]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/gdb/gdb/parse.c
This commit was generated by cvs2svn to compensate for changes in r37510,
[FreeBSD/FreeBSD.git] / contrib / gdb / gdb / parse.c
1 /* Parse expressions for GDB.
2    Copyright (C) 1986, 1989, 1990, 1991, 1994 Free Software Foundation, Inc.
3    Modified from expread.y by the Department of Computer Science at the
4    State University of New York at Buffalo, 1991.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
21
22 /* Parse an expression from text in a string,
23    and return the result as a  struct expression  pointer.
24    That structure contains arithmetic operations in reverse polish,
25    with constants represented by operations that are followed by special data.
26    See expression.h for the details of the format.
27    What is important here is that it can be built up sequentially
28    during the process of parsing; the lower levels of the tree always
29    come first in the result.  */
30    
31 #include "defs.h"
32 #include "gdb_string.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "frame.h"
36 #include "expression.h"
37 #include "value.h"
38 #include "command.h"
39 #include "language.h"
40 #include "parser-defs.h"
41 \f
42 /* Global variables declared in parser-defs.h (and commented there).  */
43 struct expression *expout;
44 int expout_size;
45 int expout_ptr;
46 struct block *expression_context_block;
47 struct block *innermost_block;
48 int arglist_len;
49 union type_stack_elt *type_stack;
50 int type_stack_depth, type_stack_size;
51 char *lexptr;
52 char *namecopy;
53 int paren_depth;
54 int comma_terminates;
55 \f
56 static void
57 free_funcalls PARAMS ((void));
58
59 static void
60 prefixify_expression PARAMS ((struct expression *));
61
62 static int
63 length_of_subexp PARAMS ((struct expression *, int));
64
65 static void
66 prefixify_subexp PARAMS ((struct expression *, struct expression *, int, int));
67
68 /* Data structure for saving values of arglist_len for function calls whose
69    arguments contain other function calls.  */
70
71 struct funcall
72   {
73     struct funcall *next;
74     int arglist_len;
75   };
76
77 static struct funcall *funcall_chain;
78
79 /* Assign machine-independent names to certain registers 
80    (unless overridden by the REGISTER_NAMES table) */
81
82 #ifdef NO_STD_REGS
83 unsigned num_std_regs = 0;
84 struct std_regs std_regs[1];
85 #else
86 struct std_regs std_regs[] = {
87
88 #ifdef PC_REGNUM
89         { "pc", PC_REGNUM },
90 #endif
91 #ifdef FP_REGNUM
92         { "fp", FP_REGNUM },
93 #endif
94 #ifdef SP_REGNUM
95         { "sp", SP_REGNUM },
96 #endif
97 #ifdef PS_REGNUM
98         { "ps", PS_REGNUM },
99 #endif
100
101 };
102
103 unsigned num_std_regs = (sizeof std_regs / sizeof std_regs[0]);
104
105 #endif
106
107
108 /* Begin counting arguments for a function call,
109    saving the data about any containing call.  */
110
111 void
112 start_arglist ()
113 {
114   register struct funcall *new;
115
116   new = (struct funcall *) xmalloc (sizeof (struct funcall));
117   new->next = funcall_chain;
118   new->arglist_len = arglist_len;
119   arglist_len = 0;
120   funcall_chain = new;
121 }
122
123 /* Return the number of arguments in a function call just terminated,
124    and restore the data for the containing function call.  */
125
126 int
127 end_arglist ()
128 {
129   register int val = arglist_len;
130   register struct funcall *call = funcall_chain;
131   funcall_chain = call->next;
132   arglist_len = call->arglist_len;
133   free ((PTR)call);
134   return val;
135 }
136
137 /* Free everything in the funcall chain.
