]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_interceptors_mac.cc
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306956, and update
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_interceptors_mac.cc
1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Mac-specific interceptors.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_MAC
17
18 #include "interception/interception.h"
19 #include "tsan_interceptors.h"
20 #include "tsan_interface.h"
21 #include "tsan_interface_ann.h"
22
23 #include <libkern/OSAtomic.h>
24 #include <xpc/xpc.h>
25
26 typedef long long_t;  // NOLINT
27
28 namespace __tsan {
29
30 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
31 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
32 // actually aliases of each other, and we cannot have different interceptors for
33 // them, because they're actually the same function.  Thus, we have to stay
34 // conservative and treat the non-barrier versions as mo_acq_rel.
35 static const morder kMacOrderBarrier = mo_acq_rel;
36 static const morder kMacOrderNonBarrier = mo_acq_rel;
37
38 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
39   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                 \
40     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                 \
41     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo);                \
42   }
43
44 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
45   TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) {                        \
46     SCOPED_TSAN_INTERCEPTOR(f, x, ptr);                                        \
47     return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x;                   \
48   }
49
50 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
51   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                             \
52     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                           \
53     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1;                   \
54   }
55
56 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
57                                      mo)                                    \
58   TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) {                          \
59     SCOPED_TSAN_INTERCEPTOR(f, ptr);                                        \
60     return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1;                \
61   }
62
63 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m)                  \
64   m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,             \
65     kMacOrderNonBarrier)                                                       \
66   m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,    \
67     kMacOrderBarrier)                                                          \
68   m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f,             \
69     kMacOrderNonBarrier)                                                       \
70   m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f,    \
71     kMacOrderBarrier)
72
73 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig)             \
74   m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f,            \
75     kMacOrderNonBarrier)                                                       \
76   m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f,   \
77     kMacOrderBarrier)                                                          \
78   m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
79     kMacOrderNonBarrier)                                                       \
80   m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier,                           \
81     __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
82
83 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
84                                  OSATOMIC_INTERCEPTOR_PLUS_X)
85 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
86                                  OSATOMIC_INTERCEPTOR_PLUS_1)
87 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
88                                  OSATOMIC_INTERCEPTOR_MINUS_1)
89 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
90                               OSATOMIC_INTERCEPTOR)
91 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
92                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
93 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
94                               OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
95
96 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t)              \
97   TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) {    \
98     SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr);                  \
99     return tsan_atomic_f##_compare_exchange_strong(                         \
100         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
101         kMacOrderNonBarrier, kMacOrderNonBarrier);                          \
102   }                                                                         \
103                                                                             \
104   TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value,              \
105                    t volatile *ptr) {                                       \
106     SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr);         \
107     return tsan_atomic_f##_compare_exchange_strong(                         \
108         (tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value,             \
109         kMacOrderBarrier, kMacOrderNonBarrier);                             \
110   }
111
112 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
113 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
114                           long_t)
115 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
116                           void *)
117 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
118                           int32_t)
119 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
120                           int64_t)
121
122 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo)          \
123   TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
124     SCOPED_TSAN_INTERCEPTOR(f, n, ptr);                       \
125     char *byte_ptr = ((char *)ptr) + (n >> 3);                \
126     char bit = 0x80u >> (n & 7);                              \
127     char mask = clear ? ~bit : bit;                           \
128     char orig_byte = op((a8 *)byte_ptr, mask, mo);            \
129     return orig_byte & bit;                                   \
130   }
131
132 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear)               \
133   OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
134   OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
135
136 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
137 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
138                             true)
139
140 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
141                  size_t offset) {
142   SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
143   __tsan_release(item);
144   REAL(OSAtomicEnqueue)(list, item, offset);
145 }
146
147 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
148   SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
149   void *item = REAL(OSAtomicDequeue)(list, offset);
150   if (item) __tsan_acquire(item);
151   return item;
152 }
153
154 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
155 #if !SANITIZER_IOS
156
157 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
158                  size_t offset) {
159   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
160   __tsan_release(item);
161   REAL(OSAtomicFifoEnqueue)(list, item, offset);
162 }
163
164 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
165                  size_t offset) {
