]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/jemalloc/doc/jemalloc.3
MFV r316932: 6280 libzfs: unshare_one() could fail with EZFS_SHARENFSFAILED
[FreeBSD/FreeBSD.git] / contrib / jemalloc / doc / jemalloc.3
1 '\" t
2 .\"     Title: JEMALLOC
3 .\"    Author: Jason Evans
4 .\" Generator: DocBook XSL Stylesheets v1.76.1 <http://docbook.sf.net/>
5 .\"      Date: 07/01/2017
6 .\"    Manual: User Manual
7 .\"    Source: jemalloc 5.0.1-0-g896ed3a8b3f41998d4fb4d625d30ac63ef2d51fb
8 .\"  Language: English
9 .\"
10 .TH "JEMALLOC" "3" "07/01/2017" "jemalloc 5.0.1-0-g896ed3a8b3f4" "User Manual"
11 .\" -----------------------------------------------------------------
12 .\" * Define some portability stuff
13 .\" -----------------------------------------------------------------
14 .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15 .\" http://bugs.debian.org/507673
16 .\" http://lists.gnu.org/archive/html/groff/2009-02/msg00013.html
17 .\" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
18 .ie \n(.g .ds Aq \(aq
19 .el       .ds Aq '
20 .\" -----------------------------------------------------------------
21 .\" * set default formatting
22 .\" -----------------------------------------------------------------
23 .\" disable hyphenation
24 .nh
25 .\" disable justification (adjust text to left margin only)
26 .ad l
27 .\" -----------------------------------------------------------------
28 .\" * MAIN CONTENT STARTS HERE *
29 .\" -----------------------------------------------------------------
30 .SH "NAME"
31 jemalloc \- general purpose memory allocation functions
32 .SH "LIBRARY"
33 .PP
34 This manual describes jemalloc 5\&.0\&.1\-0\-g896ed3a8b3f41998d4fb4d625d30ac63ef2d51fb\&. More information can be found at the
35 \m[blue]\fBjemalloc website\fR\m[]\&\s-2\u[1]\d\s+2\&.
36 .PP
37 The following configuration options are enabled in libc\*(Aqs built\-in jemalloc:
38 \fB\-\-enable\-fill\fR,
39 \fB\-\-enable\-lazy\-lock\fR,
40 \fB\-\-enable\-stats\fR,
41 \fB\-\-enable\-utrace\fR,
42 \fB\-\-enable\-xmalloc\fR, and
43 \fB\-\-with\-malloc\-conf=abort_conf:false\fR\&. Additionally,
44 \fB\-\-enable\-debug\fR
45 is enabled in development versions of FreeBSD (controlled by the
46 \fBMALLOC_PRODUCTION\fR
47 make variable)\&.
48 .SH "SYNOPSIS"
49 .sp
50 .ft B
51 .nf
52 #include <stdlib\&.h>
53 #include <malloc_np\&.h>
54 .fi
55 .ft
56 .SS "Standard API"
57 .HP \w'void\ *malloc('u
58 .BI "void *malloc(size_t\ " "size" ");"
59 .HP \w'void\ *calloc('u
60 .BI "void *calloc(size_t\ " "number" ", size_t\ " "size" ");"
61 .HP \w'int\ posix_memalign('u
62 .BI "int posix_memalign(void\ **" "ptr" ", size_t\ " "alignment" ", size_t\ " "size" ");"
63 .HP \w'void\ *aligned_alloc('u
64 .BI "void *aligned_alloc(size_t\ " "alignment" ", size_t\ " "size" ");"
65 .HP \w'void\ *realloc('u
66 .BI "void *realloc(void\ *" "ptr" ", size_t\ " "size" ");"
67 .HP \w'void\ free('u
68 .BI "void free(void\ *" "ptr" ");"
69 .SS "Non\-standard API"
70 .HP \w'void\ *mallocx('u
71 .BI "void *mallocx(size_t\ " "size" ", int\ " "flags" ");"
72 .HP \w'void\ *rallocx('u
73 .BI "void *rallocx(void\ *" "ptr" ", size_t\ " "size" ", int\ " "flags" ");"
74 .HP \w'size_t\ xallocx('u
75 .BI "size_t xallocx(void\ *" "ptr" ", size_t\ " "size" ", size_t\ " "extra" ", int\ " "flags" ");"
76 .HP \w'size_t\ sallocx('u
77 .BI "size_t sallocx(void\ *" "ptr" ", int\ " "flags" ");"
78 .HP \w'void\ dallocx('u
79 .BI "void dallocx(void\ *" "ptr" ", int\ " "flags" ");"
80 .HP \w'void\ sdallocx('u
81 .BI "void sdallocx(void\ *" "ptr" ", size_t\ " "size" ", int\ " "flags" ");"
82 .HP \w'size_t\ nallocx('u
83 .BI "size_t nallocx(size_t\ " "size" ", int\ " "flags" ");"
84 .HP \w'int\ mallctl('u
85 .BI "int mallctl(const\ char\ *" "name" ", void\ *" "oldp" ", size_t\ *" "oldlenp" ", void\ *" "newp" ", size_t\ " "newlen" ");"
86 .HP \w'int\ mallctlnametomib('u
87 .BI "int mallctlnametomib(const\ char\ *" "name" ", size_t\ *" "mibp" ", size_t\ *" "miblenp" ");"
88 .HP \w'int\ mallctlbymib('u
89 .BI "int mallctlbymib(const\ size_t\ *" "mib" ", size_t\ " "miblen" ", void\ *" "oldp" ", size_t\ *" "oldlenp" ", void\ *" "newp" ", size_t\ " "newlen" ");"
90 .HP \w'void\ malloc_stats_print('u
91 .BI "void malloc_stats_print(void\ " "(*write_cb)" "\ (void\ *,\ const\ char\ *), void\ *" "cbopaque" ", const\ char\ *" "opts" ");"
92 .HP \w'size_t\ malloc_usable_size('u
93 .BI "size_t malloc_usable_size(const\ void\ *" "ptr" ");"
94 .HP \w'void\ (*malloc_message)('u
95 .BI "void (*malloc_message)(void\ *" "cbopaque" ", const\ char\ *" "s" ");"
96 .PP
97 const char *\fImalloc_conf\fR;
98 .SH "DESCRIPTION"
99 .SS "Standard API"
100 .PP
101 The
102 malloc()
103 function allocates
104 \fIsize\fR
105 bytes of uninitialized memory\&. The allocated space is suitably aligned (after possible pointer coercion) for storage of any type of object\&.
106 .PP
107 The
108 calloc()
109 function allocates space for
110 \fInumber\fR
111 objects, each
112 \fIsize\fR
113 bytes in length\&. The result is identical to calling
114 malloc()
115 with an argument of
116 \fInumber\fR
117 *
118 \fIsize\fR, with the exception that the allocated memory is explicitly initialized to zero bytes\&.
119 .PP
120 The
121 posix_memalign()
122 function allocates
123 \fIsize\fR
124 bytes of memory such that the allocation\*(Aqs base address is a multiple of
125 \fIalignment\fR, and returns the allocation in the value pointed to by
126 \fIptr\fR\&. The requested
127 \fIalignment\fR
128 must be a power of 2 at least as large as
129 sizeof(\fBvoid *\fR)\&.
130 .PP
131 The
132 aligned_alloc()
133 function allocates
134 \fIsize\fR
135 bytes of memory such that the allocation\*(Aqs base address is a multiple of
136 \fIalignment\fR\&. The requested
137 \fIalignment\fR
138 must be a power of 2\&. Behavior is undefined if
139 \fIsize\fR
140 is not an integral multiple of
141 \fIalignment\fR\&.
142 .PP
143 The
144 realloc()
145 function changes the size of the previously allocated memory referenced by
146 \fIptr\fR
147 to
148 \fIsize\fR
149 bytes\&. The contents of the memory are unchanged up to the lesser of the new and old sizes\&. If the new size is larger, the contents of the newly allocated portion of the memory are undefined\&. Upon success, the memory referenced by
150 \fIptr\fR
151 is freed and a pointer to the newly allocated memory is returned\&. Note that
152 realloc()
153 may move the memory allocation, resulting in a different return value than
154 \fIptr\fR\&. If
155 \fIptr\fR
156 is
157 \fBNULL\fR, the
158 realloc()
159 function behaves identically to
160 malloc()
161 for the specified size\&.
162 .PP
163 The
164 free()
165 function causes the allocated memory referenced by
166 \fIptr\fR
167 to be made available for future allocations\&. If
168 \fIptr\fR
169 is
170 \fBNULL\fR, no action occurs\&.
171 .SS "Non\-standard API"
172 .PP
173 The
174 mallocx(),
175 rallocx(),
176 xallocx(),
177 sallocx(),
178 dallocx(),
179 sdallocx(), and
180 nallocx()
181 functions all have a
182 \fIflags\fR
183 argument that can be used to specify options\&. The functions only check the options that are contextually relevant\&. Use bitwise or (|) operations to specify one or more of the following:
184 .PP
185 \fBMALLOCX_LG_ALIGN(\fR\fB\fIla\fR\fR\fB) \fR
186 .RS 4
187 Align the memory allocation to start at an address that is a multiple of
188 (1 << \fIla\fR)\&. This macro does not validate that
189 \fIla\fR
190 is within the valid range\&.
191 .RE
192 .PP
193 \fBMALLOCX_ALIGN(\fR\fB\fIa\fR\fR\fB) \fR
194 .RS 4
195 Align the memory allocation to start at an address that is a multiple of
196 \fIa\fR, where
197 \fIa\fR
198 is a power of two\&. This macro does not validate that
199 \fIa\fR
200 is a power of 2\&.
201 .RE
202 .PP
203 \fBMALLOCX_ZERO\fR
204 .RS 4
205 Initialize newly allocated memory to contain zero bytes\&. In the growing reallocation case, the real size prior to reallocation defines the boundary between untouched bytes and those that are initialized to contain zero bytes\&. If this macro is absent, newly allocated memory is uninitialized\&.
206 .RE
207 .PP
208 \fBMALLOCX_TCACHE(\fR\fB\fItc\fR\fR\fB) \fR
209 .RS 4
210 Use the thread\-specific cache (tcache) specified by the identifier
211 \fItc\fR, which must have been acquired via the
212 tcache\&.create
213 mallctl\&. This macro does not validate that
214 \fItc\fR
215 specifies a valid identifier\&.
216 .RE
217 .PP
218 \fBMALLOCX_TCACHE_NONE\fR
219 .RS 4
220 Do not use a thread\-specific cache (tcache)\&. Unless
221 \fBMALLOCX_TCACHE(\fR\fB\fItc\fR\fR\fB)\fR
222 or
223 \fBMALLOCX_TCACHE_NONE\fR
224 is specified, an automatically managed tcache will be used under many circumstances\&. This macro cannot be used in the same
225 \fIflags\fR
226 argument as
227 \fBMALLOCX_TCACHE(\fR\fB\fItc\fR\fR\fB)\fR\&.
228 .RE
229 .PP
230 \fBMALLOCX_ARENA(\fR\fB\fIa\fR\fR\fB) \fR
231 .RS 4
232 Use the arena specified by the index
233 \fIa\fR\&. This macro has no effect for regions that were allocated via an arena other than the one specified\&. This macro does not validate that
234 \fIa\fR
235 specifies an arena index in the valid range\&.
236 .RE
237 .PP
238 The
239 mallocx()
240 function allocates at least
241 \fIsize\fR
242 bytes of memory, and returns a pointer to the base address of the allocation\&. Behavior is undefined if
243 \fIsize\fR
244 is
245 \fB0\fR\&.
246 .PP
247 The
248 rallocx()
249 function resizes the allocation at
250 \fIptr\fR
251 to be at least
252 \fIsize\fR
253 bytes, and returns a pointer to the base address of the resulting allocation, which may or may not have moved from its original location\&. Behavior is undefined if
254 \fIsize\fR
255 is
256 \fB0\fR\&.
