handler) {
277   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
278                           message, replyq, handler);
279   Release(thr, pc, (uptr)connection);
280   xpc_handler_t new_handler = ^(xpc_object_t object) {
281     {
282       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
283       Acquire(thr, pc, (uptr)connection);
284     }
285     handler(object);
286   };
287   REAL(xpc_connection_send_message_with_reply)
288   (connection, message, replyq, new_handler);
289 }
290
291 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
292   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
293   Release(thr, pc, (uptr)connection);
294   REAL(xpc_connection_cancel)(connection);
295 }
296
297 #endif  // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
298
299 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
300 // pointers encode the object data directly in their pointer bits and do not
301 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
302 // to transparently optimize small objects.
303 static bool IsTaggedObjCPointer(id obj) {
304   const uptr kPossibleTaggedBits = 0x8000000000000001ull;
305   return ((uptr)obj & kPossibleTaggedBits) != 0;
306 }
307
308 // Returns an address which can be used to inform TSan about synchronization
309 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
310 // address in the process space. We do a small allocation here to obtain a
311 // stable address (the array backing the hash map can change). The memory is
312 // never free'd (leaked) and allocation and locking are slow, but this code only
313 // runs for @synchronized with tagged pointers, which is very rare.
314 static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) {
315   typedef AddrHashMap<uptr, 5> Map;
316   static Map Addresses;
317   Map::Handle h(&Addresses, addr);
318   if (h.created()) {
319     ThreadIgnoreBegin(thr, pc);
320     *h = (uptr) user_alloc(thr, pc, /*size=*/1);
321     ThreadIgnoreEnd(thr, pc);
322   }
323   return *h;
324 }
325
326 // Returns an address on which we can synchronize given an Obj-C object pointer.
327 // For normal object pointers, this is just the address of the object in memory.
328 // Tagged pointers are not backed by an actual memory allocation, so we need to
329 // synthesize a valid address.
330 static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) {
331   if (IsTaggedObjCPointer(obj))
332     return GetOrCreateSyncAddress((uptr)obj, thr, pc);
333   return (uptr)obj;
334 }
335
336 TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) {
337   SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
338   if (!obj) return REAL(objc_sync_enter)(obj);
339   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
340   MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant);
341   int result = REAL(objc_sync_enter)(obj);
342   CHECK_EQ(result, OBJC_SYNC_SUCCESS);
343   MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant);
344   return result;
345 }
346
347 TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) {
348   SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj);
349   if (!obj) return REAL(objc_sync_exit)(obj);
350   uptr addr = SyncAddressForObjCObject(obj, thr, pc);
351   MutexUnlock(thr, pc, addr);
352   int result = REAL(objc_sync_exit)(obj);
353   if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr);
354   return result;
355 }
356
357 // On macOS, libc++ is always linked dynamically, so intercepting works the
358 // usual way.
359 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
360
361 namespace {
362 struct fake_shared_weak_count {
363   volatile a64 shared_owners;
364   volatile a64 shared_weak_owners;
365   virtual void _unused_0x0() = 0;
366   virtual void _unused_0x8() = 0;
367   virtual void on_zero_shared() = 0;
368   virtual void _unused_0x18() = 0;
369   virtual void on_zero_shared_weak() = 0;
370 };
371 }  // namespace
372
373 // The following code adds libc++ interceptors for:
374 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
375 //     bool __shared_count::__release_shared() _NOEXCEPT;
376 // Shared and weak pointers in C++ maintain reference counts via atomics in
377 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
378 // destructor code. These interceptors re-implements the whole functions so that
379 // the mo_acq_rel semantics of the atomic decrement are visible.
380 //
381 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
382 // object and call the original function, because it would have a race between
383 // the sync and the destruction of the object.  Calling both under a lock will
384 // not work because the destructor can invoke this interceptor again (and even
385 // in a different thread, so recursive locks don't help).
386
387 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
388                    fake_shared_weak_count *o) {
389   if (!flags()->shared_ptr_interceptor)
390     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
391
392   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
393                           o);
394   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
395     Acquire(thr, pc, (uptr)&o->shared_owners);
396     o->on_zero_shared();
397     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
398         0) {
399       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
400       o->on_zero_shared_weak();
401     }
402   }
403 }
404
405 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
406                    fake_shared_weak_count *o) {
407   if (!flags()->shared_ptr_interceptor)
408     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
409
410   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
411   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
412     Acquire(thr, pc, (uptr)&o->shared_owners);
413     o->on_zero_shared();
414     return true;
415   }
416   return false;
417 }
418
419 namespace {
420 struct call_once_callback_args {
421   void (*orig_func)(void *arg);
422   void *orig_arg;
423   void *flag;
424 };
425
426 void call_once_callback_wrapper(void *arg) {
427   call_once_callback_args *new_args = (call_once_callback_args *)arg;
428   new_args->orig_func(new_args->orig_arg);
429   __tsan_release(new_args->flag);
430 }
431 }  // namespace
432
433 // This adds a libc++ interceptor for:
434 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
435 // C++11 call_once is implemented via an internal function __call_once which is
436 // inside libc++.dylib, and the atomic release store inside it is thus
437 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
438 // function and performs an explicit Release after the user code has run.
439 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
440                    void *arg, void (*func)(void *arg)) {
441   call_once_callback_args new_args = {func, arg, flag};
442   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
443                                             call_once_callback_wrapper);
444 }
445
446 }  // namespace __tsan
447
448 #endif  // SANITIZER_MAC