166   SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
167   void *item = REAL(OSAtomicFifoDequeue)(list, offset);
168   if (item) __tsan_acquire(item);
169   return item;
170 }
171
172 #endif
173
174 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
175   CHECK(!cur_thread()->is_dead);
176   if (!cur_thread()->is_inited) {
177     return REAL(OSSpinLockLock)(lock);
178   }
179   SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
180   REAL(OSSpinLockLock)(lock);
181   Acquire(thr, pc, (uptr)lock);
182 }
183
184 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
185   CHECK(!cur_thread()->is_dead);
186   if (!cur_thread()->is_inited) {
187     return REAL(OSSpinLockTry)(lock);
188   }
189   SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
190   bool result = REAL(OSSpinLockTry)(lock);
191   if (result)
192     Acquire(thr, pc, (uptr)lock);
193   return result;
194 }
195
196 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
197   CHECK(!cur_thread()->is_dead);
198   if (!cur_thread()->is_inited) {
199     return REAL(OSSpinLockUnlock)(lock);
200   }
201   SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
202   Release(thr, pc, (uptr)lock);
203   REAL(OSSpinLockUnlock)(lock);
204 }
205
206 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
207   CHECK(!cur_thread()->is_dead);
208   if (!cur_thread()->is_inited) {
209     return REAL(os_lock_lock)(lock);
210   }
211   SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
212   REAL(os_lock_lock)(lock);
213   Acquire(thr, pc, (uptr)lock);
214 }
215
216 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
217   CHECK(!cur_thread()->is_dead);
218   if (!cur_thread()->is_inited) {
219     return REAL(os_lock_trylock)(lock);
220   }
221   SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
222   bool result = REAL(os_lock_trylock)(lock);
223   if (result)
224     Acquire(thr, pc, (uptr)lock);
225   return result;
226 }
227
228 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
229   CHECK(!cur_thread()->is_dead);
230   if (!cur_thread()->is_inited) {
231     return REAL(os_lock_unlock)(lock);
232   }
233   SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
234   Release(thr, pc, (uptr)lock);
235   REAL(os_lock_unlock)(lock);
236 }
237
238 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
239                  xpc_connection_t connection, xpc_handler_t handler) {
240   SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
241                           handler);
242   Release(thr, pc, (uptr)connection);
243   xpc_handler_t new_handler = ^(xpc_object_t object) {
244     {
245       SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
246       Acquire(thr, pc, (uptr)connection);
247     }
248     handler(object);
249   };
250   REAL(xpc_connection_set_event_handler)(connection, new_handler);
251 }
252
253 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
254                  dispatch_block_t barrier) {
255   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
256   Release(thr, pc, (uptr)connection);
257   dispatch_block_t new_barrier = ^() {
258     {
259       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
260       Acquire(thr, pc, (uptr)connection);
261     }
262     barrier();
263   };
264   REAL(xpc_connection_send_barrier)(connection, new_barrier);
265 }
266
267 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
268                  xpc_connection_t connection, xpc_object_t message,
269                  dispatch_queue_t replyq, xpc_handler_t handler) {
270   SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
271                           message, replyq, handler);
272   Release(thr, pc, (uptr)connection);
273   xpc_handler_t new_handler = ^(xpc_object_t object) {
274     {
275       SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
276       Acquire(thr, pc, (uptr)connection);
277     }
278     handler(object);
279   };
280   REAL(xpc_connection_send_message_with_reply)
281   (connection, message, replyq, new_handler);
282 }
283
284 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
285   SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
286   Release(thr, pc, (uptr)connection);
287   REAL(xpc_connection_cancel)(connection);
288 }
289
290 // On macOS, libc++ is always linked dynamically, so intercepting works the
291 // usual way.
292 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
293
294 namespace {
295 struct fake_shared_weak_count {
296   volatile a64 shared_owners;
297   volatile a64 shared_weak_owners;
298   virtual void _unused_0x0() = 0;
299   virtual void _unused_0x8() = 0;
300   virtual void on_zero_shared() = 0;
301   virtual void _unused_0x18() = 0;
302   virtual void on_zero_shared_weak() = 0;
303 };
304 }  // namespace
305
306 // The following code adds libc++ interceptors for:
307 //     void __shared_weak_count::__release_shared() _NOEXCEPT;
308 //     bool __shared_count::__release_shared() _NOEXCEPT;
309 // Shared and weak pointers in C++ maintain reference counts via atomics in
310 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
311 // destructor code. These interceptors re-implements the whole functions so that
312 // the mo_acq_rel semantics of the atomic decrement are visible.
313 //
314 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
315 // object and call the original function, because it would have a race between
316 // the sync and the destruction of the object.  Calling both under a lock will
317 // not work because the destructor can invoke this interceptor again (and even
318 // in a different thread, so recursive locks don't help).
319
320 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
321                    fake_shared_weak_count *o) {
322   if (!flags()->shared_ptr_interceptor)
323     return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
324
325   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
326                           o);
327   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
328     Acquire(thr, pc, (uptr)&o->shared_owners);
329     o->on_zero_shared();
330     if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
331         0) {
332       Acquire(thr, pc, (uptr)&o->shared_weak_owners);
333       o->on_zero_shared_weak();
334     }
335   }
336 }
337
338 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
339                    fake_shared_weak_count *o) {
340   if (!flags()->shared_ptr_interceptor)
341     return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
342
343   SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
344   if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
345     Acquire(thr, pc, (uptr)&o->shared_owners);
346     o->on_zero_shared();
347     return true;
348   }
349   return false;
350 }
351
352 namespace {
353 struct call_once_callback_args {
354   void (*orig_func)(void *arg);
355   void *orig_arg;
356   void *flag;
357 };
358
359 void call_once_callback_wrapper(void *arg) {
360   call_once_callback_args *new_args = (call_once_callback_args *)arg;
361   new_args->orig_func(new_args->orig_arg);
362   __tsan_release(new_args->flag);
363 }
364 }  // namespace
365
366 // This adds a libc++ interceptor for:
367 //     void __call_once(volatile unsigned long&, void*, void(*)(void*));
368 // C++11 call_once is implemented via an internal function __call_once which is
369 // inside libc++.dylib, and the atomic release store inside it is thus
370 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
371 // function and performs an explicit Release after the user code has run.
372 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
373                    void *arg, void (*func)(void *arg)) {
374   call_once_callback_args new_args = {func, arg, flag};
375   REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
376                                             call_once_callback_wrapper);
377 }
378
379 }  // namespace __tsan
380
381 #endif  // SANITIZER_MAC