257 .PP
258 The
259 xallocx()
260 function resizes the allocation at
261 \fIptr\fR
262 in place to be at least
263 \fIsize\fR
264 bytes, and returns the real size of the allocation\&. If
265 \fIextra\fR
266 is non\-zero, an attempt is made to resize the allocation to be at least
267 (\fIsize\fR + \fIextra\fR)
268 bytes, though inability to allocate the extra byte(s) will not by itself result in failure to resize\&. Behavior is undefined if
269 \fIsize\fR
270 is
271 \fB0\fR, or if
272 (\fIsize\fR + \fIextra\fR > \fBSIZE_T_MAX\fR)\&.
273 .PP
274 The
275 sallocx()
276 function returns the real size of the allocation at
277 \fIptr\fR\&.
278 .PP
279 The
280 dallocx()
281 function causes the memory referenced by
282 \fIptr\fR
283 to be made available for future allocations\&.
284 .PP
285 The
286 sdallocx()
287 function is an extension of
288 dallocx()
289 with a
290 \fIsize\fR
291 parameter to allow the caller to pass in the allocation size as an optimization\&. The minimum valid input size is the original requested size of the allocation, and the maximum valid input size is the corresponding value returned by
292 nallocx()
293 or
294 sallocx()\&.
295 .PP
296 The
297 nallocx()
298 function allocates no memory, but it performs the same size computation as the
299 mallocx()
300 function, and returns the real size of the allocation that would result from the equivalent
301 mallocx()
302 function call, or
303 \fB0\fR
304 if the inputs exceed the maximum supported size class and/or alignment\&. Behavior is undefined if
305 \fIsize\fR
306 is
307 \fB0\fR\&.
308 .PP
309 The
310 mallctl()
311 function provides a general interface for introspecting the memory allocator, as well as setting modifiable parameters and triggering actions\&. The period\-separated
312 \fIname\fR
313 argument specifies a location in a tree\-structured namespace; see the
314 MALLCTL NAMESPACE
315 section for documentation on the tree contents\&. To read a value, pass a pointer via
316 \fIoldp\fR
317 to adequate space to contain the value, and a pointer to its length via
318 \fIoldlenp\fR; otherwise pass
319 \fBNULL\fR
320 and
321 \fBNULL\fR\&. Similarly, to write a value, pass a pointer to the value via
322 \fInewp\fR, and its length via
323 \fInewlen\fR; otherwise pass
324 \fBNULL\fR
325 and
326 \fB0\fR\&.
327 .PP
328 The
329 mallctlnametomib()
330 function provides a way to avoid repeated name lookups for applications that repeatedly query the same portion of the namespace, by translating a name to a
331 \(lqManagement Information Base\(rq
332 (MIB) that can be passed repeatedly to
333 mallctlbymib()\&. Upon successful return from
334 mallctlnametomib(),
335 \fImibp\fR
336 contains an array of
337 \fI*miblenp\fR
338 integers, where
339 \fI*miblenp\fR
340 is the lesser of the number of components in
341 \fIname\fR
342 and the input value of
343 \fI*miblenp\fR\&. Thus it is possible to pass a
344 \fI*miblenp\fR
345 that is smaller than the number of period\-separated name components, which results in a partial MIB that can be used as the basis for constructing a complete MIB\&. For name components that are integers (e\&.g\&. the 2 in
346 arenas\&.bin\&.2\&.size), the corresponding MIB component will always be that integer\&. Therefore, it is legitimate to construct code like the following:
347 .sp
348 .if n \{\
349 .RS 4
350 .\}
351 .nf
352 unsigned nbins, i;
353 size_t mib[4];
354 size_t len, miblen;
355
356 len = sizeof(nbins);
357 mallctl("arenas\&.nbins", &nbins, &len, NULL, 0);
358
359 miblen = 4;
360 mallctlnametomib("arenas\&.bin\&.0\&.size", mib, &miblen);
361 for (i = 0; i < nbins; i++) {
362         size_t bin_size;
363
364         mib[2] = i;
365         len = sizeof(bin_size);
366         mallctlbymib(mib, miblen, (void *)&bin_size, &len, NULL, 0);
367         /* Do something with bin_size\&.\&.\&. */
368 }
369 .fi
370 .if n \{\
371 .RE
372 .\}
373 .PP
374 .RS 4
375 .RE
376 .PP
377 The
378 malloc_stats_print()
379 function writes summary statistics via the
380 \fIwrite_cb\fR
381 callback function pointer and
382 \fIcbopaque\fR
383 data passed to
384 \fIwrite_cb\fR, or
385 malloc_message()
386 if
387 \fIwrite_cb\fR
388 is
389 \fBNULL\fR\&. The statistics are presented in human\-readable form unless
390 \(lqJ\(rq
391 is specified as a character within the
392 \fIopts\fR
393 string, in which case the statistics are presented in
394 \m[blue]\fBJSON format\fR\m[]\&\s-2\u[2]\d\s+2\&. This function can be called repeatedly\&. General information that never changes during execution can be omitted by specifying
395 \(lqg\(rq
396 as a character within the
397 \fIopts\fR
398 string\&. Note that
399 malloc_message()
400 uses the
401 mallctl*()
402 functions internally, so inconsistent statistics can be reported if multiple threads use these functions simultaneously\&. If
403 \fB\-\-enable\-stats\fR
404 is specified during configuration,
405 \(lqm\(rq,
406 \(lqd\(rq, and
407 \(lqa\(rq
408 can be specified to omit merged arena, destroyed merged arena, and per arena statistics, respectively;
409 \(lqb\(rq
410 and
411 \(lql\(rq
412 can be specified to omit per size class statistics for bins and large objects, respectively;
413 \(lqx\(rq
414 can be specified to omit all mutex statistics\&. Unrecognized characters are silently ignored\&. Note that thread caching may prevent some statistics from being completely up to date, since extra locking would be required to merge counters that track thread cache operations\&.
415 .PP
416 The
417 malloc_usable_size()
418 function returns the usable size of the allocation pointed to by
419 \fIptr\fR\&. The return value may be larger than the size that was requested during allocation\&. The
420 malloc_usable_size()
421 function is not a mechanism for in\-place
422 realloc(); rather it is provided solely as a tool for introspection purposes\&. Any discrepancy between the requested allocation size and the size reported by
423 malloc_usable_size()
424 should not be depended on, since such behavior is entirely implementation\-dependent\&.
425 .SH "TUNING"
426 .PP
427 Once, when the first call is made to one of the memory allocation routines, the allocator initializes its internals based in part on various options that can be specified at compile\- or run\-time\&.
428 .PP
429 The string specified via
430 \fB\-\-with\-malloc\-conf\fR, the string pointed to by the global variable
431 \fImalloc_conf\fR, the
432 \(lqname\(rq
433 of the file referenced by the symbolic link named
434 /etc/malloc\&.conf, and the value of the environment variable
435 \fBMALLOC_CONF\fR, will be interpreted, in that order, from left to right as options\&. Note that
436 \fImalloc_conf\fR
437 may be read before
438 main()
439 is entered, so the declaration of
440 \fImalloc_conf\fR
441 should specify an initializer that contains the final value to be read by jemalloc\&.
442 \fB\-\-with\-malloc\-conf\fR
443 and
444 \fImalloc_conf\fR
445 are compile\-time mechanisms, whereas
446 /etc/malloc\&.conf
447 and
448 \fBMALLOC_CONF\fR
449 can be safely set any time prior to program invocation\&.
450 .PP
451 An options string is a comma\-separated list of option:value pairs\&. There is one key corresponding to each
452 opt\&.*
453 mallctl (see the
454 MALLCTL NAMESPACE
455 section for options documentation)\&. For example,
456 abort:true,narenas:1
457 sets the
458 opt\&.abort
459 and
460 opt\&.narenas
461 options\&. Some options have boolean values (true/false), others have integer values (base 8, 10, or 16, depending on prefix), and yet others have raw string values\&.
462 .SH "IMPLEMENTATION NOTES"
463 .PP
464 Traditionally, allocators have used
465 \fBsbrk\fR(2)
466 to obtain memory, which is suboptimal for several reasons, including race conditions, increased fragmentation, and artificial limitations on maximum usable memory\&. If
467 \fBsbrk\fR(2)
468 is supported by the operating system, this allocator uses both
469 \fBmmap\fR(2)
470 and
471 \fBsbrk\fR(2), in that order of preference; otherwise only
472 \fBmmap\fR(2)
473 is used\&.
474 .PP
475 This allocator uses multiple arenas in order to reduce lock contention for threaded programs on multi\-processor systems\&. This works well with regard to threading scalability, but incurs some costs\&. There is a small fixed per\-arena overhead, and additionally, arenas manage memory completely independently of each other, which means a small fixed increase in overall memory fragmentation\&. These overheads are not generally an issue, given the number of arenas normally used\&. Note that using substantially more arenas than the default is not likely to improve performance, mainly due to reduced cache performance\&. However, it may make sense to reduce the number of arenas if an application does not make much use of the allocation functions\&.
476 .PP
477 In addition to multiple arenas, this allocator supports thread\-specific caching, in order to make it possible to completely avoid synchronization for most allocation requests\&. Such caching allows very fast allocation in the common case, but it increases memory usage and fragmentation, since a bounded number of objects can remain allocated in each thread cache\&.
478 .PP
479 Memory is conceptually broken into extents\&. Extents are always aligned to multiples of the page size\&. This alignment makes it possible to find metadata for user objects quickly\&. User objects are broken into two categories according to size: small and large\&. Contiguous small objects comprise a slab, which resides within a single extent, whereas large objects each have their own extents backing them\&.
480 .PP
481 Small objects are managed in groups by slabs\&. Each slab maintains a bitmap to track which regions are in use\&. Allocation requests that are no more than half the quantum (8 or 16, depending on architecture) are rounded up to the nearest power of two that is at least
482 sizeof(\fBdouble\fR)\&. All other object size classes are multiples of the quantum, spaced such that there are four size classes for each doubling in size, which limits internal fragmentation to approximately 20% for all but the smallest size classes\&. Small size classes are smaller than four times the page size, and large size classes extend from four times the page size up to the largest size class that does not exceed
483 \fBPTRDIFF_MAX\fR\&.
484 .PP
485 Allocations are packed tightly together, which can be an issue for multi\-threaded applications\&. If you need to assure that allocations do not suffer from cacheline sharing, round your allocation requests up to the nearest multiple of the cacheline size, or specify cacheline alignment when allocating\&.
486 .PP
487 The
488 realloc(),
489 rallocx(), and
490 xallocx()
491 functions may resize allocations without moving them under limited circumstances\&. Unlike the
492 *allocx()
493 API, the standard API does not officially round up the usable size of an allocation to the nearest size class, so technically it is necessary to call
494 realloc()
495 to grow e\&.g\&. a 9\-byte allocation to 16 bytes, or shrink a 16\-byte allocation to 9 bytes\&. Growth and shrinkage trivially succeeds in place as long as the pre\-size and post\-size both round up to the same size class\&. No other API guarantees are made regarding in\-place resizing, but the current implementation also tries to resize large allocations in place, as long as the pre\-size and post\-size are both large\&. For shrinkage to succeed, the extent allocator must support splitting (see
496 arena\&.<i>\&.extent_hooks)\&. Growth only succeeds if the trailing memory is currently available, and the extent allocator supports merging\&.
497 .PP
498 Assuming 4 KiB pages and a 16\-byte quantum on a 64\-bit system, the size classes in each category are as shown in
499 Table 1\&.
500 .sp
501 .it 1 an-trap
502 .nr an-no-space-flag 1
503 .nr an-break-flag 1
504 .br
505 .B Table\ \&1.\ \&Size classes
506 .TS
507 allbox tab(:);
508 lB rB lB.
