]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/compiler-rt/lib/xray/xray_function_call_trie.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / compiler-rt / lib / xray / xray_function_call_trie.h
1 //===-- xray_function_call_trie.h ------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of XRay, a dynamic runtime instrumentation system.
10 //
11 // This file defines the interface for a function call trie.
12 //
13 //===----------------------------------------------------------------------===//
14 #ifndef XRAY_FUNCTION_CALL_TRIE_H
15 #define XRAY_FUNCTION_CALL_TRIE_H
16
17 #include "xray_buffer_queue.h"
18 #include "xray_defs.h"
19 #include "xray_profiling_flags.h"
20 #include "xray_segmented_array.h"
21 #include <limits>
22 #include <memory> // For placement new.
23 #include <utility>
24
25 namespace __xray {
26
27 /// A FunctionCallTrie represents the stack traces of XRay instrumented
28 /// functions that we've encountered, where a node corresponds to a function and
29 /// the path from the root to the node its stack trace. Each node in the trie
30 /// will contain some useful values, including:
31 ///
32 ///   * The cumulative amount of time spent in this particular node/stack.
33 ///   * The number of times this stack has appeared.
34 ///   * A histogram of latencies for that particular node.
35 ///
36 /// Each node in the trie will also contain a list of callees, represented using
37 /// a Array<NodeIdPair> -- each NodeIdPair instance will contain the function
38 /// ID of the callee, and a pointer to the node.
39 ///
40 /// If we visualise this data structure, we'll find the following potential
41 /// representation:
42 ///
43 ///   [function id node] -> [callees] [cumulative time]
44 ///                         [call counter] [latency histogram]
45 ///
46 /// As an example, when we have a function in this pseudocode:
47 ///
48 ///   func f(N) {
49 ///     g()
50 ///     h()
51 ///     for i := 1..N { j() }
52 ///   }
53 ///
54 /// We may end up with a trie of the following form:
55 ///
56 ///   f -> [ g, h, j ] [...] [1] [...]
57 ///   g -> [ ... ] [...] [1] [...]
58 ///   h -> [ ... ] [...] [1] [...]
59 ///   j -> [ ... ] [...] [N] [...]
60 ///
61 /// If for instance the function g() called j() like so:
62 ///
63 ///   func g() {
64 ///     for i := 1..10 { j() }
65 ///   }
66 ///
67 /// We'll find the following updated trie:
68 ///
69 ///   f -> [ g, h, j ] [...] [1] [...]
70 ///   g -> [ j' ] [...] [1] [...]
71 ///   h -> [ ... ] [...] [1] [...]
72 ///   j -> [ ... ] [...] [N] [...]
73 ///   j' -> [ ... ] [...] [10] [...]
74 ///
75 /// Note that we'll have a new node representing the path `f -> g -> j'` with
76 /// isolated data. This isolation gives us a means of representing the stack
77 /// traces as a path, as opposed to a key in a table. The alternative
78 /// implementation here would be to use a separate table for the path, and use
79 /// hashes of the path as an identifier to accumulate the information. We've
80 /// moved away from this approach as it takes a lot of time to compute the hash
81 /// every time we need to update a function's call information as we're handling
82 /// the entry and exit events.
83 ///
84 /// This approach allows us to maintain a shadow stack, which represents the
85 /// currently executing path, and on function exits quickly compute the amount
86 /// of time elapsed from the entry, then update the counters for the node
87 /// already represented in the trie. This necessitates an efficient
88 /// representation of the various data structures (the list of callees must be
89 /// cache-aware and efficient to look up, and the histogram must be compact and
90 /// quick to update) to enable us to keep the overheads of this implementation
91 /// to the minimum.
92 class FunctionCallTrie {
93 public:
94   struct Node;
95
96   // We use a NodeIdPair type instead of a std::pair<...> to not rely on the
97   // standard library types in this header.
98   struct NodeIdPair {
99     Node *NodePtr;
100     int32_t FId;
101   };
102
103   using NodeIdPairArray = Array<NodeIdPair>;
104   using NodeIdPairAllocatorType = NodeIdPairArray::AllocatorType;
105
106   // A Node in the FunctionCallTrie gives us a list of callees, the cumulative
107   // number of times this node actually appeared, the cumulative amount of time
108   // for this particular node including its children call times, and just the
109   // local time spent on this node. Each Node will have the ID of the XRay
110   // instrumented function that it is associated to.
111   struct Node {
112     Node *Parent;
113     NodeIdPairArray Callees;
114     uint64_t CallCount;
115     uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
116     int32_t FId;
117
118     // TODO: Include the compact histogram.