138    Used when there is an error inside parsing.  */
139
140 static void
141 free_funcalls ()
142 {
143   register struct funcall *call, *next;
144
145   for (call = funcall_chain; call; call = next)
146     {
147       next = call->next;
148       free ((PTR)call);
149     }
150 }
151 \f
152 /* This page contains the functions for adding data to the  struct expression
153    being constructed.  */
154
155 /* Add one element to the end of the expression.  */
156
157 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
158    a register through here */
159
160 void
161 write_exp_elt (expelt)
162      union exp_element expelt;
163 {
164   if (expout_ptr >= expout_size)
165     {
166       expout_size *= 2;
167       expout = (struct expression *)
168         xrealloc ((char *) expout, sizeof (struct expression)
169                   + EXP_ELEM_TO_BYTES (expout_size));
170     }
171   expout->elts[expout_ptr++] = expelt;
172 }
173
174 void
175 write_exp_elt_opcode (expelt)
176      enum exp_opcode expelt;
177 {
178   union exp_element tmp;
179
180   tmp.opcode = expelt;
181
182   write_exp_elt (tmp);
183 }
184
185 void
186 write_exp_elt_sym (expelt)
187      struct symbol *expelt;
188 {
189   union exp_element tmp;
190
191   tmp.symbol = expelt;
192
193   write_exp_elt (tmp);
194 }
195
196 void
197 write_exp_elt_block (b)
198      struct block *b;
199 {
200   union exp_element tmp;
201   tmp.block = b;
202   write_exp_elt (tmp);
203 }
204
205 void
206 write_exp_elt_longcst (expelt)
207      LONGEST expelt;
208 {
209   union exp_element tmp;
210
211   tmp.longconst = expelt;
212
213   write_exp_elt (tmp);
214 }
215
216 void
217 write_exp_elt_dblcst (expelt)
218      DOUBLEST expelt;
219 {
220   union exp_element tmp;
221
222   tmp.doubleconst = expelt;
223
224   write_exp_elt (tmp);
225 }
226
227 void
228 write_exp_elt_type (expelt)
229      struct type *expelt;
230 {
231   union exp_element tmp;
232
233   tmp.type = expelt;
234
235   write_exp_elt (tmp);
236 }
237
238 void
239 write_exp_elt_intern (expelt)
240      struct internalvar *expelt;
241 {
242   union exp_element tmp;
243
244   tmp.internalvar = expelt;
245
246   write_exp_elt (tmp);
247 }
248
249 /* Add a string constant to the end of the expression.
250
251    String constants are stored by first writing an expression element
252    that contains the length of the string, then stuffing the string
253    constant itself into however many expression elements are needed
254    to hold it, and then writing another expression element that contains
255    the length of the string.  I.E. an expression element at each end of
256    the string records the string length, so you can skip over the 
257    expression elements containing the actual string bytes from either
258    end of the string.  Note that this also allows gdb to handle
259    strings with embedded null bytes, as is required for some languages.
260
261    Don't be fooled by the fact that the string is null byte terminated,
262    this is strictly for the convenience of debugging gdb itself.  Gdb
263    Gdb does not depend up the string being null terminated, since the
264    actual length is recorded in expression elements at each end of the
265    string.  The null byte is taken into consideration when computing how
266    many expression elements are required to hold the string constant, of
267    course. */
268
269
270 void
271 write_exp_string (str)
272      struct stoken str;
273 {
274   register int len = str.length;
275   register int lenelt;
276   register char *strdata;
277
278   /* Compute the number of expression elements required to hold the string
279      (including a null byte terminator), along with one expression element
280      at each end to record the actual string length (not including the
281      null byte terminator). */
282
283   lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
284
285   /* Ensure that we have enough available expression elements to store
286      everything. */
287
288   if ((expout_ptr + lenelt) >= expout_size)
289     {
290       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
291       expout = (struct expression *)
292         xrealloc ((char *) expout, (sizeof (struct expression)
293                                     + EXP_ELEM_TO_BYTES (expout_size)));
294     }
295
296   /* Write the leading length expression element (which advances the current
297      expression element index), then write the string constant followed by a
298      terminating null byte, and then write the trailing length expression
299      element. */
300
301   write_exp_elt_longcst ((LONGEST) len);
302   strdata = (char *) &expout->elts[expout_ptr];
303   memcpy (strdata, str.ptr, len);
304   *(strdata + len) = '\0';
305   expout_ptr += lenelt - 2;
306   write_exp_elt_longcst ((LONGEST) len);
307 }
308
309 /* Add a bitstring constant to the end of the expression.
