]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/tsan/rtl/tsan_platform_linux.cc
Merge compiler-rt release_38 branch r258968.
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / tsan / rtl / tsan_platform_linux.cc
1 //===-- tsan_platform_linux.cc --------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Linux- and FreeBSD-specific code.
13 //===----------------------------------------------------------------------===//
14
15
16 #include "sanitizer_common/sanitizer_platform.h"
17 #if SANITIZER_LINUX || SANITIZER_FREEBSD
18
19 #include "sanitizer_common/sanitizer_common.h"
20 #include "sanitizer_common/sanitizer_libc.h"
21 #include "sanitizer_common/sanitizer_posix.h"
22 #include "sanitizer_common/sanitizer_procmaps.h"
23 #include "sanitizer_common/sanitizer_stoptheworld.h"
24 #include "sanitizer_common/sanitizer_stackdepot.h"
25 #include "tsan_platform.h"
26 #include "tsan_rtl.h"
27 #include "tsan_flags.h"
28
29 #include <fcntl.h>
30 #include <pthread.h>
31 #include <signal.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <stdarg.h>
36 #include <sys/mman.h>
37 #include <sys/syscall.h>
38 #include <sys/socket.h>
39 #include <sys/time.h>
40 #include <sys/types.h>
41 #include <sys/resource.h>
42 #include <sys/stat.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <sched.h>
46 #include <dlfcn.h>
47 #if SANITIZER_LINUX
48 #define __need_res_state
49 #include <resolv.h>
50 #endif
51
52 #ifdef sa_handler
53 # undef sa_handler
54 #endif
55
56 #ifdef sa_sigaction
57 # undef sa_sigaction
58 #endif
59
60 #if SANITIZER_FREEBSD
61 extern "C" void *__libc_stack_end;
62 void *__libc_stack_end = 0;
63 #endif
64
65 namespace __tsan {
66
67 static uptr g_data_start;
68 static uptr g_data_end;
69
70 #ifdef TSAN_RUNTIME_VMA
71 // Runtime detected VMA size.
72 uptr vmaSize;
73 #endif
74
75 enum {
76   MemTotal  = 0,
77   MemShadow = 1,
78   MemMeta   = 2,
79   MemFile   = 3,
80   MemMmap   = 4,
81   MemTrace  = 5,
82   MemHeap   = 6,
83   MemOther  = 7,
84   MemCount  = 8,
85 };
86
87 void FillProfileCallback(uptr p, uptr rss, bool file,
88                          uptr *mem, uptr stats_size) {
89   mem[MemTotal] += rss;
90   if (p >= ShadowBeg() && p < ShadowEnd())
91     mem[MemShadow] += rss;
92   else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
93     mem[MemMeta] += rss;
94 #ifndef SANITIZER_GO
95   else if (p >= HeapMemBeg() && p < HeapMemEnd())
96     mem[MemHeap] += rss;
97   else if (p >= LoAppMemBeg() && p < LoAppMemEnd())
98     mem[file ? MemFile : MemMmap] += rss;
99   else if (p >= HiAppMemBeg() && p < HiAppMemEnd())
100     mem[file ? MemFile : MemMmap] += rss;
101 #else
102   else if (p >= AppMemBeg() && p < AppMemEnd())
103     mem[file ? MemFile : MemMmap] += rss;
104 #endif
105   else if (p >= TraceMemBeg() && p < TraceMemEnd())
106     mem[MemTrace] += rss;
107   else
108     mem[MemOther] += rss;
109 }
110
111 void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
112   uptr mem[MemCount];
113   internal_memset(mem, 0, sizeof(mem[0]) * MemCount);
114   __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
115   StackDepotStats *stacks = StackDepotGetStats();
116   internal_snprintf(buf, buf_size,
117       "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
118       " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n",
119       mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
120       mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
121       mem[MemHeap] >> 20, mem[MemOther] >> 20,
122       stacks->allocated >> 20, stacks->n_uniq_ids,
123       nlive, nthread);
124 }
125
126 #if SANITIZER_LINUX
127 void FlushShadowMemoryCallback(
128     const SuspendedThreadsList &suspended_threads_list,
129     void *argument) {
130   FlushUnneededShadowMemory(ShadowBeg(), ShadowEnd() - ShadowBeg());
131 }
132 #endif
133
134 void FlushShadowMemory() {
135 #if SANITIZER_LINUX
136   StopTheWorld(FlushShadowMemoryCallback, 0);
137 #endif
138 }
139
140 #ifndef SANITIZER_GO
141 // Mark shadow for .rodata sections with the special kShadowRodata marker.