119   };
120
121 private:
122   struct ShadowStackEntry {
123     uint64_t EntryTSC;
124     Node *NodePtr;
125     uint16_t EntryCPU;
126   };
127
128   using NodeArray = Array<Node>;
129   using RootArray = Array<Node *>;
130   using ShadowStackArray = Array<ShadowStackEntry>;
131
132 public:
133   // We collate the allocators we need into a single struct, as a convenience to
134   // allow us to initialize these as a group.
135   struct Allocators {
136     using NodeAllocatorType = NodeArray::AllocatorType;
137     using RootAllocatorType = RootArray::AllocatorType;
138     using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
139
140     // Use hosted aligned storage members to allow for trivial move and init.
141     // This also allows us to sidestep the potential-failing allocation issue.
142     typename std::aligned_storage<sizeof(NodeAllocatorType),
143                                   alignof(NodeAllocatorType)>::type
144         NodeAllocatorStorage;
145     typename std::aligned_storage<sizeof(RootAllocatorType),
146                                   alignof(RootAllocatorType)>::type
147         RootAllocatorStorage;
148     typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
149                                   alignof(ShadowStackAllocatorType)>::type
150         ShadowStackAllocatorStorage;
151     typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
152                                   alignof(NodeIdPairAllocatorType)>::type
153         NodeIdPairAllocatorStorage;
154
155     NodeAllocatorType *NodeAllocator = nullptr;
156     RootAllocatorType *RootAllocator = nullptr;
157     ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
158     NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
159
160     Allocators() = default;
161     Allocators(const Allocators &) = delete;
162     Allocators &operator=(const Allocators &) = delete;
163
164     struct Buffers {
165       BufferQueue::Buffer NodeBuffer;
166       BufferQueue::Buffer RootsBuffer;
167       BufferQueue::Buffer ShadowStackBuffer;
168       BufferQueue::Buffer NodeIdPairBuffer;
169     };
170
171     explicit Allocators(Buffers &B) XRAY_NEVER_INSTRUMENT {
172       new (&NodeAllocatorStorage)
173           NodeAllocatorType(B.NodeBuffer.Data, B.NodeBuffer.Size);
174       NodeAllocator =
175           reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
176
177       new (&RootAllocatorStorage)
178           RootAllocatorType(B.RootsBuffer.Data, B.RootsBuffer.Size);
179       RootAllocator =
180           reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
181
182       new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(
183           B.ShadowStackBuffer.Data, B.ShadowStackBuffer.Size);
184       ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
185           &ShadowStackAllocatorStorage);
186
187       new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(
188           B.NodeIdPairBuffer.Data, B.NodeIdPairBuffer.Size);
189       NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
190           &NodeIdPairAllocatorStorage);
191     }
192
193     explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
194       new (&NodeAllocatorStorage) NodeAllocatorType(Max);
195       NodeAllocator =
196           reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
197
198       new (&RootAllocatorStorage) RootAllocatorType(Max);
199       RootAllocator =
200           reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
201
202       new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
203       ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
204           &ShadowStackAllocatorStorage);
205
206       new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
207       NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
208           &NodeIdPairAllocatorStorage);
209     }
210
211     Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
212       // Here we rely on the safety of memcpy'ing contents of the storage
213       // members, and then pointing the source pointers to nullptr.
214       internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
215                       sizeof(NodeAllocatorType));
216       internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
217                       sizeof(RootAllocatorType));
218       internal_memcpy(&ShadowStackAllocatorStorage,
219                       &O.ShadowStackAllocatorStorage,
220                       sizeof(ShadowStackAllocatorType));
221       internal_memcpy(&NodeIdPairAllocatorStorage,
222                       &O.NodeIdPairAllocatorStorage,
223                       sizeof(NodeIdPairAllocatorType));
224
225       NodeAllocator =
226           reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
227       RootAllocator =
228           reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
229       ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
230           &ShadowStackAllocatorStorage);
231       NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
232           &NodeIdPairAllocatorStorage);
233
234       O.NodeAllocator = nullptr;
235       O.RootAllocator = nullptr;
236       O.ShadowStackAllocator = nullptr;
237       O.NodeIdPairAllocator = nullptr;
238     }
239
240     Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
241       // When moving into an existing instance, we ensure that we clean up the
242       // current allocators.