310
311    Bitstring constants are stored by first writing an expression element
312    that contains the length of the bitstring (in bits), then stuffing the
313    bitstring constant itself into however many expression elements are
314    needed to hold it, and then writing another expression element that
315    contains the length of the bitstring.  I.E. an expression element at
316    each end of the bitstring records the bitstring length, so you can skip
317    over the expression elements containing the actual bitstring bytes from
318    either end of the bitstring. */
319
320 void
321 write_exp_bitstring (str)
322      struct stoken str;
323 {
324   register int bits = str.length;       /* length in bits */
325   register int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
326   register int lenelt;
327   register char *strdata;
328
329   /* Compute the number of expression elements required to hold the bitstring,
330      along with one expression element at each end to record the actual
331      bitstring length in bits. */
332
333   lenelt = 2 + BYTES_TO_EXP_ELEM (len);
334
335   /* Ensure that we have enough available expression elements to store
336      everything. */
337
338   if ((expout_ptr + lenelt) >= expout_size)
339     {
340       expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
341       expout = (struct expression *)
342         xrealloc ((char *) expout, (sizeof (struct expression)
343                                     + EXP_ELEM_TO_BYTES (expout_size)));
344     }
345
346   /* Write the leading length expression element (which advances the current
347      expression element index), then write the bitstring constant, and then
348      write the trailing length expression element. */
349
350   write_exp_elt_longcst ((LONGEST) bits);
351   strdata = (char *) &expout->elts[expout_ptr];
352   memcpy (strdata, str.ptr, len);
353   expout_ptr += lenelt - 2;
354   write_exp_elt_longcst ((LONGEST) bits);
355 }
356
357 /* Add the appropriate elements for a minimal symbol to the end of
358    the expression.  The rationale behind passing in text_symbol_type and
359    data_symbol_type was so that Modula-2 could pass in WORD for
360    data_symbol_type.  Perhaps it still is useful to have those types vary
361    based on the language, but they no longer have names like "int", so
362    the initial rationale is gone.  */
363
364 static struct type *msym_text_symbol_type;
365 static struct type *msym_data_symbol_type;
366 static struct type *msym_unknown_symbol_type;
367
368 void
369 write_exp_msymbol (msymbol, text_symbol_type, data_symbol_type)
370      struct minimal_symbol *msymbol;
371      struct type *text_symbol_type;
372      struct type *data_symbol_type;
373 {
374   write_exp_elt_opcode (OP_LONG);
375   write_exp_elt_type (lookup_pointer_type (builtin_type_void));
376   write_exp_elt_longcst ((LONGEST) SYMBOL_VALUE_ADDRESS (msymbol));
377   write_exp_elt_opcode (OP_LONG);
378
379   write_exp_elt_opcode (UNOP_MEMVAL);
380   switch (msymbol -> type)
381     {
382     case mst_text:
383     case mst_file_text:
384     case mst_solib_trampoline:
385       write_exp_elt_type (msym_text_symbol_type);
386       break;
387
388     case mst_data:
389     case mst_file_data:
390     case mst_bss:
391     case mst_file_bss:
392       write_exp_elt_type (msym_data_symbol_type);
393       break;
394
395     default:
396       write_exp_elt_type (msym_unknown_symbol_type);
397       break;
398     }
399   write_exp_elt_opcode (UNOP_MEMVAL);
400 }
401 \f
402 /* Recognize tokens that start with '$'.  These include:
403
404         $regname        A native register name or a "standard
405                         register name".
406
407         $variable       A convenience variable with a name chosen
408                         by the user.
409
410         $digits         Value history with index <digits>, starting
411                         from the first value which has index 1.
412
413         $$digits        Value history with index <digits> relative
414                         to the last value.  I.E. $$0 is the last
415                         value, $$1 is the one previous to that, $$2
416                         is the one previous to $$1, etc.
417
418         $ | $0 | $$0    The last value in the value history.
419
420         $$              An abbreviation for the second to the last
421                         value in the value history, I.E. $$1
422
423    */
424
425 void
426 write_dollar_variable (str)
427      struct stoken str;
428 {
429   /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
430      and $$digits (equivalent to $<-digits> if you could type that). */
431
432   int negate = 0;
433   int i = 1;
434   /* Double dollar means negate the number and add -1 as well.