509 T{
510 Category
511 T}:T{
512 Spacing
513 T}:T{
514 Size
515 T}
516 .T&
517 l r l
518 ^ r l
519 ^ r l
520 ^ r l
521 ^ r l
522 ^ r l
523 ^ r l
524 ^ r l
525 ^ r l
526 l r l
527 ^ r l
528 ^ r l
529 ^ r l
530 ^ r l
531 ^ r l
532 ^ r l
533 ^ r l
534 ^ r l
535 ^ r l
536 ^ r l
537 ^ r l
538 ^ r l
539 ^ r l
540 ^ r l
541 ^ r l.
542 T{
543 Small
544 T}:T{
545 lg
546 T}:T{
547 [8]
548 T}
549 :T{
550 16
551 T}:T{
552 [16, 32, 48, 64, 80, 96, 112, 128]
553 T}
554 :T{
555 32
556 T}:T{
557 [160, 192, 224, 256]
558 T}
559 :T{
560 64
561 T}:T{
562 [320, 384, 448, 512]
563 T}
564 :T{
565 128
566 T}:T{
567 [640, 768, 896, 1024]
568 T}
569 :T{
570 256
571 T}:T{
572 [1280, 1536, 1792, 2048]
573 T}
574 :T{
575 512
576 T}:T{
577 [2560, 3072, 3584, 4096]
578 T}
579 :T{
580 1 KiB
581 T}:T{
582 [5 KiB, 6 KiB, 7 KiB, 8 KiB]
583 T}
584 :T{
585 2 KiB
586 T}:T{
587 [10 KiB, 12 KiB, 14 KiB]
588 T}
589 T{
590 Large
591 T}:T{
592 2 KiB
593 T}:T{
594 [16 KiB]
595 T}
596 :T{
597 4 KiB
598 T}:T{
599 [20 KiB, 24 KiB, 28 KiB, 32 KiB]
600 T}
601 :T{
602 8 KiB
603 T}:T{
604 [40 KiB, 48 KiB, 54 KiB, 64 KiB]
605 T}
606 :T{
607 16 KiB
608 T}:T{
609 [80 KiB, 96 KiB, 112 KiB, 128 KiB]
610 T}
611 :T{
612 32 KiB
613 T}:T{
614 [160 KiB, 192 KiB, 224 KiB, 256 KiB]
615 T}
616 :T{
617 64 KiB
618 T}:T{
619 [320 KiB, 384 KiB, 448 KiB, 512 KiB]
620 T}
621 :T{
622 128 KiB
623 T}:T{
624 [640 KiB, 768 KiB, 896 KiB, 1 MiB]
625 T}
626 :T{
627 256 KiB
628 T}:T{
629 [1280 KiB, 1536 KiB, 1792 KiB, 2 MiB]
630 T}
631 :T{
632 512 KiB
633 T}:T{
634 [2560 KiB, 3 MiB, 3584 KiB, 4 MiB]
635 T}
636 :T{
637 1 MiB
638 T}:T{
639 [5 MiB, 6 MiB, 7 MiB, 8 MiB]
640 T}
641 :T{
642 2 MiB
643 T}:T{
644 [10 MiB, 12 MiB, 14 MiB, 16 MiB]
645 T}
646 :T{
647 4 MiB
648 T}:T{
649 [20 MiB, 24 MiB, 28 MiB, 32 MiB]
650 T}
651 :T{
652 8 MiB
653 T}:T{
654 [40 MiB, 48 MiB, 56 MiB, 64 MiB]
655 T}
656 :T{
657 \&.\&.\&.
658 T}:T{
659 \&.\&.\&.
660 T}
661 :T{
662 512 PiB
663 T}:T{
664 [2560 PiB, 3 EiB, 3584 PiB, 4 EiB]
665 T}
666 :T{
667 1 EiB
668 T}:T{
669 [5 EiB, 6 EiB, 7 EiB]
670 T}
671 .TE
672 .sp 1
673 .SH "MALLCTL NAMESPACE"
674 .PP
675 The following names are defined in the namespace accessible via the
676 mallctl*()
677 functions\&. Value types are specified in parentheses, their readable/writable statuses are encoded as
678 rw,
679 r\-,
680 \-w, or
681 \-\-, and required build configuration flags follow, if any\&. A name element encoded as
682 <i>
683 or
684 <j>
685 indicates an integer component, where the integer varies from 0 to some upper value that must be determined via introspection\&. In the case of
686 stats\&.arenas\&.<i>\&.*
687 and
688 arena\&.<i>\&.{initialized,purge,decay,dss},
689 <i>
690 equal to
691 \fBMALLCTL_ARENAS_ALL\fR
692 can be used to operate on all arenas or access the summation of statistics from all arenas; similarly
693 <i>
694 equal to
695 \fBMALLCTL_ARENAS_DESTROYED\fR
696 can be used to access the summation of statistics from all destroyed arenas\&. These constants can be utilized either via
697 mallctlnametomib()
698 followed by
699 mallctlbymib(), or via code such as the following:
700 .sp
701 .if n \{\
702 .RS 4
703 .\}
704 .nf
705 #define STRINGIFY_HELPER(x) #x
706 #define STRINGIFY(x) STRINGIFY_HELPER(x)
707
708 mallctl("arena\&." STRINGIFY(MALLCTL_ARENAS_ALL) "\&.decay",
709     NULL, NULL, NULL, 0);
710 .fi
711 .if n \{\
712 .RE
713 .\}
714 .sp
715 Take special note of the
716 epoch
717 mallctl, which controls refreshing of cached dynamic statistics\&.
718 .PP
719 version (\fBconst char *\fR) r\-
720 .RS 4
721 Return the jemalloc version string\&.
722 .RE
723 .PP
724 epoch (\fBuint64_t\fR) rw
725 .RS 4
726 If a value is passed in, refresh the data from which the
727 mallctl*()
728 functions report values, and increment the epoch\&. Return the current epoch\&. This is useful for detecting whether another thread caused a refresh\&.
729 .RE
730 .PP
731 background_thread (\fBbool\fR) rw
732 .RS 4
733 Enable/disable internal background worker threads\&. When set to true, background threads are created on demand (the number of background threads will be no more than the number of CPUs or active arenas)\&. Threads run periodically, and handle
734 purging
735 asynchronously\&. When switching off, background threads are terminated synchronously\&. Note that after
736 \fBfork\fR(2)
737 function, the state in the child process will be disabled regardless the state in parent process\&. See
738 stats\&.background_thread
739 for related stats\&.
740 opt\&.background_thread
741 can be used to set the default option\&. This option is only available on selected pthread\-based platforms\&.
742 .RE
743 .PP
744 config\&.cache_oblivious (\fBbool\fR) r\-
745 .RS 4
746 \fB\-\-enable\-cache\-oblivious\fR
747 was specified during build configuration\&.
748 .RE
749 .PP
750 config\&.debug (\fBbool\fR) r\-
751 .RS 4
752 \fB\-\-enable\-debug\fR
753 was specified during build configuration\&.
754 .RE
755 .PP
756 config\&.fill (\fBbool\fR) r\-
757 .RS 4
758 \fB\-\-enable\-fill\fR
759 was specified during build configuration\&.
760 .RE
761 .PP
762 config\&.lazy_lock (\fBbool\fR) r\-
763 .RS 4
764 \fB\-\-enable\-lazy\-lock\fR
765 was specified during build configuration\&.
766 .RE
767 .PP
768 config\&.malloc_conf (\fBconst char *\fR) r\-
769 .RS 4
770 Embedded configure\-time\-specified run\-time options string, empty unless
771 \fB\-\-with\-malloc\-conf\fR
772 was specified during build configuration\&.
773 .RE
774 .PP
775 config\&.prof (\fBbool\fR) r\-
776 .RS 4
777 \fB\-\-enable\-prof\fR
778 was specified during build configuration\&.
779 .RE
780 .PP
781 config\&.prof_libgcc (\fBbool\fR) r\-
782 .RS 4
783 \fB\-\-disable\-prof\-libgcc\fR
784 was not specified during build configuration\&.
785 .RE
786 .PP
787 config\&.prof_libunwind (\fBbool\fR) r\-
788 .RS 4
789 \fB\-\-enable\-prof\-libunwind\fR
790 was specified during build configuration\&.
791 .RE
792 .PP
793 config\&.stats (\fBbool\fR) r\-
794 .RS 4
795 \fB\-\-enable\-stats\fR
796 was specified during build configuration\&.
797 .RE
798 .PP
799 config\&.thp (\fBbool\fR) r\-
800 .RS 4
801 \fB\-\-disable\-thp\fR
802 was not specified during build configuration, and the system supports transparent huge page manipulation\&.
803 .RE
804 .PP
805 config\&.utrace (\fBbool\fR) r\-
806 .RS 4
807 \fB\-\-enable\-utrace\fR
808 was specified during build configuration\&.
809 .RE
810 .PP
811 config\&.xmalloc (\fBbool\fR) r\-
812 .RS 4
813 \fB\-\-enable\-xmalloc\fR
814 was specified during build configuration\&.
815 .RE
816 .PP
817 opt\&.abort (\fBbool\fR) r\-
818 .RS 4
819 Abort\-on\-warning enabled/disabled\&. If true, most warnings are fatal\&. Note that runtime option warnings are not included (see
820 opt\&.abort_conf
821 for that)\&. The process will call
822 \fBabort\fR(3)
823 in these cases\&. This option is disabled by default unless
824 \fB\-\-enable\-debug\fR
825 is specified during configuration, in which case it is enabled by default\&.
826 .RE
827 .PP
828 opt\&.abort_conf (\fBbool\fR) r\-
829 .RS 4
830 Abort\-on\-invalid\-configuration enabled/disabled\&. If true, invalid runtime options are fatal\&. The process will call
831 \fBabort\fR(3)
832 in these cases\&. This option is disabled by default unless
833 \fB\-\-enable\-debug\fR
834 is specified during configuration, in which case it is enabled by default\&.
835 .RE
836 .PP
837 opt\&.retain (\fBbool\fR) r\-
838 .RS 4
839 If true, retain unused virtual memory for later reuse rather than discarding it by calling
840 \fBmunmap\fR(2)
841 or equivalent (see
842 stats\&.retained
843 for related details)\&. This option is disabled by default unless discarding virtual memory is known to trigger platform\-specific performance problems, e\&.g\&. for [64\-bit] Linux, which has a quirk in its virtual memory allocation algorithm that causes semi\-permanent VM map holes under normal jemalloc operation\&. Although
844 \fBmunmap\fR(2)
845 causes issues on 32\-bit Linux as well, retaining virtual memory for 32\-bit Linux is disabled by default due to the practical possibility of address space exhaustion\&.
846 .RE
847 .PP
848 opt\&.dss (\fBconst char *\fR) r\-
849 .RS 4
850 dss (\fBsbrk\fR(2)) allocation precedence as related to
851 \fBmmap\fR(2)
852 allocation\&. The following settings are supported if
853 \fBsbrk\fR(2)
854 is supported by the operating system:
855 \(lqdisabled\(rq,
856 \(lqprimary\(rq, and
857 \(lqsecondary\(rq; otherwise only
858 \(lqdisabled\(rq
859 is supported\&. The default is
860 \(lqsecondary\(rq
861 if
862 \fBsbrk\fR(2)
863 is supported by the operating system;
864 \(lqdisabled\(rq
865 otherwise\&.
866 .RE
867 .PP
868 opt\&.narenas (\fBunsigned\fR) r\-
869 .RS 4
870 Maximum number of arenas to use for automatic multiplexing of threads and arenas\&. The default is four times the number of CPUs, or one if there is a single CPU\&.
871 .RE
872 .PP
873 opt\&.percpu_arena (\fBconst char *\fR) r\-
874 .RS 4
875 Per CPU arena mode\&. Use the
876 \(lqpercpu\(rq
877 setting to enable this feature, which uses number of CPUs to determine number of arenas, and bind threads to arenas dynamically based on the CPU the thread runs on currently\&.