243       if (NodeAllocator)
244         NodeAllocator->~NodeAllocatorType();
245       if (O.NodeAllocator) {
246         new (&NodeAllocatorStorage)
247             NodeAllocatorType(std::move(*O.NodeAllocator));
248         NodeAllocator =
249             reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
250         O.NodeAllocator = nullptr;
251       } else {
252         NodeAllocator = nullptr;
253       }
254
255       if (RootAllocator)
256         RootAllocator->~RootAllocatorType();
257       if (O.RootAllocator) {
258         new (&RootAllocatorStorage)
259             RootAllocatorType(std::move(*O.RootAllocator));
260         RootAllocator =
261             reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
262         O.RootAllocator = nullptr;
263       } else {
264         RootAllocator = nullptr;
265       }
266
267       if (ShadowStackAllocator)
268         ShadowStackAllocator->~ShadowStackAllocatorType();
269       if (O.ShadowStackAllocator) {
270         new (&ShadowStackAllocatorStorage)
271             ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
272         ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
273             &ShadowStackAllocatorStorage);
274         O.ShadowStackAllocator = nullptr;
275       } else {
276         ShadowStackAllocator = nullptr;
277       }
278
279       if (NodeIdPairAllocator)
280         NodeIdPairAllocator->~NodeIdPairAllocatorType();
281       if (O.NodeIdPairAllocator) {
282         new (&NodeIdPairAllocatorStorage)
283             NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
284         NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
285             &NodeIdPairAllocatorStorage);
286         O.NodeIdPairAllocator = nullptr;
287       } else {
288         NodeIdPairAllocator = nullptr;
289       }
290
291       return *this;
292     }
293
294     ~Allocators() XRAY_NEVER_INSTRUMENT {
295       if (NodeAllocator != nullptr)
296         NodeAllocator->~NodeAllocatorType();
297       if (RootAllocator != nullptr)
298         RootAllocator->~RootAllocatorType();
299       if (ShadowStackAllocator != nullptr)
300         ShadowStackAllocator->~ShadowStackAllocatorType();
301       if (NodeIdPairAllocator != nullptr)
302         NodeIdPairAllocator->~NodeIdPairAllocatorType();
303     }
304   };
305
306   static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
307     return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
308   }
309
310   static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
311     Allocators A(Max);
312     return A;
313   }
314
315   static Allocators
316   InitAllocatorsFromBuffers(Allocators::Buffers &Bufs) XRAY_NEVER_INSTRUMENT {
317     Allocators A(Bufs);
318     return A;
319   }
320
321 private:
322   NodeArray Nodes;
323   RootArray Roots;
324   ShadowStackArray ShadowStack;
325   NodeIdPairAllocatorType *NodeIdPairAllocator;
326   uint32_t OverflowedFunctions;
327
328 public:
329   explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
330       : Nodes(*A.NodeAllocator),
331         Roots(*A.RootAllocator),
332         ShadowStack(*A.ShadowStackAllocator),
333         NodeIdPairAllocator(A.NodeIdPairAllocator),
334         OverflowedFunctions(0) {}
335
336   FunctionCallTrie() = delete;
337   FunctionCallTrie(const FunctionCallTrie &) = delete;
338   FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
339
340   FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
341       : Nodes(std::move(O.Nodes)),
342         Roots(std::move(O.Roots)),
343         ShadowStack(std::move(O.ShadowStack)),
344         NodeIdPairAllocator(O.NodeIdPairAllocator),
345         OverflowedFunctions(O.OverflowedFunctions) {}
346
347   FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
348     Nodes = std::move(O.Nodes);
349     Roots = std::move(O.Roots);
350     ShadowStack = std::move(O.ShadowStack);
351     NodeIdPairAllocator = O.NodeIdPairAllocator;
352     OverflowedFunctions = O.OverflowedFunctions;
353     return *this;
354   }
355
356   ~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
357
358   void enterFunction(const int32_t FId, uint64_t TSC,
359                      uint16_t CPU) XRAY_NEVER_INSTRUMENT {
360     DCHECK_NE(FId, 0);
361
362     // If we're already overflowed the function call stack, do not bother
363     // attempting to record any more function entries.
364     if (UNLIKELY(OverflowedFunctions)) {
365       ++OverflowedFunctions;
366       return;
367     }
368
369     // If this is the first function we've encountered, we want to set up the
370     // node(s) and treat it as a root.