142 // Accesses to .rodata can't race, so this saves time, memory and trace space.
143 static void MapRodata() {
144   // First create temp file.
145   const char *tmpdir = GetEnv("TMPDIR");
146   if (tmpdir == 0)
147     tmpdir = GetEnv("TEST_TMPDIR");
148 #ifdef P_tmpdir
149   if (tmpdir == 0)
150     tmpdir = P_tmpdir;
151 #endif
152   if (tmpdir == 0)
153     return;
154   char name[256];
155   internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
156                     tmpdir, (int)internal_getpid());
157   uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
158   if (internal_iserror(openrv))
159     return;
160   internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
161   fd_t fd = openrv;
162   // Fill the file with kShadowRodata.
163   const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
164   InternalScopedBuffer<u64> marker(kMarkerSize);
165   // volatile to prevent insertion of memset
166   for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
167     *p = kShadowRodata;
168   internal_write(fd, marker.data(), marker.size());
169   // Map the file into memory.
170   uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
171                             MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
172   if (internal_iserror(page)) {
173     internal_close(fd);
174     return;
175   }
176   // Map the file into shadow of .rodata sections.
177   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
178   uptr start, end, offset, prot;
179   // Reusing the buffer 'name'.
180   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name), &prot)) {
181     if (name[0] != 0 && name[0] != '['
182         && (prot & MemoryMappingLayout::kProtectionRead)
183         && (prot & MemoryMappingLayout::kProtectionExecute)
184         && !(prot & MemoryMappingLayout::kProtectionWrite)
185         && IsAppMem(start)) {
186       // Assume it's .rodata
187       char *shadow_start = (char*)MemToShadow(start);
188       char *shadow_end = (char*)MemToShadow(end);
189       for (char *p = shadow_start; p < shadow_end; p += marker.size()) {
190         internal_mmap(p, Min<uptr>(marker.size(), shadow_end - p),
191                       PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
192       }
193     }
194   }
195   internal_close(fd);
196 }
197
198 void InitializeShadowMemoryPlatform() {
199   MapRodata();
200 }
201
202 static void InitDataSeg() {
203   MemoryMappingLayout proc_maps(true);
204   uptr start, end, offset;
205   char name[128];
206 #if SANITIZER_FREEBSD
207   // On FreeBSD BSS is usually the last block allocated within the
208   // low range and heap is the last block allocated within the range
209   // 0x800000000-0x8ffffffff.
210   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
211                         /*protection*/ 0)) {
212     DPrintf("%p-%p %p %s\n", start, end, offset, name);
213     if ((start & 0xffff00000000ULL) == 0 && (end & 0xffff00000000ULL) == 0 &&
214         name[0] == '\0') {
215       g_data_start = start;
216       g_data_end = end;
217     }
218   }
219 #else
220   bool prev_is_data = false;
221   while (proc_maps.Next(&start, &end, &offset, name, ARRAY_SIZE(name),
222                         /*protection*/ 0)) {
223     DPrintf("%p-%p %p %s\n", start, end, offset, name);
224     bool is_data = offset != 0 && name[0] != 0;
225     // BSS may get merged with [heap] in /proc/self/maps. This is not very
226     // reliable.