878 \(lqphycpu\(rq
879 setting uses one arena per physical CPU, which means the two hyper threads on the same CPU share one arena\&. Note that no runtime checking regarding the availability of hyper threading is done at the moment\&. When set to
880 \(lqdisabled\(rq, narenas and thread to arena association will not be impacted by this option\&. The default is
881 \(lqdisabled\(rq\&.
882 .RE
883 .PP
884 opt\&.background_thread (\fBconst bool\fR) r\-
885 .RS 4
886 Internal background worker threads enabled/disabled\&. See
887 background_thread
888 for dynamic control options and details\&. This option is disabled by default\&.
889 .RE
890 .PP
891 opt\&.dirty_decay_ms (\fBssize_t\fR) r\-
892 .RS 4
893 Approximate time in milliseconds from the creation of a set of unused dirty pages until an equivalent set of unused dirty pages is purged (i\&.e\&. converted to muzzy via e\&.g\&.
894 madvise(\fI\&.\&.\&.\fR\fI\fBMADV_FREE\fR\fR)
895 if supported by the operating system, or converted to clean otherwise) and/or reused\&. Dirty pages are defined as previously having been potentially written to by the application, and therefore consuming physical memory, yet having no current use\&. The pages are incrementally purged according to a sigmoidal decay curve that starts and ends with zero purge rate\&. A decay time of 0 causes all unused dirty pages to be purged immediately upon creation\&. A decay time of \-1 disables purging\&. The default decay time is 10 seconds\&. See
896 arenas\&.dirty_decay_ms
897 and
898 arena\&.<i>\&.muzzy_decay_ms
899 for related dynamic control options\&. See
900 opt\&.muzzy_decay_ms
901 for a description of muzzy pages\&.
902 .RE
903 .PP
904 opt\&.muzzy_decay_ms (\fBssize_t\fR) r\-
905 .RS 4
906 Approximate time in milliseconds from the creation of a set of unused muzzy pages until an equivalent set of unused muzzy pages is purged (i\&.e\&. converted to clean) and/or reused\&. Muzzy pages are defined as previously having been unused dirty pages that were subsequently purged in a manner that left them subject to the reclamation whims of the operating system (e\&.g\&.
907 madvise(\fI\&.\&.\&.\fR\fI\fBMADV_FREE\fR\fR)), and therefore in an indeterminate state\&. The pages are incrementally purged according to a sigmoidal decay curve that starts and ends with zero purge rate\&. A decay time of 0 causes all unused muzzy pages to be purged immediately upon creation\&. A decay time of \-1 disables purging\&. The default decay time is 10 seconds\&. See
908 arenas\&.muzzy_decay_ms
909 and
910 arena\&.<i>\&.muzzy_decay_ms
911 for related dynamic control options\&.
912 .RE
913 .PP
914 opt\&.stats_print (\fBbool\fR) r\-
915 .RS 4
916 Enable/disable statistics printing at exit\&. If enabled, the
917 malloc_stats_print()
918 function is called at program exit via an
919 \fBatexit\fR(3)
920 function\&.
921 opt\&.stats_print_opts
922 can be combined to specify output options\&. If
923 \fB\-\-enable\-stats\fR
924 is specified during configuration, this has the potential to cause deadlock for a multi\-threaded process that exits while one or more threads are executing in the memory allocation functions\&. Furthermore,
925 atexit()
926 may allocate memory during application initialization and then deadlock internally when jemalloc in turn calls
927 atexit(), so this option is not universally usable (though the application can register its own
928 atexit()
929 function with equivalent functionality)\&. Therefore, this option should only be used with care; it is primarily intended as a performance tuning aid during application development\&. This option is disabled by default\&.
930 .RE
931 .PP
932 opt\&.stats_print_opts (\fBconst char *\fR) r\-
933 .RS 4
934 Options (the
935 \fIopts\fR
936 string) to pass to the
937 malloc_stats_print()
938 at exit (enabled through
939 opt\&.stats_print)\&. See available options in
940 malloc_stats_print()\&. Has no effect unless
941 opt\&.stats_print
942 is enabled\&. The default is
943 \(lq\(rq\&.
944 .RE
945 .PP
946 opt\&.junk (\fBconst char *\fR) r\- [\fB\-\-enable\-fill\fR]
947 .RS 4
948 Junk filling\&. If set to
949 \(lqalloc\(rq, each byte of uninitialized allocated memory will be initialized to
950 0xa5\&. If set to
951 \(lqfree\(rq, all deallocated memory will be initialized to
952 0x5a\&. If set to
953 \(lqtrue\(rq, both allocated and deallocated memory will be initialized, and if set to
954 \(lqfalse\(rq, junk filling be disabled entirely\&. This is intended for debugging and will impact performance negatively\&. This option is
955 \(lqfalse\(rq
956 by default unless
957 \fB\-\-enable\-debug\fR
958 is specified during configuration, in which case it is
959 \(lqtrue\(rq
960 by default\&.
961 .RE
962 .PP
963 opt\&.zero (\fBbool\fR) r\- [\fB\-\-enable\-fill\fR]
964 .RS 4
965 Zero filling enabled/disabled\&. If enabled, each byte of uninitialized allocated memory will be initialized to 0\&. Note that this initialization only happens once for each byte, so
966 realloc()
967 and
968 rallocx()
969 calls do not zero memory that was previously allocated\&. This is intended for debugging and will impact performance negatively\&. This option is disabled by default\&.
970 .RE
971 .PP
972 opt\&.utrace (\fBbool\fR) r\- [\fB\-\-enable\-utrace\fR]
973 .RS 4
974 Allocation tracing based on
975 \fButrace\fR(2)
976 enabled/disabled\&. This option is disabled by default\&.
977 .RE
978 .PP
979 opt\&.xmalloc (\fBbool\fR) r\- [\fB\-\-enable\-xmalloc\fR]
980 .RS 4
981 Abort\-on\-out\-of\-memory enabled/disabled\&. If enabled, rather than returning failure for any allocation function, display a diagnostic message on
982 \fBSTDERR_FILENO\fR
983 and cause the program to drop core (using
984 \fBabort\fR(3))\&. If an application is designed to depend on this behavior, set the option at compile time by including the following in the source code:
985 .sp
986 .if n \{\
987 .RS 4
988 .\}
989 .nf
990 malloc_conf = "xmalloc:true";
991 .fi
992 .if n \{\
993 .RE
994 .\}
995 .sp
996 This option is disabled by default\&.
997 .RE
998 .PP
999 opt\&.tcache (\fBbool\fR) r\-
1000 .RS 4
1001 Thread\-specific caching (tcache) enabled/disabled\&. When there are multiple threads, each thread uses a tcache for objects up to a certain size\&. Thread\-specific caching allows many allocations to be satisfied without performing any thread synchronization, at the cost of increased memory use\&. See the
1002 opt\&.lg_tcache_max
1003 option for related tuning information\&. This option is enabled by default\&.
1004 .RE
1005 .PP
1006 opt\&.lg_tcache_max (\fBsize_t\fR) r\-
1007 .RS 4
1008 Maximum size class (log base 2) to cache in the thread\-specific cache (tcache)\&. At a minimum, all small size classes are cached, and at a maximum all large size classes are cached\&. The default maximum is 32 KiB (2^15)\&.
1009 .RE
1010 .PP
1011 opt\&.prof (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1012 .RS 4
1013 Memory profiling enabled/disabled\&. If enabled, profile memory allocation activity\&. See the
1014 opt\&.prof_active
1015 option for on\-the\-fly activation/deactivation\&. See the
1016 opt\&.lg_prof_sample
1017 option for probabilistic sampling control\&. See the
1018 opt\&.prof_accum
1019 option for control of cumulative sample reporting\&. See the
1020 opt\&.lg_prof_interval
1021 option for information on interval\-triggered profile dumping, the
1022 opt\&.prof_gdump
1023 option for information on high\-water\-triggered profile dumping, and the
1024 opt\&.prof_final
1025 option for final profile dumping\&. Profile output is compatible with the
1026 \fBjeprof\fR
1027 command, which is based on the
1028 \fBpprof\fR
1029 that is developed as part of the
1030 \m[blue]\fBgperftools package\fR\m[]\&\s-2\u[3]\d\s+2\&. See
1031 HEAP PROFILE FORMAT
1032 for heap profile format documentation\&.
1033 .RE
1034 .PP
1035 opt\&.prof_prefix (\fBconst char *\fR) r\- [\fB\-\-enable\-prof\fR]
1036 .RS 4
1037 Filename prefix for profile dumps\&. If the prefix is set to the empty string, no automatic dumps will occur; this is primarily useful for disabling the automatic final heap dump (which also disables leak reporting, if enabled)\&. The default prefix is
1038 jeprof\&.
1039 .RE
1040 .PP
1041 opt\&.prof_active (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1042 .RS 4
1043 Profiling activated/deactivated\&. This is a secondary control mechanism that makes it possible to start the application with profiling enabled (see the
1044 opt\&.prof
1045 option) but inactive, then toggle profiling at any time during program execution with the
1046 prof\&.active
1047 mallctl\&. This option is enabled by default\&.
1048 .RE
1049 .PP
1050 opt\&.prof_thread_active_init (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1051 .RS 4
1052 Initial setting for
1053 thread\&.prof\&.active
1054 in newly created threads\&. The initial setting for newly created threads can also be changed during execution via the
1055 prof\&.thread_active_init
1056 mallctl\&. This option is enabled by default\&.
1057 .RE
1058 .PP
1059 opt\&.lg_prof_sample (\fBsize_t\fR) r\- [\fB\-\-enable\-prof\fR]
1060 .RS 4
1061 Average interval (log base 2) between allocation samples, as measured in bytes of allocation activity\&. Increasing the sampling interval decreases profile fidelity, but also decreases the computational overhead\&. The default sample interval is 512 KiB (2^19 B)\&.
1062 .RE
1063 .PP
1064 opt\&.prof_accum (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1065 .RS 4
1066 Reporting of cumulative object/byte counts in profile dumps enabled/disabled\&. If this option is enabled, every unique backtrace must be stored for the duration of execution\&. Depending on the application, this can impose a large memory overhead, and the cumulative counts are not always of interest\&. This option is disabled by default\&.
1067 .RE
1068 .PP
1069 opt\&.lg_prof_interval (\fBssize_t\fR) r\- [\fB\-\-enable\-prof\fR]
1070 .RS 4
1071 Average interval (log base 2) between memory profile dumps, as measured in bytes of allocation activity\&. The actual interval between dumps may be sporadic because decentralized allocation counters are used to avoid synchronization bottlenecks\&. Profiles are dumped to files named according to the pattern
1072 <prefix>\&.<pid>\&.<seq>\&.i<iseq>\&.heap, where
1073 <prefix>
1074 is controlled by the
1075 opt\&.prof_prefix
1076 option\&. By default, interval\-triggered profile dumping is disabled (encoded as \-1)\&.
1077 .RE
1078 .PP
1079 opt\&.prof_gdump (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1080 .RS 4
1081 Set the initial state of
1082 prof\&.gdump, which when enabled triggers a memory profile dump every time the total virtual memory exceeds the previous maximum\&. This option is disabled by default\&.
1083 .RE
1084 .PP
1085 opt\&.prof_final (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1086 .RS 4
1087 Use an
1088 \fBatexit\fR(3)
1089 function to dump final memory usage to a file named according to the pattern
1090 <prefix>\&.<pid>\&.<seq>\&.f\&.heap, where
1091 <prefix>
1092 is controlled by the
1093 opt\&.prof_prefix
1094 option\&. Note that
1095 atexit()
1096 may allocate memory during application initialization and then deadlock internally when jemalloc in turn calls
1097 atexit(), so this option is not universally usable (though the application can register its own
1098 atexit()
1099 function with equivalent functionality)\&. This option is disabled by default\&.
1100 .RE
1101 .PP
1102 opt\&.prof_leak (\fBbool\fR) r\- [\fB\-\-enable\-prof\fR]
1103 .RS 4
1104 Leak reporting enabled/disabled\&. If enabled, use an
1105 \fBatexit\fR(3)
1106 function to report memory leaks detected by allocation sampling\&. See the
1107 opt\&.prof
1108 option for information on analyzing heap profile output\&. This option is disabled by default\&.