371     if (UNLIKELY(ShadowStack.empty())) {
372       auto *NewRoot = Nodes.AppendEmplace(
373           nullptr, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
374       if (UNLIKELY(NewRoot == nullptr))
375         return;
376       if (Roots.AppendEmplace(NewRoot) == nullptr) {
377         Nodes.trim(1);
378         return;
379       }
380       if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
381         Nodes.trim(1);
382         Roots.trim(1);
383         ++OverflowedFunctions;
384         return;
385       }
386       return;
387     }
388
389     // From this point on, we require that the stack is not empty.
390     DCHECK(!ShadowStack.empty());
391     auto TopNode = ShadowStack.back().NodePtr;
392     DCHECK_NE(TopNode, nullptr);
393
394     // If we've seen this callee before, then we access that node and place that
395     // on the top of the stack.
396     auto* Callee = TopNode->Callees.find_element(
397         [FId](const NodeIdPair &NR) { return NR.FId == FId; });
398     if (Callee != nullptr) {
399       CHECK_NE(Callee->NodePtr, nullptr);
400       if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
401         ++OverflowedFunctions;
402       return;
403     }
404
405     // This means we've never seen this stack before, create a new node here.
406     auto* NewNode = Nodes.AppendEmplace(
407         TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
408     if (UNLIKELY(NewNode == nullptr))
409       return;
410     DCHECK_NE(NewNode, nullptr);
411     TopNode->Callees.AppendEmplace(NewNode, FId);
412     if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
413       ++OverflowedFunctions;
414     return;
415   }
416
417   void exitFunction(int32_t FId, uint64_t TSC,
418                     uint16_t CPU) XRAY_NEVER_INSTRUMENT {
419     // If we're exiting functions that have "overflowed" or don't fit into the
420     // stack due to allocator constraints, we then decrement that count first.
421     if (OverflowedFunctions) {
422       --OverflowedFunctions;
423       return;
424     }
425
426     // When we exit a function, we look up the ShadowStack to see whether we've
427     // entered this function before. We do as little processing here as we can,
428     // since most of the hard work would have already been done at function
429     // entry.
430     uint64_t CumulativeTreeTime = 0;
431
432     while (!ShadowStack.empty()) {
433       const auto &Top = ShadowStack.back();
434       auto TopNode = Top.NodePtr;
435       DCHECK_NE(TopNode, nullptr);
436
437       // We may encounter overflow on the TSC we're provided, which may end up
438       // being less than the TSC when we first entered the function.
439       //
440       // To get the accurate measurement of cycles, we need to check whether
441       // we've overflowed (TSC < Top.EntryTSC) and then account the difference
442       // between the entry TSC and the max for the TSC counter (max of uint64_t)
443       // then add the value of TSC. We can prove that the maximum delta we will
444       // get is at most the 64-bit unsigned value, since the difference between
445       // a TSC of 0 and a Top.EntryTSC of 1 is (numeric_limits<uint64_t>::max()
446       // - 1) + 1.
447       //
448       // NOTE: This assumes that TSCs are synchronised across CPUs.
449       // TODO: Count the number of times we've seen CPU migrations.
450       uint64_t LocalTime =
451           Top.EntryTSC > TSC
452               ? (std::numeric_limits<uint64_t>::max() - Top.EntryTSC) + TSC
453               : TSC - Top.EntryTSC;
454       TopNode->CallCount++;
455       TopNode->CumulativeLocalTime += LocalTime - CumulativeTreeTime;
456       CumulativeTreeTime += LocalTime;
457       ShadowStack.trim(1);
458
459       // TODO: Update the histogram for the node.
460       if (TopNode->FId == FId)
461         break;
462     }
463   }
464
465   const RootArray &getRoots() const XRAY_NEVER_INSTRUMENT { return Roots; }
466
467   // The deepCopyInto operation will update the provided FunctionCallTrie by
468   // re-creating the contents of this particular FunctionCallTrie in the other
469   // FunctionCallTrie. It will do this using a Depth First Traversal from the
470   // roots, and while doing so recreating the traversal in the provided
471   // FunctionCallTrie.
472   //
473   // This operation will *not* destroy the state in `O`, and thus may cause some
474   // duplicate entries in `O` if it is not empty.
475   //
476   // This function is *not* thread-safe, and may require external
477   // synchronisation of both "this" and |O|.
478   //
479   // This function must *not* be called with a non-empty FunctionCallTrie |O|.
480   void deepCopyInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
481     DCHECK(O.getRoots().empty());
482
483     // We then push the root into a stack, to use as the parent marker for new
484     // nodes we push in as we're traversing depth-first down the call tree.