435      Thus $$ alone means -1.  */
436   if (str.length >= 2 && str.ptr[1] == '$')
437     {
438       negate = 1;
439       i = 2;
440     }
441   if (i == str.length)
442     {
443       /* Just dollars (one or two) */
444       i = - negate;
445       goto handle_last;
446     }
447   /* Is the rest of the token digits?  */
448   for (; i < str.length; i++)
449     if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
450       break;
451   if (i == str.length)
452     {
453       i = atoi (str.ptr + 1 + negate);
454       if (negate)
455         i = - i;
456       goto handle_last;
457     }
458   
459   /* Handle tokens that refer to machine registers:
460      $ followed by a register name.  */
461   for (i = 0; i < NUM_REGS; i++)
462     if (str.length - 1 == strlen (reg_names[i])
463         && STREQN (str.ptr + 1, reg_names[i], str.length - 1))
464       {
465         goto handle_register;
466       }
467   for (i = 0; i < num_std_regs; i++)
468     if (str.length - 1 == strlen (std_regs[i].name)
469         && STREQN (str.ptr + 1, std_regs[i].name, str.length - 1))
470       {
471         i = std_regs[i].regnum;
472         goto handle_register;
473       }
474
475   /* Any other names starting in $ are debugger internal variables.  */
476
477   write_exp_elt_opcode (OP_INTERNALVAR);
478   write_exp_elt_intern (lookup_internalvar (copy_name (str) + 1));
479   write_exp_elt_opcode (OP_INTERNALVAR); 
480   return;
481  handle_last:
482   write_exp_elt_opcode (OP_LAST);
483   write_exp_elt_longcst ((LONGEST) i);
484   write_exp_elt_opcode (OP_LAST);
485   return;
486  handle_register:
487   write_exp_elt_opcode (OP_REGISTER);
488   write_exp_elt_longcst (i);
489   write_exp_elt_opcode (OP_REGISTER); 
490   return;
491 }
492 \f
493 /* Return a null-terminated temporary copy of the name
494    of a string token.  */
495
496 char *
497 copy_name (token)
498      struct stoken token;
499 {
500   memcpy (namecopy, token.ptr, token.length);
501   namecopy[token.length] = 0;
502   return namecopy;
503 }
504 \f
505 /* Reverse an expression from suffix form (in which it is constructed)
506    to prefix form (in which we can conveniently print or execute it).  */
507
508 static void
509 prefixify_expression (expr)
510      register struct expression *expr;
511 {
512   register int len =
513     sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
514   register struct expression *temp;
515   register int inpos = expr->nelts, outpos = 0;
516
517   temp = (struct expression *) alloca (len);
518
519   /* Copy the original expression into temp.  */
520   memcpy (temp, expr, len);
521
522   prefixify_subexp (temp, expr, inpos, outpos);
523 }
524
525 /* Return the number of exp_elements in the subexpression of EXPR
526    whose last exp_element is at index ENDPOS - 1 in EXPR.  */
527
528 static int
529 length_of_subexp (expr, endpos)
530      register struct expression *expr;
531      register int endpos;
532 {
533   register int oplen = 1;
534   register int args = 0;
535   register int i;
536
537   if (endpos < 1)
538     error ("?error in length_of_subexp");
539
540   i = (int) expr->elts[endpos - 1].opcode;
541
542   switch (i)
543     {
544       /* C++  */
545     case OP_SCOPE:
546       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
547       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
548       break;
549
550     case OP_LONG:
551     case OP_DOUBLE:
552     case OP_VAR_VALUE:
553       oplen = 4;
554       break;
555
556     case OP_TYPE:
557     case OP_BOOL:
558     case OP_LAST:
559     case OP_REGISTER:
560     case OP_INTERNALVAR:
561       oplen = 3;
562       break;
563
564     case OP_COMPLEX:
565       oplen = 1; 
566       args = 2;
567       break; 
568
569     case OP_FUNCALL:
570     case OP_F77_UNDETERMINED_ARGLIST:
571       oplen = 3;
572       args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
573       break;
574
575     case UNOP_MAX:
576     case UNOP_MIN:
577       oplen = 3;
578       break;
579
580    case BINOP_VAL:
581    case UNOP_CAST:
582    case UNOP_MEMVAL:
583       oplen = 3;
584       args = 1;
585       break;