1109 .RE
1110 .PP
1111 thread\&.arena (\fBunsigned\fR) rw
1112 .RS 4
1113 Get or set the arena associated with the calling thread\&. If the specified arena was not initialized beforehand (see the
1114 arena\&.i\&.initialized
1115 mallctl), it will be automatically initialized as a side effect of calling this interface\&.
1116 .RE
1117 .PP
1118 thread\&.allocated (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1119 .RS 4
1120 Get the total number of bytes ever allocated by the calling thread\&. This counter has the potential to wrap around; it is up to the application to appropriately interpret the counter in such cases\&.
1121 .RE
1122 .PP
1123 thread\&.allocatedp (\fBuint64_t *\fR) r\- [\fB\-\-enable\-stats\fR]
1124 .RS 4
1125 Get a pointer to the the value that is returned by the
1126 thread\&.allocated
1127 mallctl\&. This is useful for avoiding the overhead of repeated
1128 mallctl*()
1129 calls\&.
1130 .RE
1131 .PP
1132 thread\&.deallocated (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1133 .RS 4
1134 Get the total number of bytes ever deallocated by the calling thread\&. This counter has the potential to wrap around; it is up to the application to appropriately interpret the counter in such cases\&.
1135 .RE
1136 .PP
1137 thread\&.deallocatedp (\fBuint64_t *\fR) r\- [\fB\-\-enable\-stats\fR]
1138 .RS 4
1139 Get a pointer to the the value that is returned by the
1140 thread\&.deallocated
1141 mallctl\&. This is useful for avoiding the overhead of repeated
1142 mallctl*()
1143 calls\&.
1144 .RE
1145 .PP
1146 thread\&.tcache\&.enabled (\fBbool\fR) rw
1147 .RS 4
1148 Enable/disable calling thread\*(Aqs tcache\&. The tcache is implicitly flushed as a side effect of becoming disabled (see
1149 thread\&.tcache\&.flush)\&.
1150 .RE
1151 .PP
1152 thread\&.tcache\&.flush (\fBvoid\fR) \-\-
1153 .RS 4
1154 Flush calling thread\*(Aqs thread\-specific cache (tcache)\&. This interface releases all cached objects and internal data structures associated with the calling thread\*(Aqs tcache\&. Ordinarily, this interface need not be called, since automatic periodic incremental garbage collection occurs, and the thread cache is automatically discarded when a thread exits\&. However, garbage collection is triggered by allocation activity, so it is possible for a thread that stops allocating/deallocating to retain its cache indefinitely, in which case the developer may find manual flushing useful\&.
1155 .RE
1156 .PP
1157 thread\&.prof\&.name (\fBconst char *\fR) r\- or \-w [\fB\-\-enable\-prof\fR]
1158 .RS 4
1159 Get/set the descriptive name associated with the calling thread in memory profile dumps\&. An internal copy of the name string is created, so the input string need not be maintained after this interface completes execution\&. The output string of this interface should be copied for non\-ephemeral uses, because multiple implementation details can cause asynchronous string deallocation\&. Furthermore, each invocation of this interface can only read or write; simultaneous read/write is not supported due to string lifetime limitations\&. The name string must be nil\-terminated and comprised only of characters in the sets recognized by
1160 \fBisgraph\fR(3)
1161 and
1162 \fBisblank\fR(3)\&.
1163 .RE
1164 .PP
1165 thread\&.prof\&.active (\fBbool\fR) rw [\fB\-\-enable\-prof\fR]
1166 .RS 4
1167 Control whether sampling is currently active for the calling thread\&. This is an activation mechanism in addition to
1168 prof\&.active; both must be active for the calling thread to sample\&. This flag is enabled by default\&.
1169 .RE
1170 .PP
1171 tcache\&.create (\fBunsigned\fR) r\-
1172 .RS 4
1173 Create an explicit thread\-specific cache (tcache) and return an identifier that can be passed to the
1174 \fBMALLOCX_TCACHE(\fR\fB\fItc\fR\fR\fB)\fR
1175 macro to explicitly use the specified cache rather than the automatically managed one that is used by default\&. Each explicit cache can be used by only one thread at a time; the application must assure that this constraint holds\&.
1176 .RE
1177 .PP
1178 tcache\&.flush (\fBunsigned\fR) \-w
1179 .RS 4
1180 Flush the specified thread\-specific cache (tcache)\&. The same considerations apply to this interface as to
1181 thread\&.tcache\&.flush, except that the tcache will never be automatically discarded\&.
1182 .RE
1183 .PP
1184 tcache\&.destroy (\fBunsigned\fR) \-w
1185 .RS 4
1186 Flush the specified thread\-specific cache (tcache) and make the identifier available for use during a future tcache creation\&.
1187 .RE
1188 .PP
1189 arena\&.<i>\&.initialized (\fBbool\fR) r\-
1190 .RS 4
1191 Get whether the specified arena\*(Aqs statistics are initialized (i\&.e\&. the arena was initialized prior to the current epoch)\&. This interface can also be nominally used to query whether the merged statistics corresponding to
1192 \fBMALLCTL_ARENAS_ALL\fR
1193 are initialized (always true)\&.
1194 .RE
1195 .PP
1196 arena\&.<i>\&.decay (\fBvoid\fR) \-\-
1197 .RS 4
1198 Trigger decay\-based purging of unused dirty/muzzy pages for arena <i>, or for all arenas if <i> equals
1199 \fBMALLCTL_ARENAS_ALL\fR\&. The proportion of unused dirty/muzzy pages to be purged depends on the current time; see
1200 opt\&.dirty_decay_ms
1201 and
1202 opt\&.muzy_decay_ms
1203 for details\&.
1204 .RE
1205 .PP
1206 arena\&.<i>\&.purge (\fBvoid\fR) \-\-
1207 .RS 4
1208 Purge all unused dirty pages for arena <i>, or for all arenas if <i> equals
1209 \fBMALLCTL_ARENAS_ALL\fR\&.
1210 .RE
1211 .PP
1212 arena\&.<i>\&.reset (\fBvoid\fR) \-\-
1213 .RS 4
1214 Discard all of the arena\*(Aqs extant allocations\&. This interface can only be used with arenas explicitly created via
1215 arenas\&.create\&. None of the arena\*(Aqs discarded/cached allocations may accessed afterward\&. As part of this requirement, all thread caches which were used to allocate/deallocate in conjunction with the arena must be flushed beforehand\&.
1216 .RE
1217 .PP
1218 arena\&.<i>\&.destroy (\fBvoid\fR) \-\-
1219 .RS 4
1220 Destroy the arena\&. Discard all of the arena\*(Aqs extant allocations using the same mechanism as for
1221 arena\&.<i>\&.reset
1222 (with all the same constraints and side effects), merge the arena stats into those accessible at arena index
1223 \fBMALLCTL_ARENAS_DESTROYED\fR, and then completely discard all metadata associated with the arena\&. Future calls to
1224 arenas\&.create
1225 may recycle the arena index\&. Destruction will fail if any threads are currently associated with the arena as a result of calls to
1226 thread\&.arena\&.
1227 .RE
1228 .PP
1229 arena\&.<i>\&.dss (\fBconst char *\fR) rw
1230 .RS 4
1231 Set the precedence of dss allocation as related to mmap allocation for arena <i>, or for all arenas if <i> equals
1232 \fBMALLCTL_ARENAS_ALL\fR\&. See
1233 opt\&.dss
1234 for supported settings\&.
1235 .RE
1236 .PP
1237 arena\&.<i>\&.dirty_decay_ms (\fBssize_t\fR) rw
1238 .RS 4
1239 Current per\-arena approximate time in milliseconds from the creation of a set of unused dirty pages until an equivalent set of unused dirty pages is purged and/or reused\&. Each time this interface is set, all currently unused dirty pages are considered to have fully decayed, which causes immediate purging of all unused dirty pages unless the decay time is set to \-1 (i\&.e\&. purging disabled)\&. See
1240 opt\&.dirty_decay_ms
1241 for additional information\&.
1242 .RE
1243 .PP
1244 arena\&.<i>\&.muzzy_decay_ms (\fBssize_t\fR) rw
1245 .RS 4
1246 Current per\-arena approximate time in milliseconds from the creation of a set of unused muzzy pages until an equivalent set of unused muzzy pages is purged and/or reused\&. Each time this interface is set, all currently unused muzzy pages are considered to have fully decayed, which causes immediate purging of all unused muzzy pages unless the decay time is set to \-1 (i\&.e\&. purging disabled)\&. See
1247 opt\&.muzzy_decay_ms
1248 for additional information\&.
1249 .RE
1250 .PP
1251 arena\&.<i>\&.extent_hooks (\fBextent_hooks_t *\fR) rw
1252 .RS 4
1253 Get or set the extent management hook functions for arena <i>\&. The functions must be capable of operating on all extant extents associated with arena <i>, usually by passing unknown extents to the replaced functions\&. In practice, it is feasible to control allocation for arenas explicitly created via
1254 arenas\&.create
1255 such that all extents originate from an application\-supplied extent allocator (by specifying the custom extent hook functions during arena creation), but the automatically created arenas will have already created extents prior to the application having an opportunity to take over extent allocation\&.
1256 .sp
1257 .if n \{\
1258 .RS 4
1259 .\}
1260 .nf
1261 typedef extent_hooks_s extent_hooks_t;
1262 struct extent_hooks_s {
1263         extent_alloc_t          *alloc;
1264         extent_dalloc_t         *dalloc;
1265         extent_destroy_t        *destroy;
1266         extent_commit_t         *commit;
1267         extent_decommit_t       *decommit;
1268         extent_purge_t          *purge_lazy;
1269         extent_purge_t          *purge_forced;
1270         extent_split_t          *split;
1271         extent_merge_t          *merge;
1272 };
1273 .fi
1274 .if n \{\
1275 .RE
1276 .\}
1277 .sp
1278 The
1279 \fBextent_hooks_t\fR
1280 structure comprises function pointers which are described individually below\&. jemalloc uses these functions to manage extent lifetime, which starts off with allocation of mapped committed memory, in the simplest case followed by deallocation\&. However, there are performance and platform reasons to retain extents for later reuse\&. Cleanup attempts cascade from deallocation to decommit to forced purging to lazy purging, which gives the extent management functions opportunities to reject the most permanent cleanup operations in favor of less permanent (and often less costly) operations\&. All operations except allocation can be universally opted out of by setting the hook pointers to
1281 \fBNULL\fR, or selectively opted out of by returning failure\&.
1282 .HP \w'typedef\ void\ *(extent_alloc_t)('u
1283 .BI "typedef void *(extent_alloc_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "new_addr" ", size_t\ " "size" ", size_t\ " "alignment" ", bool\ *" "zero" ", bool\ *" "commit" ", unsigned\ " "arena_ind" ");"
1284 .sp
1285 .if n \{\
1286 .RS 4
1287 .\}
1288 .nf
1289 .fi
1290 .if n \{\
1291 .RE
1292 .\}
1293 .sp
1294 An extent allocation function conforms to the
1295 \fBextent_alloc_t\fR
1296 type and upon success returns a pointer to
1297 \fIsize\fR
1298 bytes of mapped memory on behalf of arena
1299 \fIarena_ind\fR
1300 such that the extent\*(Aqs base address is a multiple of
1301 \fIalignment\fR, as well as setting
1302 \fI*zero\fR
1303 to indicate whether the extent is zeroed and
1304 \fI*commit\fR
1305 to indicate whether the extent is committed\&. Upon error the function returns
1306 \fBNULL\fR
1307 and leaves
1308 \fI*zero\fR
1309 and
1310 \fI*commit\fR
1311 unmodified\&. The
1312 \fIsize\fR
1313 parameter is always a multiple of the page size\&. The
1314 \fIalignment\fR
1315 parameter is always a power of two at least as large as the page size\&. Zeroing is mandatory if
1316 \fI*zero\fR
1317 is true upon function entry\&. Committing is mandatory if
1318 \fI*commit\fR
1319 is true upon function entry\&. If
1320 \fInew_addr\fR
1321 is not
1322 \fBNULL\fR, the returned pointer must be
1323 \fInew_addr\fR
1324 on success or
1325 \fBNULL\fR
1326 on error\&. Committed memory may be committed in absolute terms as on a system that does not overcommit, or in implicit terms as on a system that overcommits and satisfies physical memory needs on demand via soft page faults\&. Note that replacing the default extent allocation function makes the arena\*(Aqs
1327 arena\&.<i>\&.dss
1328 setting irrelevant\&.