485     struct NodeAndParent {
486       FunctionCallTrie::Node *Node;
487       FunctionCallTrie::Node *NewNode;
488     };
489     using Stack = Array<NodeAndParent>;
490
491     typename Stack::AllocatorType StackAllocator(
492         profilingFlags()->stack_allocator_max);
493     Stack DFSStack(StackAllocator);
494
495     for (const auto Root : getRoots()) {
496       // Add a node in O for this root.
497       auto NewRoot = O.Nodes.AppendEmplace(
498           nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
499           Root->CumulativeLocalTime, Root->FId);
500
501       // Because we cannot allocate more memory we should bail out right away.
502       if (UNLIKELY(NewRoot == nullptr))
503         return;
504
505       if (UNLIKELY(O.Roots.Append(NewRoot) == nullptr))
506         return;
507
508       // TODO: Figure out what to do if we fail to allocate any more stack
509       // space. Maybe warn or report once?
510       if (DFSStack.AppendEmplace(Root, NewRoot) == nullptr)
511         return;
512       while (!DFSStack.empty()) {
513         NodeAndParent NP = DFSStack.back();
514         DCHECK_NE(NP.Node, nullptr);
515         DCHECK_NE(NP.NewNode, nullptr);
516         DFSStack.trim(1);
517         for (const auto Callee : NP.Node->Callees) {
518           auto NewNode = O.Nodes.AppendEmplace(
519               NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
520               Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
521               Callee.FId);
522           if (UNLIKELY(NewNode == nullptr))
523             return;
524           if (UNLIKELY(NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId) ==
525                        nullptr))
526             return;
527           if (UNLIKELY(DFSStack.AppendEmplace(Callee.NodePtr, NewNode) ==
528                        nullptr))
529             return;
530         }
531       }
532     }
533   }
534
535   // The mergeInto operation will update the provided FunctionCallTrie by
536   // traversing the current trie's roots and updating (i.e. merging) the data in
537   // the nodes with the data in the target's nodes. If the node doesn't exist in
538   // the provided trie, we add a new one in the right position, and inherit the
539   // data from the original (current) trie, along with all its callees.
540   //
541   // This function is *not* thread-safe, and may require external
542   // synchronisation of both "this" and |O|.
543   void mergeInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
544     struct NodeAndTarget {
545       FunctionCallTrie::Node *OrigNode;
546       FunctionCallTrie::Node *TargetNode;
547     };
548     using Stack = Array<NodeAndTarget>;
549     typename Stack::AllocatorType StackAllocator(
550         profilingFlags()->stack_allocator_max);
551     Stack DFSStack(StackAllocator);
552
553     for (const auto Root : getRoots()) {
554       Node *TargetRoot = nullptr;
555       auto R = O.Roots.find_element(
556           [&](const Node *Node) { return Node->FId == Root->FId; });
557       if (R == nullptr) {
558         TargetRoot = O.Nodes.AppendEmplace(
559             nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
560             Root->FId);
561         if (UNLIKELY(TargetRoot == nullptr))
562           return;
563
564         O.Roots.Append(TargetRoot);
565       } else {
566         TargetRoot = *R;
567       }
568
569       DFSStack.AppendEmplace(Root, TargetRoot);
570       while (!DFSStack.empty()) {
571         NodeAndTarget NT = DFSStack.back();
572         DCHECK_NE(NT.OrigNode, nullptr);
573         DCHECK_NE(NT.TargetNode, nullptr);
574         DFSStack.trim(1);
575         // TODO: Update the histogram as well when we have it ready.
576         NT.TargetNode->CallCount += NT.OrigNode->CallCount;
577         NT.TargetNode->CumulativeLocalTime += NT.OrigNode->CumulativeLocalTime;
578         for (const auto Callee : NT.OrigNode->Callees) {
579           auto TargetCallee = NT.TargetNode->Callees.find_element(
580               [&](const FunctionCallTrie::NodeIdPair &C) {
581                 return C.FId == Callee.FId;
582               });
583           if (TargetCallee == nullptr) {
584             auto NewTargetNode = O.Nodes.AppendEmplace(
585                 NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
586                 Callee.FId);
587
588             if (UNLIKELY(NewTargetNode == nullptr))
589               return;
590
591             TargetCallee =
592                 NT.TargetNode->Callees.AppendEmplace(NewTargetNode, Callee.FId);
593           }
594           DFSStack.AppendEmplace(Callee.NodePtr, TargetCallee->NodePtr);
595         }
596       }
597     }
598   }
599 };
600
601 } // namespace __xray
602
603 #endif // XRAY_FUNCTION_CALL_TRIE_H