586
587     case UNOP_ABS:
588     case UNOP_CAP:
589     case UNOP_CHR:
590     case UNOP_FLOAT:
591     case UNOP_HIGH:
592     case UNOP_ODD:
593     case UNOP_ORD:
594     case UNOP_TRUNC:
595       oplen = 1;
596       args = 1;
597       break;
598
599     case OP_LABELED:
600     case STRUCTOP_STRUCT:
601     case STRUCTOP_PTR:
602       args = 1;
603       /* fall through */
604     case OP_M2_STRING:
605     case OP_STRING:
606     case OP_NAME:
607     case OP_EXPRSTRING:
608       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
609       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
610       break;
611
612     case OP_BITSTRING:
613       oplen = longest_to_int (expr->elts[endpos - 2].longconst);
614       oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
615       oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
616       break;
617
618     case OP_ARRAY:
619       oplen = 4;
620       args = longest_to_int (expr->elts[endpos - 2].longconst);
621       args -= longest_to_int (expr->elts[endpos - 3].longconst);
622       args += 1;
623       break;
624
625     case TERNOP_COND:
626     case TERNOP_SLICE:
627     case TERNOP_SLICE_COUNT:
628       args = 3;
629       break;
630
631       /* Modula-2 */
632    case MULTI_SUBSCRIPT:
633       oplen = 3;
634       args = 1 + longest_to_int (expr->elts[endpos- 2].longconst);
635       break;
636
637     case BINOP_ASSIGN_MODIFY:
638       oplen = 3;
639       args = 2;
640       break;
641
642       /* C++ */
643     case OP_THIS:
644       oplen = 2;
645       break;
646
647     default:
648       args = 1 + (i < (int) BINOP_END);
649     }
650
651   while (args > 0)
652     {
653       oplen += length_of_subexp (expr, endpos - oplen);
654       args--;
655     }
656
657   return oplen;
658 }
659
660 /* Copy the subexpression ending just before index INEND in INEXPR
661    into OUTEXPR, starting at index OUTBEG.
662    In the process, convert it from suffix to prefix form.  */
663
664 static void
665 prefixify_subexp (inexpr, outexpr, inend, outbeg)
666      register struct expression *inexpr;
667      struct expression *outexpr;
668      register int inend;
669      int outbeg;
670 {
671   register int oplen = 1;
672   register int args = 0;
673   register int i;
674   int *arglens;
675   enum exp_opcode opcode;
676
677   /* Compute how long the last operation is (in OPLEN),
678      and also how many preceding subexpressions serve as
679      arguments for it (in ARGS).  */
680
681   opcode = inexpr->elts[inend - 1].opcode;
682   switch (opcode)
683     {
684       /* C++  */
685     case OP_SCOPE:
686       oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
687       oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
688       break;
689
690     case OP_LONG:
691     case OP_DOUBLE:
692     case OP_VAR_VALUE:
693       oplen = 4;
694       break;
695
696     case OP_TYPE:
697     case OP_BOOL:
698     case OP_LAST:
699     case OP_REGISTER:
700     case OP_INTERNALVAR:
701       oplen = 3;
702       break;
703
704     case OP_COMPLEX:
705       oplen = 1; 
706       args = 2; 
707       break; 
708
709     case OP_FUNCALL:
710     case OP_F77_UNDETERMINED_ARGLIST:
711       oplen = 3;
712       args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
713       break;
714
715     case UNOP_MIN:
716     case UNOP_MAX:
717       oplen = 3;
718       break;
719
720     case UNOP_CAST:
721     case UNOP_MEMVAL:
722       oplen = 3;
723       args = 1;
724       break;
725
726     case UNOP_ABS:
727     case UNOP_CAP:
728     case UNOP_CHR:
729     case UNOP_FLOAT:
730     case UNOP_HIGH:
731     case UNOP_ODD:
732     case UNOP_ORD:
733     case UNOP_TRUNC:
734       oplen=1;
735       args=1;
736       break;
737
738     case STRUCTOP_STRUCT:
739     case STRUCTOP_PTR:
740     case OP_LABELED:
741       args = 1;
742       /* fall through */
743     case OP_M2_STRING:
744     case OP_STRING:
745     case OP_NAME:
746     case OP_EXPRSTRING:
747       oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
748       oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
749       break;
