]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_mman.cc
Import tzdata 2016h
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_mman.cc
1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_placement_new.h"
16 #include "tsan_mman.h"
17 #include "tsan_rtl.h"
18 #include "tsan_report.h"
19 #include "tsan_flags.h"
20
21 // May be overriden by front-end.
22 SANITIZER_WEAK_DEFAULT_IMPL
23 void __sanitizer_malloc_hook(void *ptr, uptr size) {
24   (void)ptr;
25   (void)size;
26 }
27
28 SANITIZER_WEAK_DEFAULT_IMPL
29 void __sanitizer_free_hook(void *ptr) {
30   (void)ptr;
31 }
32
33 namespace __tsan {
34
35 struct MapUnmapCallback {
36   void OnMap(uptr p, uptr size) const { }
37   void OnUnmap(uptr p, uptr size) const {
38     // We are about to unmap a chunk of user memory.
39     // Mark the corresponding shadow memory as not needed.
40     DontNeedShadowFor(p, size);
41     // Mark the corresponding meta shadow memory as not needed.
42     // Note the block does not contain any meta info at this point
43     // (this happens after free).
44     const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
45     const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
46     // Block came from LargeMmapAllocator, so must be large.
47     // We rely on this in the calculations below.
48     CHECK_GE(size, 2 * kPageSize);
49     uptr diff = RoundUp(p, kPageSize) - p;
50     if (diff != 0) {
51       p += diff;
52       size -= diff;
53     }
54     diff = p + size - RoundDown(p + size, kPageSize);
55     if (diff != 0)
56       size -= diff;
57     FlushUnneededShadowMemory((uptr)MemToMeta(p), size / kMetaRatio);
58   }
59 };
60
61 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
62 Allocator *allocator() {
63   return reinterpret_cast<Allocator*>(&allocator_placeholder);
64 }
65
66 void InitializeAllocator() {
67   allocator()->Init(common_flags()->allocator_may_return_null);
68 }
69
70 void AllocatorThreadStart(ThreadState *thr) {
71   allocator()->InitCache(&thr->alloc_cache);
72   internal_allocator()->InitCache(&thr->internal_alloc_cache);
73 }
74
75 void AllocatorThreadFinish(ThreadState *thr) {
76   allocator()->DestroyCache(&thr->alloc_cache);
77   internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
78 }
79
80 void AllocatorPrintStats() {
81   allocator()->PrintStats();
82 }
83
84 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
85   if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
86       !flags()->report_signal_unsafe)
87     return;
88   VarSizeStackTrace stack;
89   ObtainCurrentStack(thr, pc, &stack);
90   if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
91     return;
92   ThreadRegistryLock l(ctx->thread_registry);
93   ScopedReport rep(ReportTypeSignalUnsafe);
94   rep.AddStack(stack, true);
95   OutputReport(thr, rep);
96 }
97
98 void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) {
99   if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
100     return allocator()->ReturnNullOrDie();
101   void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
102   if (p == 0)
103     return 0;
104   if (ctx && ctx->initialized)
105     OnUserAlloc(thr, pc, (uptr)p, sz, true);
106   if (signal)
107     SignalUnsafeCall(thr, pc);
108   return p;
109 }
110
111 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
112   if (CallocShouldReturnNullDueToOverflow(size, n))
113     return allocator()->ReturnNullOrDie();
114   void *p = user_alloc(thr, pc, n * size);
115   if (p)
116     internal_memset(p, 0, n * size);
117   return p;
118 }
119
120 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
121   if (ctx && ctx->initialized)
122     OnUserFree(thr, pc, (uptr)p, true);
123   allocator()->Deallocate(&thr->alloc_cache, p);
124   if (signal)
125     SignalUnsafeCall(thr, pc);
126 }
127
128 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
129   DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
130   ctx->metamap.AllocBlock(thr, pc, p, sz);
131   if (write && thr->ignore_reads_and_writes == 0)
132     MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
133   else
134     MemoryResetRange(thr, pc, (uptr)p, sz);
135 }
136
137 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
138   CHECK_NE(p, (void*)0);
139   uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
140   DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
141   if (write && thr->ignore_reads_and_writes == 0)
142     MemoryRangeFreed(thr, pc, (uptr)p, sz);
143 }
144
145 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
146   void *p2 = 0;
147   // FIXME: Handle "shrinking" more efficiently,
148   // it seems that some software actually does this.
149   if (sz) {
150     p2 = user_alloc(thr, pc, sz);
151     if (p2 == 0)
152       return 0;
153     if (p) {
154       uptr oldsz = user_alloc_usable_size(p);
155       internal_memcpy(p2, p, min(oldsz, sz));
156     }
157   }
158   if (p)
159     user_free(thr, pc, p);
160   return p2;
161 }
162
163 uptr user_alloc_usable_size(const void *p) {
164   if (p == 0)
165     return 0;
166   MBlock *b = ctx->metamap.GetBlock((uptr)p);
167   return b ? b->siz : 0;
168 }
169
170 void invoke_malloc_hook(void *ptr, uptr size) {
171   ThreadState *thr = cur_thread();
172   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
173     return;
174   __sanitizer_malloc_hook(ptr, size);
175 }
176
177 void invoke_free_hook(void *ptr) {
178   ThreadState *thr = cur_thread();
179   if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
180     return;
181   __sanitizer_free_hook(ptr);
182 }
183
184 void *internal_alloc(MBlockType typ, uptr sz) {
185   ThreadState *thr = cur_thread();
186   if (thr->nomalloc) {
187     thr->nomalloc = 0;  // CHECK calls internal_malloc().
188     CHECK(0);
189   }
190   return InternalAlloc(sz, &thr->internal_alloc_cache);
191 }
192
193 void internal_free(void *p) {
194   ThreadState *thr = cur_thread();
195   if (thr->nomalloc) {
196     thr->nomalloc = 0;  // CHECK calls internal_malloc().
197     CHECK(0);
198   }
199   InternalFree(p, &thr->internal_alloc_cache);
200 }
201
202 }  // namespace __tsan
203
204 using namespace __tsan;
205
206 extern "C" {
207 uptr __sanitizer_get_current_allocated_bytes() {
208   uptr stats[AllocatorStatCount];
209   allocator()->GetStats(stats);
210   return stats[AllocatorStatAllocated];
211 }
212
213 uptr __sanitizer_get_heap_size() {
214   uptr stats[AllocatorStatCount];
215   allocator()->GetStats(stats);
216   return stats[AllocatorStatMapped];
217 }
218
219 uptr __sanitizer_get_free_bytes() {
220   return 1;
221 }
222
223 uptr __sanitizer_get_unmapped_bytes() {
224   return 1;
225 }
226
227 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
228   return size;
229 }
230
231 int __sanitizer_get_ownership(const void *p) {
232   return allocator()->GetBlockBegin(p) != 0;
233 }
234
235 uptr __sanitizer_get_allocated_size(const void *p) {
236   return user_alloc_usable_size(p);
237 }
238
239 void __tsan_on_thread_idle() {
240   ThreadState *thr = cur_thread();
241   allocator()->SwallowCache(&thr->alloc_cache);
242   internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
243   ctx->metamap.OnThreadIdle(thr);
244 }
245 }  // extern "C"