1329 .HP \w'typedef\ bool\ (extent_dalloc_t)('u
1330 .BI "typedef bool (extent_dalloc_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", bool\ " "committed" ", unsigned\ " "arena_ind" ");"
1331 .sp
1332 .if n \{\
1333 .RS 4
1334 .\}
1335 .nf
1336 .fi
1337 .if n \{\
1338 .RE
1339 .\}
1340 .sp
1341 An extent deallocation function conforms to the
1342 \fBextent_dalloc_t\fR
1343 type and deallocates an extent at given
1344 \fIaddr\fR
1345 and
1346 \fIsize\fR
1347 with
1348 \fIcommitted\fR/decommited memory as indicated, on behalf of arena
1349 \fIarena_ind\fR, returning false upon success\&. If the function returns true, this indicates opt\-out from deallocation; the virtual memory mapping associated with the extent remains mapped, in the same commit state, and available for future use, in which case it will be automatically retained for later reuse\&.
1350 .HP \w'typedef\ void\ (extent_destroy_t)('u
1351 .BI "typedef void (extent_destroy_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", bool\ " "committed" ", unsigned\ " "arena_ind" ");"
1352 .sp
1353 .if n \{\
1354 .RS 4
1355 .\}
1356 .nf
1357 .fi
1358 .if n \{\
1359 .RE
1360 .\}
1361 .sp
1362 An extent destruction function conforms to the
1363 \fBextent_destroy_t\fR
1364 type and unconditionally destroys an extent at given
1365 \fIaddr\fR
1366 and
1367 \fIsize\fR
1368 with
1369 \fIcommitted\fR/decommited memory as indicated, on behalf of arena
1370 \fIarena_ind\fR\&. This function may be called to destroy retained extents during arena destruction (see
1371 arena\&.<i>\&.destroy)\&.
1372 .HP \w'typedef\ bool\ (extent_commit_t)('u
1373 .BI "typedef bool (extent_commit_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", size_t\ " "offset" ", size_t\ " "length" ", unsigned\ " "arena_ind" ");"
1374 .sp
1375 .if n \{\
1376 .RS 4
1377 .\}
1378 .nf
1379 .fi
1380 .if n \{\
1381 .RE
1382 .\}
1383 .sp
1384 An extent commit function conforms to the
1385 \fBextent_commit_t\fR
1386 type and commits zeroed physical memory to back pages within an extent at given
1387 \fIaddr\fR
1388 and
1389 \fIsize\fR
1390 at
1391 \fIoffset\fR
1392 bytes, extending for
1393 \fIlength\fR
1394 on behalf of arena
1395 \fIarena_ind\fR, returning false upon success\&. Committed memory may be committed in absolute terms as on a system that does not overcommit, or in implicit terms as on a system that overcommits and satisfies physical memory needs on demand via soft page faults\&. If the function returns true, this indicates insufficient physical memory to satisfy the request\&.
1396 .HP \w'typedef\ bool\ (extent_decommit_t)('u
1397 .BI "typedef bool (extent_decommit_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", size_t\ " "offset" ", size_t\ " "length" ", unsigned\ " "arena_ind" ");"
1398 .sp
1399 .if n \{\
1400 .RS 4
1401 .\}
1402 .nf
1403 .fi
1404 .if n \{\
1405 .RE
1406 .\}
1407 .sp
1408 An extent decommit function conforms to the
1409 \fBextent_decommit_t\fR
1410 type and decommits any physical memory that is backing pages within an extent at given
1411 \fIaddr\fR
1412 and
1413 \fIsize\fR
1414 at
1415 \fIoffset\fR
1416 bytes, extending for
1417 \fIlength\fR
1418 on behalf of arena
1419 \fIarena_ind\fR, returning false upon success, in which case the pages will be committed via the extent commit function before being reused\&. If the function returns true, this indicates opt\-out from decommit; the memory remains committed and available for future use, in which case it will be automatically retained for later reuse\&.
1420 .HP \w'typedef\ bool\ (extent_purge_t)('u
1421 .BI "typedef bool (extent_purge_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", size_t\ " "offset" ", size_t\ " "length" ", unsigned\ " "arena_ind" ");"
1422 .sp
1423 .if n \{\
1424 .RS 4
1425 .\}
1426 .nf
1427 .fi
1428 .if n \{\
1429 .RE
1430 .\}
1431 .sp
1432 An extent purge function conforms to the
1433 \fBextent_purge_t\fR
1434 type and discards physical pages within the virtual memory mapping associated with an extent at given
1435 \fIaddr\fR
1436 and
1437 \fIsize\fR
1438 at
1439 \fIoffset\fR
1440 bytes, extending for
1441 \fIlength\fR
1442 on behalf of arena
1443 \fIarena_ind\fR\&. A lazy extent purge function (e\&.g\&. implemented via
1444 madvise(\fI\&.\&.\&.\fR\fI\fBMADV_FREE\fR\fR)) can delay purging indefinitely and leave the pages within the purged virtual memory range in an indeterminite state, whereas a forced extent purge function immediately purges, and the pages within the virtual memory range will be zero\-filled the next time they are accessed\&. If the function returns true, this indicates failure to purge\&.
1445 .HP \w'typedef\ bool\ (extent_split_t)('u
1446 .BI "typedef bool (extent_split_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr" ", size_t\ " "size" ", size_t\ " "size_a" ", size_t\ " "size_b" ", bool\ " "committed" ", unsigned\ " "arena_ind" ");"
1447 .sp
1448 .if n \{\
1449 .RS 4
1450 .\}
1451 .nf
1452 .fi
1453 .if n \{\
1454 .RE
1455 .\}
1456 .sp
1457 An extent split function conforms to the
1458 \fBextent_split_t\fR
1459 type and optionally splits an extent at given
1460 \fIaddr\fR
1461 and
1462 \fIsize\fR
1463 into two adjacent extents, the first of
1464 \fIsize_a\fR
1465 bytes, and the second of
1466 \fIsize_b\fR
1467 bytes, operating on
1468 \fIcommitted\fR/decommitted memory as indicated, on behalf of arena
1469 \fIarena_ind\fR, returning false upon success\&. If the function returns true, this indicates that the extent remains unsplit and therefore should continue to be operated on as a whole\&.
1470 .HP \w'typedef\ bool\ (extent_merge_t)('u
1471 .BI "typedef bool (extent_merge_t)(extent_hooks_t\ *" "extent_hooks" ", void\ *" "addr_a" ", size_t\ " "size_a" ", void\ *" "addr_b" ", size_t\ " "size_b" ", bool\ " "committed" ", unsigned\ " "arena_ind" ");"
1472 .sp
1473 .if n \{\
1474 .RS 4
1475 .\}
1476 .nf
1477 .fi
1478 .if n \{\
1479 .RE
1480 .\}
1481 .sp
1482 An extent merge function conforms to the
1483 \fBextent_merge_t\fR
1484 type and optionally merges adjacent extents, at given
1485 \fIaddr_a\fR
1486 and
1487 \fIsize_a\fR
1488 with given
1489 \fIaddr_b\fR
1490 and
1491 \fIsize_b\fR
1492 into one contiguous extent, operating on
1493 \fIcommitted\fR/decommitted memory as indicated, on behalf of arena
1494 \fIarena_ind\fR, returning false upon success\&. If the function returns true, this indicates that the extents remain distinct mappings and therefore should continue to be operated on independently\&.
1495 .RE
1496 .PP
1497 arenas\&.narenas (\fBunsigned\fR) r\-
1498 .RS 4
1499 Current limit on number of arenas\&.
1500 .RE
1501 .PP
1502 arenas\&.dirty_decay_ms (\fBssize_t\fR) rw
1503 .RS 4
1504 Current default per\-arena approximate time in milliseconds from the creation of a set of unused dirty pages until an equivalent set of unused dirty pages is purged and/or reused, used to initialize
1505 arena\&.<i>\&.dirty_decay_ms
1506 during arena creation\&. See
1507 opt\&.dirty_decay_ms
1508 for additional information\&.
1509 .RE
1510 .PP
1511 arenas\&.muzzy_decay_ms (\fBssize_t\fR) rw
1512 .RS 4
1513 Current default per\-arena approximate time in milliseconds from the creation of a set of unused muzzy pages until an equivalent set of unused muzzy pages is purged and/or reused, used to initialize
1514 arena\&.<i>\&.muzzy_decay_ms
1515 during arena creation\&. See
1516 opt\&.muzzy_decay_ms
1517 for additional information\&.
1518 .RE
1519 .PP
1520 arenas\&.quantum (\fBsize_t\fR) r\-
1521 .RS 4
1522 Quantum size\&.
1523 .RE
1524 .PP
1525 arenas\&.page (\fBsize_t\fR) r\-
1526 .RS 4
1527 Page size\&.
1528 .RE
1529 .PP
1530 arenas\&.tcache_max (\fBsize_t\fR) r\-
1531 .RS 4
1532 Maximum thread\-cached size class\&.
1533 .RE
1534 .PP
1535 arenas\&.nbins (\fBunsigned\fR) r\-
1536 .RS 4
1537 Number of bin size classes\&.
1538 .RE
1539 .PP
1540 arenas\&.nhbins (\fBunsigned\fR) r\-
1541 .RS 4
1542 Total number of thread cache bin size classes\&.
1543 .RE
1544 .PP
1545 arenas\&.bin\&.<i>\&.size (\fBsize_t\fR) r\-
1546 .RS 4
1547 Maximum size supported by size class\&.
1548 .RE
1549 .PP
1550 arenas\&.bin\&.<i>\&.nregs (\fBuint32_t\fR) r\-
1551 .RS 4
1552 Number of regions per slab\&.
1553 .RE
1554 .PP
1555 arenas\&.bin\&.<i>\&.slab_size (\fBsize_t\fR) r\-
1556 .RS 4
1557 Number of bytes per slab\&.
1558 .RE
1559 .PP
1560 arenas\&.nlextents (\fBunsigned\fR) r\-
1561 .RS 4
1562 Total number of large size classes\&.
1563 .RE
1564 .PP
1565 arenas\&.lextent\&.<i>\&.size (\fBsize_t\fR) r\-
1566 .RS 4
1567 Maximum size supported by this large size class\&.
1568 .RE
1569 .PP
1570 arenas\&.create (\fBunsigned\fR, \fBextent_hooks_t *\fR) rw
1571 .RS 4
1572 Explicitly create a new arena outside the range of automatically managed arenas, with optionally specified extent hooks, and return the new arena index\&.
1573 .RE
1574 .PP
1575 prof\&.thread_active_init (\fBbool\fR) rw [\fB\-\-enable\-prof\fR]
1576 .RS 4
1577 Control the initial setting for
1578 thread\&.prof\&.active
1579 in newly created threads\&. See the
1580 opt\&.prof_thread_active_init
1581 option for additional information\&.
1582 .RE
1583 .PP
1584 prof\&.active (\fBbool\fR) rw [\fB\-\-enable\-prof\fR]
1585 .RS 4
1586 Control whether sampling is currently active\&. See the
1587 opt\&.prof_active
1588 option for additional information, as well as the interrelated
1589 thread\&.prof\&.active
1590 mallctl\&.