750
751     case OP_BITSTRING:
752       oplen = longest_to_int (inexpr->elts[inend - 2].longconst);
753       oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
754       oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
755       break;
756
757     case OP_ARRAY:
758       oplen = 4;
759       args = longest_to_int (inexpr->elts[inend - 2].longconst);
760       args -= longest_to_int (inexpr->elts[inend - 3].longconst);
761       args += 1;
762       break;
763
764     case TERNOP_COND:
765     case TERNOP_SLICE:
766     case TERNOP_SLICE_COUNT:
767       args = 3;
768       break;
769
770     case BINOP_ASSIGN_MODIFY:
771       oplen = 3;
772       args = 2;
773       break;
774
775       /* Modula-2 */
776    case MULTI_SUBSCRIPT:
777       oplen = 3;
778       args = 1 + longest_to_int (inexpr->elts[inend - 2].longconst);
779       break;
780
781       /* C++ */
782     case OP_THIS:
783       oplen = 2;
784       break;
785
786     default:
787       args = 1 + ((int) opcode < (int) BINOP_END);
788     }
789
790   /* Copy the final operator itself, from the end of the input
791      to the beginning of the output.  */
792   inend -= oplen;
793   memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
794           EXP_ELEM_TO_BYTES (oplen));
795   outbeg += oplen;
796
797   /* Find the lengths of the arg subexpressions.  */
798   arglens = (int *) alloca (args * sizeof (int));
799   for (i = args - 1; i >= 0; i--)
800     {
801       oplen = length_of_subexp (inexpr, inend);
802       arglens[i] = oplen;
803       inend -= oplen;
804     }
805
806   /* Now copy each subexpression, preserving the order of
807      the subexpressions, but prefixifying each one.
808      In this loop, inend starts at the beginning of
809      the expression this level is working on
810      and marches forward over the arguments.
811      outbeg does similarly in the output.  */
812   for (i = 0; i < args; i++)
813     {
814       oplen = arglens[i];
815       inend += oplen;
816       prefixify_subexp (inexpr, outexpr, inend, outbeg);
817       outbeg += oplen;
818     }
819 }
820 \f
821 /* This page contains the two entry points to this file.  */
822
823 /* Read an expression from the string *STRINGPTR points to,
824    parse it, and return a pointer to a  struct expression  that we malloc.
825    Use block BLOCK as the lexical context for variable names;
826    if BLOCK is zero, use the block of the selected stack frame.
827    Meanwhile, advance *STRINGPTR to point after the expression,
828    at the first nonwhite character that is not part of the expression
829    (possibly a null character).
830
831    If COMMA is nonzero, stop if a comma is reached.  */
832
833 struct expression *
834 parse_exp_1 (stringptr, block, comma)
835      char **stringptr;
836      struct block *block;
837      int comma;
838 {
839   struct cleanup *old_chain;
840
841   lexptr = *stringptr;
842
843   paren_depth = 0;
844   type_stack_depth = 0;
845
846   comma_terminates = comma;
847
848   if (lexptr == 0 || *lexptr == 0)
849     error_no_arg ("expression to compute");
850
851   old_chain = make_cleanup (free_funcalls, 0);
852   funcall_chain = 0;
853
854   expression_context_block = block ? block : get_selected_block ();
855
856   namecopy = (char *) alloca (strlen (lexptr) + 1);
857   expout_size = 10;
858   expout_ptr = 0;
859   expout = (struct expression *)
860     xmalloc (sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_size));
861   expout->language_defn = current_language;
862   make_cleanup (free_current_contents, &expout);
863
864   if (current_language->la_parser ())
865     current_language->la_error (NULL);
866
867   discard_cleanups (old_chain);
868
869   /* Record the actual number of expression elements, and then
870      reallocate the expression memory so that we free up any
871      excess elements. */
872
873   expout->nelts = expout_ptr;
874   expout = (struct expression *)
875     xrealloc ((char *) expout,
876               sizeof (struct expression) + EXP_ELEM_TO_BYTES (expout_ptr));;
877
878   /* Convert expression from postfix form as generated by yacc