227     bool is_bss = offset == 0 &&
228       (name[0] == 0 || internal_strcmp(name, "[heap]") == 0) && prev_is_data;
229     if (g_data_start == 0 && is_data)
230       g_data_start = start;
231     if (is_bss)
232       g_data_end = end;
233     prev_is_data = is_data;
234   }
235 #endif
236   DPrintf("guessed data_start=%p data_end=%p\n",  g_data_start, g_data_end);
237   CHECK_LT(g_data_start, g_data_end);
238   CHECK_GE((uptr)&g_data_start, g_data_start);
239   CHECK_LT((uptr)&g_data_start, g_data_end);
240 }
241
242 #endif  // #ifndef SANITIZER_GO
243
244 void InitializePlatformEarly() {
245 #ifdef TSAN_RUNTIME_VMA
246   vmaSize =
247     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
248 #if defined(__aarch64__)
249   if (vmaSize != 39 && vmaSize != 42) {
250     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
251     Printf("FATAL: Found %d - Supported 39 and 42\n", vmaSize);
252     Die();
253   }
254 #elif defined(__powerpc64__)
255   if (vmaSize != 44 && vmaSize != 46) {
256     Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
257     Printf("FATAL: Found %d - Supported 44 and 46\n", vmaSize);
258     Die();
259   }
260 #endif
261 #endif
262 }
263
264 void InitializePlatform() {
265   DisableCoreDumperIfNecessary();
266
267   // Go maps shadow memory lazily and works fine with limited address space.
268   // Unlimited stack is not a problem as well, because the executable
269   // is not compiled with -pie.
270   if (kCppMode) {
271     bool reexec = false;
272     // TSan doesn't play well with unlimited stack size (as stack
273     // overlaps with shadow memory). If we detect unlimited stack size,
274     // we re-exec the program with limited stack size as a best effort.
275     if (StackSizeIsUnlimited()) {
276       const uptr kMaxStackSize = 32 * 1024 * 1024;
277       VReport(1, "Program is run with unlimited stack size, which wouldn't "
278                  "work with ThreadSanitizer.\n"
279                  "Re-execing with stack size limited to %zd bytes.\n",
280               kMaxStackSize);
281       SetStackSizeLimitInBytes(kMaxStackSize);
282       reexec = true;
283     }
284
285     if (!AddressSpaceIsUnlimited()) {
286       Report("WARNING: Program is run with limited virtual address space,"
287              " which wouldn't work with ThreadSanitizer.\n");
288       Report("Re-execing with unlimited virtual address space.\n");
289       SetAddressSpaceUnlimited();
290       reexec = true;
291     }
292     if (reexec)
293       ReExec();
294   }
295
296 #ifndef SANITIZER_GO
297   CheckAndProtect();
298   InitTlsSize();
299   InitDataSeg();
300 #endif
301 }
302
303 bool IsGlobalVar(uptr addr) {
304   return g_data_start && addr >= g_data_start && addr < g_data_end;
305 }
306
307 #ifndef SANITIZER_GO
308 // Extract file descriptors passed to glibc internal __res_iclose function.
309 // This is required to properly "close" the fds, because we do not see internal
310 // closes within glibc. The code is a pure hack.
311 int ExtractResolvFDs(void *state, int *fds, int nfd) {
312 #if SANITIZER_LINUX && !SANITIZER_ANDROID
313   int cnt = 0;
314   __res_state *statp = (__res_state*)state;
315   for (int i = 0; i < MAXNS && cnt < nfd; i++) {
316     if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
317       fds[cnt++] = statp->_u._ext.nssocks[i];
318   }
319   return cnt;
320 #else
321   return 0;
322 #endif
323 }
324
325 // Extract file descriptors passed via UNIX domain sockets.
326 // This is requried to properly handle "open" of these fds.
327 // see 'man recvmsg' and 'man 3 cmsg'.
328 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
329   int res = 0;
330   msghdr *msg = (msghdr*)msgp;
331   struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
332   for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
333     if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
334       continue;
335     int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
336     for (int i = 0; i < n; i++) {
337       fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
338       if (res == nfd)
339         return res;
340     }
341   }
342   return res;
343 }
344
345 // Note: this function runs with async signals enabled,
346 // so it must not touch any tsan state.
347 int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
348     void *abstime), void *c, void *m, void *abstime,
349     void(*cleanup)(void *arg), void *arg) {
350   // pthread_cleanup_push/pop are hardcore macros mess.
351   // We can't intercept nor call them w/o including pthread.h.
352   int res;
353   pthread_cleanup_push(cleanup, arg);
354   res = fn(c, m, abstime);
355   pthread_cleanup_pop(0);
356   return res;
357 }
358 #endif
359
360 #ifndef SANITIZER_GO
361 void ReplaceSystemMalloc() { }
362 #endif
363
364 }  // namespace __tsan
365
366 #endif  // SANITIZER_LINUX || SANITIZER_FREEBSD