1591 .RE
1592 .PP
1593 prof\&.dump (\fBconst char *\fR) \-w [\fB\-\-enable\-prof\fR]
1594 .RS 4
1595 Dump a memory profile to the specified file, or if NULL is specified, to a file according to the pattern
1596 <prefix>\&.<pid>\&.<seq>\&.m<mseq>\&.heap, where
1597 <prefix>
1598 is controlled by the
1599 opt\&.prof_prefix
1600 option\&.
1601 .RE
1602 .PP
1603 prof\&.gdump (\fBbool\fR) rw [\fB\-\-enable\-prof\fR]
1604 .RS 4
1605 When enabled, trigger a memory profile dump every time the total virtual memory exceeds the previous maximum\&. Profiles are dumped to files named according to the pattern
1606 <prefix>\&.<pid>\&.<seq>\&.u<useq>\&.heap, where
1607 <prefix>
1608 is controlled by the
1609 opt\&.prof_prefix
1610 option\&.
1611 .RE
1612 .PP
1613 prof\&.reset (\fBsize_t\fR) \-w [\fB\-\-enable\-prof\fR]
1614 .RS 4
1615 Reset all memory profile statistics, and optionally update the sample rate (see
1616 opt\&.lg_prof_sample
1617 and
1618 prof\&.lg_sample)\&.
1619 .RE
1620 .PP
1621 prof\&.lg_sample (\fBsize_t\fR) r\- [\fB\-\-enable\-prof\fR]
1622 .RS 4
1623 Get the current sample rate (see
1624 opt\&.lg_prof_sample)\&.
1625 .RE
1626 .PP
1627 prof\&.interval (\fBuint64_t\fR) r\- [\fB\-\-enable\-prof\fR]
1628 .RS 4
1629 Average number of bytes allocated between interval\-based profile dumps\&. See the
1630 opt\&.lg_prof_interval
1631 option for additional information\&.
1632 .RE
1633 .PP
1634 stats\&.allocated (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1635 .RS 4
1636 Total number of bytes allocated by the application\&.
1637 .RE
1638 .PP
1639 stats\&.active (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1640 .RS 4
1641 Total number of bytes in active pages allocated by the application\&. This is a multiple of the page size, and greater than or equal to
1642 stats\&.allocated\&. This does not include
1643 stats\&.arenas\&.<i>\&.pdirty,
1644 stats\&.arenas\&.<i>\&.pmuzzy, nor pages entirely devoted to allocator metadata\&.
1645 .RE
1646 .PP
1647 stats\&.metadata (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1648 .RS 4
1649 Total number of bytes dedicated to metadata, which comprise base allocations used for bootstrap\-sensitive allocator metadata structures (see
1650 stats\&.arenas\&.<i>\&.base) and internal allocations (see
1651 stats\&.arenas\&.<i>\&.internal)\&.
1652 .RE
1653 .PP
1654 stats\&.resident (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1655 .RS 4
1656 Maximum number of bytes in physically resident data pages mapped by the allocator, comprising all pages dedicated to allocator metadata, pages backing active allocations, and unused dirty pages\&. This is a maximum rather than precise because pages may not actually be physically resident if they correspond to demand\-zeroed virtual memory that has not yet been touched\&. This is a multiple of the page size, and is larger than
1657 stats\&.active\&.
1658 .RE
1659 .PP
1660 stats\&.mapped (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1661 .RS 4
1662 Total number of bytes in active extents mapped by the allocator\&. This is larger than
1663 stats\&.active\&. This does not include inactive extents, even those that contain unused dirty pages, which means that there is no strict ordering between this and
1664 stats\&.resident\&.
1665 .RE
1666 .PP
1667 stats\&.retained (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1668 .RS 4
1669 Total number of bytes in virtual memory mappings that were retained rather than being returned to the operating system via e\&.g\&.
1670 \fBmunmap\fR(2)
1671 or similar\&. Retained virtual memory is typically untouched, decommitted, or purged, so it has no strongly associated physical memory (see
1672 extent hooks
1673 for details)\&. Retained memory is excluded from mapped memory statistics, e\&.g\&.
1674 stats\&.mapped\&.
1675 .RE
1676 .PP
1677 stats\&.background_thread\&.num_threads (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1678 .RS 4
1679 Number of
1680 background threads
1681 running currently\&.
1682 .RE
1683 .PP
1684 stats\&.background_thread\&.num_runs (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1685 .RS 4
1686 Total number of runs from all
1687 background threads\&.
1688 .RE
1689 .PP
1690 stats\&.background_thread\&.run_interval (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1691 .RS 4
1692 Average run interval in nanoseconds of
1693 background threads\&.
1694 .RE
1695 .PP
1696 stats\&.mutexes\&.ctl\&.{counter}; (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
1697 .RS 4
1698 Statistics on
1699 \fIctl\fR
1700 mutex (global scope; mallctl related)\&.
1701 {counter}
1702 is one of the counters below:
1703 .PP
1704 .RS 4
1705 \fInum_ops\fR
1706 (\fBuint64_t\fR): Total number of lock acquisition operations on this mutex\&.
1707 .sp
1708 \fInum_spin_acq\fR
1709 (\fBuint64_t\fR): Number of times the mutex was spin\-acquired\&. When the mutex is currently locked and cannot be acquired immediately, a short period of spin\-retry within jemalloc will be performed\&. Acquired through spin generally means the contention was lightweight and not causing context switches\&.
1710 .sp
1711 \fInum_wait\fR
1712 (\fBuint64_t\fR): Number of times the mutex was wait\-acquired, which means the mutex contention was not solved by spin\-retry, and blocking operation was likely involved in order to acquire the mutex\&. This event generally implies higher cost / longer delay, and should be investigated if it happens often\&.
1713 .sp
1714 \fImax_wait_time\fR
1715 (\fBuint64_t\fR): Maximum length of time in nanoseconds spent on a single wait\-acquired lock operation\&. Note that to avoid profiling overhead on the common path, this does not consider spin\-acquired cases\&.
1716 .sp
1717 \fItotal_wait_time\fR
1718 (\fBuint64_t\fR): Cumulative time in nanoseconds spent on wait\-acquired lock operations\&. Similarly, spin\-acquired cases are not considered\&.
1719 .sp
1720 \fImax_num_thds\fR
1721 (\fBuint32_t\fR): Maximum number of threads waiting on this mutex simultaneously\&. Similarly, spin\-acquired cases are not considered\&.
1722 .sp
1723 \fInum_owner_switch\fR
1724 (\fBuint64_t\fR): Number of times the current mutex owner is different from the previous one\&. This event does not generally imply an issue; rather it is an indicator of how often the protected data are accessed by different threads\&.
1725 .RE
1726 .RE
1727 .PP
1728 stats\&.mutexes\&.background_thread\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
1729 .RS 4
1730 Statistics on
1731 \fIbackground_thread\fR
1732 mutex (global scope;
1733 background_thread
1734 related)\&.
1735 {counter}
1736 is one of the counters in
1737 mutex profiling counters\&.
1738 .RE
1739 .PP
1740 stats\&.mutexes\&.prof\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
1741 .RS 4
1742 Statistics on
1743 \fIprof\fR
1744 mutex (global scope; profiling related)\&.
1745 {counter}
1746 is one of the counters in
1747 mutex profiling counters\&.
1748 .RE
1749 .PP
1750 stats\&.mutexes\&.reset (\fBvoid\fR) \-\- [\fB\-\-enable\-stats\fR]
1751 .RS 4
1752 Reset all mutex profile statistics, including global mutexes, arena mutexes and bin mutexes\&.
1753 .RE
1754 .PP
1755 stats\&.arenas\&.<i>\&.dss (\fBconst char *\fR) r\-
1756 .RS 4
1757 dss (\fBsbrk\fR(2)) allocation precedence as related to
1758 \fBmmap\fR(2)
1759 allocation\&. See
1760 opt\&.dss
1761 for details\&.
1762 .RE
1763 .PP
1764 stats\&.arenas\&.<i>\&.dirty_decay_ms (\fBssize_t\fR) r\-
1765 .RS 4
1766 Approximate time in milliseconds from the creation of a set of unused dirty pages until an equivalent set of unused dirty pages is purged and/or reused\&. See
1767 opt\&.dirty_decay_ms
1768 for details\&.
1769 .RE
1770 .PP
1771 stats\&.arenas\&.<i>\&.muzzy_decay_ms (\fBssize_t\fR) r\-
1772 .RS 4
1773 Approximate time in milliseconds from the creation of a set of unused muzzy pages until an equivalent set of unused muzzy pages is purged and/or reused\&. See
1774 opt\&.muzzy_decay_ms
1775 for details\&.
1776 .RE
1777 .PP
1778 stats\&.arenas\&.<i>\&.nthreads (\fBunsigned\fR) r\-
1779 .RS 4
1780 Number of threads currently assigned to arena\&.
1781 .RE
1782 .PP
1783 stats\&.arenas\&.<i>\&.uptime (\fBuint64_t\fR) r\-
1784 .RS 4
1785 Time elapsed (in nanoseconds) since the arena was created\&. If <i> equals
1786 \fB0\fR
1787 or
1788 \fBMALLCTL_ARENAS_ALL\fR, this is the uptime since malloc initialization\&.
1789 .RE
1790 .PP
1791 stats\&.arenas\&.<i>\&.pactive (\fBsize_t\fR) r\-
1792 .RS 4
1793 Number of pages in active extents\&.
1794 .RE
1795 .PP
1796 stats\&.arenas\&.<i>\&.pdirty (\fBsize_t\fR) r\-
1797 .RS 4
1798 Number of pages within unused extents that are potentially dirty, and for which
1799 madvise()
1800 or similar has not been called\&. See
1801 opt\&.dirty_decay_ms
1802 for a description of dirty pages\&.
1803 .RE
1804 .PP
1805 stats\&.arenas\&.<i>\&.pmuzzy (\fBsize_t\fR) r\-
1806 .RS 4
1807 Number of pages within unused extents that are muzzy\&. See
1808 opt\&.muzzy_decay_ms
1809 for a description of muzzy pages\&.
1810 .RE
1811 .PP
1812 stats\&.arenas\&.<i>\&.mapped (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1813 .RS 4
1814 Number of mapped bytes\&.
1815 .RE
1816 .PP
1817 stats\&.arenas\&.<i>\&.retained (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1818 .RS 4
1819 Number of retained bytes\&. See
1820 stats\&.retained
1821 for details\&.
1822 .RE
1823 .PP
1824 stats\&.arenas\&.<i>\&.base (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1825 .RS 4
1826 Number of bytes dedicated to bootstrap\-sensitive allocator metadata structures\&.
1827 .RE
1828 .PP
1829 stats\&.arenas\&.<i>\&.internal (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1830 .RS 4
1831 Number of bytes dedicated to internal allocations\&. Internal allocations differ from application\-originated allocations in that they are for internal use, and that they are omitted from heap profiles\&.
1832 .RE
1833 .PP
1834 stats\&.arenas\&.<i>\&.resident (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1835 .RS 4
1836 Maximum number of bytes in physically resident data pages mapped by the arena, comprising all pages dedicated to allocator metadata, pages backing active allocations, and unused dirty pages\&. This is a maximum rather than precise because pages may not actually be physically resident if they correspond to demand\-zeroed virtual memory that has not yet been touched\&. This is a multiple of the page size\&.
1837 .RE
1838 .PP
1839 stats\&.arenas\&.<i>\&.dirty_npurge (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1840 .RS 4
1841 Number of dirty page purge sweeps performed\&.
1842 .RE
1843 .PP
1844 stats\&.arenas\&.<i>\&.dirty_nmadvise (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1845 .RS 4
1846 Number of
1847 madvise()
1848 or similar calls made to purge dirty pages\&.