879      parser, to a prefix form. */
880
881   DUMP_EXPRESSION (expout, gdb_stdout, "before conversion to prefix form");
882   prefixify_expression (expout);
883   DUMP_EXPRESSION (expout, gdb_stdout, "after conversion to prefix form");
884
885   *stringptr = lexptr;
886   return expout;
887 }
888
889 /* Parse STRING as an expression, and complain if this fails
890    to use up all of the contents of STRING.  */
891
892 struct expression *
893 parse_expression (string)
894      char *string;
895 {
896   register struct expression *exp;
897   exp = parse_exp_1 (&string, 0, 0);
898   if (*string)
899     error ("Junk after end of expression.");
900   return exp;
901 }
902 \f
903 /* Stuff for maintaining a stack of types.  Currently just used by C, but
904    probably useful for any language which declares its types "backwards".  */
905
906 void 
907 push_type (tp)
908      enum type_pieces tp;
909 {
910   if (type_stack_depth == type_stack_size)
911     {
912       type_stack_size *= 2;
913       type_stack = (union type_stack_elt *)
914         xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
915     }
916   type_stack[type_stack_depth++].piece = tp;
917 }
918
919 void
920 push_type_int (n)
921      int n;
922 {
923   if (type_stack_depth == type_stack_size)
924     {
925       type_stack_size *= 2;
926       type_stack = (union type_stack_elt *)
927         xrealloc ((char *) type_stack, type_stack_size * sizeof (*type_stack));
928     }
929   type_stack[type_stack_depth++].int_val = n;
930 }
931
932 enum type_pieces 
933 pop_type ()
934 {
935   if (type_stack_depth)
936     return type_stack[--type_stack_depth].piece;
937   return tp_end;
938 }
939
940 int
941 pop_type_int ()
942 {
943   if (type_stack_depth)
944     return type_stack[--type_stack_depth].int_val;
945   /* "Can't happen".  */
946   return 0;
947 }
948
949 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
950    as modified by all the stuff on the stack.  */
951 struct type *
952 follow_types (follow_type)
953      struct type *follow_type;
954 {
955   int done = 0;
956   int array_size;
957   struct type *range_type;
958
959   while (!done)
960     switch (pop_type ())
961       {
962       case tp_end:
963         done = 1;
964         break;
965       case tp_pointer:
966         follow_type = lookup_pointer_type (follow_type);
967         break;
968       case tp_reference:
969         follow_type = lookup_reference_type (follow_type);
970         break;
971       case tp_array:
972         array_size = pop_type_int ();
973         /* FIXME-type-allocation: need a way to free this type when we are
974            done with it.  */
975         range_type =
976           create_range_type ((struct type *) NULL,
977                              builtin_type_int, 0,
978                              array_size >= 0 ? array_size - 1 : 0);
979         follow_type =
980           create_array_type ((struct type *) NULL,
981                              follow_type, range_type);
982         if (array_size < 0)
983           TYPE_ARRAY_UPPER_BOUND_TYPE(follow_type)
984             = BOUND_CANNOT_BE_DETERMINED;
985         break;
986       case tp_function:
987         /* FIXME-type-allocation: need a way to free this type when we are
988            done with it.  */
989         follow_type = lookup_function_type (follow_type);
990         break;
991       }
992   return follow_type;
993 }
994 \f
995 void
996 _initialize_parse ()
997 {
998   type_stack_size = 80;
999   type_stack_depth = 0;
1000   type_stack = (union type_stack_elt *)
1001     xmalloc (type_stack_size * sizeof (*type_stack));
1002
1003   msym_text_symbol_type =
1004     init_type (TYPE_CODE_FUNC, 1, 0, "<text variable, no debug info>", NULL);
1005   TYPE_TARGET_TYPE (msym_text_symbol_type) = builtin_type_int;
1006   msym_data_symbol_type =
1007     init_type (TYPE_CODE_INT, TARGET_INT_BIT / HOST_CHAR_BIT, 0,
1008                "<data variable, no debug info>", NULL);
1009   msym_unknown_symbol_type =
1010     init_type (TYPE_CODE_INT, 1, 0,
1011                "<variable (not text or data), no debug info>",
1012                NULL);
1013 }