1849 .RE
1850 .PP
1851 stats\&.arenas\&.<i>\&.dirty_purged (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1852 .RS 4
1853 Number of dirty pages purged\&.
1854 .RE
1855 .PP
1856 stats\&.arenas\&.<i>\&.muzzy_npurge (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1857 .RS 4
1858 Number of muzzy page purge sweeps performed\&.
1859 .RE
1860 .PP
1861 stats\&.arenas\&.<i>\&.muzzy_nmadvise (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1862 .RS 4
1863 Number of
1864 madvise()
1865 or similar calls made to purge muzzy pages\&.
1866 .RE
1867 .PP
1868 stats\&.arenas\&.<i>\&.muzzy_purged (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1869 .RS 4
1870 Number of muzzy pages purged\&.
1871 .RE
1872 .PP
1873 stats\&.arenas\&.<i>\&.small\&.allocated (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1874 .RS 4
1875 Number of bytes currently allocated by small objects\&.
1876 .RE
1877 .PP
1878 stats\&.arenas\&.<i>\&.small\&.nmalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1879 .RS 4
1880 Cumulative number of times a small allocation was requested from the arena\*(Aqs bins, whether to fill the relevant tcache if
1881 opt\&.tcache
1882 is enabled, or to directly satisfy an allocation request otherwise\&.
1883 .RE
1884 .PP
1885 stats\&.arenas\&.<i>\&.small\&.ndalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1886 .RS 4
1887 Cumulative number of times a small allocation was returned to the arena\*(Aqs bins, whether to flush the relevant tcache if
1888 opt\&.tcache
1889 is enabled, or to directly deallocate an allocation otherwise\&.
1890 .RE
1891 .PP
1892 stats\&.arenas\&.<i>\&.small\&.nrequests (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1893 .RS 4
1894 Cumulative number of allocation requests satisfied by all bin size classes\&.
1895 .RE
1896 .PP
1897 stats\&.arenas\&.<i>\&.large\&.allocated (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1898 .RS 4
1899 Number of bytes currently allocated by large objects\&.
1900 .RE
1901 .PP
1902 stats\&.arenas\&.<i>\&.large\&.nmalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1903 .RS 4
1904 Cumulative number of times a large extent was allocated from the arena, whether to fill the relevant tcache if
1905 opt\&.tcache
1906 is enabled and the size class is within the range being cached, or to directly satisfy an allocation request otherwise\&.
1907 .RE
1908 .PP
1909 stats\&.arenas\&.<i>\&.large\&.ndalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1910 .RS 4
1911 Cumulative number of times a large extent was returned to the arena, whether to flush the relevant tcache if
1912 opt\&.tcache
1913 is enabled and the size class is within the range being cached, or to directly deallocate an allocation otherwise\&.
1914 .RE
1915 .PP
1916 stats\&.arenas\&.<i>\&.large\&.nrequests (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1917 .RS 4
1918 Cumulative number of allocation requests satisfied by all large size classes\&.
1919 .RE
1920 .PP
1921 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nmalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1922 .RS 4
1923 Cumulative number of times a bin region of the corresponding size class was allocated from the arena, whether to fill the relevant tcache if
1924 opt\&.tcache
1925 is enabled, or to directly satisfy an allocation request otherwise\&.
1926 .RE
1927 .PP
1928 stats\&.arenas\&.<i>\&.bins\&.<j>\&.ndalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1929 .RS 4
1930 Cumulative number of times a bin region of the corresponding size class was returned to the arena, whether to flush the relevant tcache if
1931 opt\&.tcache
1932 is enabled, or to directly deallocate an allocation otherwise\&.
1933 .RE
1934 .PP
1935 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nrequests (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1936 .RS 4
1937 Cumulative number of allocation requests satisfied by bin regions of the corresponding size class\&.
1938 .RE
1939 .PP
1940 stats\&.arenas\&.<i>\&.bins\&.<j>\&.curregs (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1941 .RS 4
1942 Current number of regions for this size class\&.
1943 .RE
1944 .PP
1945 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nfills (\fBuint64_t\fR) r\-
1946 .RS 4
1947 Cumulative number of tcache fills\&.
1948 .RE
1949 .PP
1950 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nflushes (\fBuint64_t\fR) r\-
1951 .RS 4
1952 Cumulative number of tcache flushes\&.
1953 .RE
1954 .PP
1955 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nslabs (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1956 .RS 4
1957 Cumulative number of slabs created\&.
1958 .RE
1959 .PP
1960 stats\&.arenas\&.<i>\&.bins\&.<j>\&.nreslabs (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1961 .RS 4
1962 Cumulative number of times the current slab from which to allocate changed\&.
1963 .RE
1964 .PP
1965 stats\&.arenas\&.<i>\&.bins\&.<j>\&.curslabs (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
1966 .RS 4
1967 Current number of slabs\&.
1968 .RE
1969 .PP
1970 stats\&.arenas\&.<i>\&.bins\&.<j>\&.mutex\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
1971 .RS 4
1972 Statistics on
1973 \fIarena\&.<i>\&.bins\&.<j>\fR
1974 mutex (arena bin scope; bin operation related)\&.
1975 {counter}
1976 is one of the counters in
1977 mutex profiling counters\&.
1978 .RE
1979 .PP
1980 stats\&.arenas\&.<i>\&.lextents\&.<j>\&.nmalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1981 .RS 4
1982 Cumulative number of times a large extent of the corresponding size class was allocated from the arena, whether to fill the relevant tcache if
1983 opt\&.tcache
1984 is enabled and the size class is within the range being cached, or to directly satisfy an allocation request otherwise\&.
1985 .RE
1986 .PP
1987 stats\&.arenas\&.<i>\&.lextents\&.<j>\&.ndalloc (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1988 .RS 4
1989 Cumulative number of times a large extent of the corresponding size class was returned to the arena, whether to flush the relevant tcache if
1990 opt\&.tcache
1991 is enabled and the size class is within the range being cached, or to directly deallocate an allocation otherwise\&.
1992 .RE
1993 .PP
1994 stats\&.arenas\&.<i>\&.lextents\&.<j>\&.nrequests (\fBuint64_t\fR) r\- [\fB\-\-enable\-stats\fR]
1995 .RS 4
1996 Cumulative number of allocation requests satisfied by large extents of the corresponding size class\&.
1997 .RE
1998 .PP
1999 stats\&.arenas\&.<i>\&.lextents\&.<j>\&.curlextents (\fBsize_t\fR) r\- [\fB\-\-enable\-stats\fR]
2000 .RS 4
2001 Current number of large allocations for this size class\&.
2002 .RE
2003 .PP
2004 stats\&.arenas\&.<i>\&.mutexes\&.large\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2005 .RS 4
2006 Statistics on
2007 \fIarena\&.<i>\&.large\fR
2008 mutex (arena scope; large allocation related)\&.
2009 {counter}
2010 is one of the counters in
2011 mutex profiling counters\&.
2012 .RE
2013 .PP
2014 stats\&.arenas\&.<i>\&.mutexes\&.extent_avail\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2015 .RS 4
2016 Statistics on
2017 \fIarena\&.<i>\&.extent_avail \fR
2018 mutex (arena scope; extent avail related)\&.
2019 {counter}
2020 is one of the counters in
2021 mutex profiling counters\&.
2022 .RE
2023 .PP
2024 stats\&.arenas\&.<i>\&.mutexes\&.extents_dirty\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2025 .RS 4
2026 Statistics on
2027 \fIarena\&.<i>\&.extents_dirty \fR
2028 mutex (arena scope; dirty extents related)\&.
2029 {counter}
2030 is one of the counters in
2031 mutex profiling counters\&.
2032 .RE
2033 .PP
2034 stats\&.arenas\&.<i>\&.mutexes\&.extents_muzzy\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2035 .RS 4
2036 Statistics on
2037 \fIarena\&.<i>\&.extents_muzzy \fR
2038 mutex (arena scope; muzzy extents related)\&.
2039 {counter}
2040 is one of the counters in
2041 mutex profiling counters\&.
2042 .RE
2043 .PP
2044 stats\&.arenas\&.<i>\&.mutexes\&.extents_retained\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2045 .RS 4
2046 Statistics on
2047 \fIarena\&.<i>\&.extents_retained \fR
2048 mutex (arena scope; retained extents related)\&.
2049 {counter}
2050 is one of the counters in
2051 mutex profiling counters\&.
2052 .RE
2053 .PP
2054 stats\&.arenas\&.<i>\&.mutexes\&.decay_dirty\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2055 .RS 4
2056 Statistics on
2057 \fIarena\&.<i>\&.decay_dirty \fR
2058 mutex (arena scope; decay for dirty pages related)\&.
2059 {counter}
2060 is one of the counters in
2061 mutex profiling counters\&.
2062 .RE
2063 .PP
2064 stats\&.arenas\&.<i>\&.mutexes\&.decay_muzzy\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2065 .RS 4
2066 Statistics on
2067 \fIarena\&.<i>\&.decay_muzzy \fR
2068 mutex (arena scope; decay for muzzy pages related)\&.
2069 {counter}
2070 is one of the counters in
2071 mutex profiling counters\&.
2072 .RE
2073 .PP
2074 stats\&.arenas\&.<i>\&.mutexes\&.base\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2075 .RS 4
2076 Statistics on
2077 \fIarena\&.<i>\&.base\fR
2078 mutex (arena scope; base allocator related)\&.
2079 {counter}
2080 is one of the counters in
2081 mutex profiling counters\&.
2082 .RE
2083 .PP
2084 stats\&.arenas\&.<i>\&.mutexes\&.tcache_list\&.{counter} (\fBcounter specific type\fR) r\- [\fB\-\-enable\-stats\fR]
2085 .RS 4
2086 Statistics on
2087 \fIarena\&.<i>\&.tcache_list\fR
2088 mutex (arena scope; tcache to arena association related)\&. This mutex is expected to be accessed less often\&.
2089 {counter}
2090 is one of the counters in
2091 mutex profiling counters\&.
2092 .RE
2093 .SH "HEAP PROFILE FORMAT"
2094 .PP
2095 Although the heap profiling functionality was originally designed to be compatible with the
2096 \fBpprof\fR
2097 command that is developed as part of the
2098 \m[blue]\fBgperftools package\fR\m[]\&\s-2\u[3]\d\s+2, the addition of per thread heap profiling functionality required a different heap profile format\&. The
2099 \fBjeprof\fR
2100 command is derived from
2101 \fBpprof\fR, with enhancements to support the heap profile format described here\&.
2102 .PP
2103 In the following hypothetical heap profile,
2104 \fB[\&.\&.\&.]\fR
2105 indicates elision for the sake of compactness\&.
2106 .sp
2107 .if n \{\
2108 .RS 4
2109 .\}
2110 .nf
2111 heap_v2/524288
2112   t*: 28106: 56637512 [0: 0]
2113   [\&.\&.\&.]
2114   t3: 352: 16777344 [0: 0]
2115   [\&.\&.\&.]
2116   t99: 17754: 29341640 [0: 0]
2117   [\&.\&.\&.]
2118 @ 0x5f86da8 0x5f5a1dc [\&.\&.\&.] 0x29e4d4e 0xa200316 0xabb2988 [\&.\&.\&.]
2119   t*: 13: 6688 [0: 0]
2120   t3: 12: 6496 [0: ]
2121   t99: 1: 192 [0: 0]
2122 [\&.\&.\&.]
2123
2124 MAPPED_LIBRARIES:
2125 [\&.\&.\&.]
2126 .fi
2127 .if n \{\
2128 .RE
2129 .\}
2130 .sp
2131 The following matches the above heap profile, but most tokens are replaced with
2132 \fB<description>\fR
2133 to indicate descriptions of the corresponding fields\&.
2134 .sp
2135 .if n \{\
2136 .RS 4
2137 .\}
2138 .nf
2139 <heap_profile_format_version>/<mean_sample_interval>
2140   <aggregate>: <curobjs>: <curbytes> [<cumobjs>: <cumbytes>]
2141   [\&.\&.\&.]
2142   <thread_3_aggregate>: <curobjs>: <curbytes>[<cumobjs>: <cumbytes>]
2143   [\&.\&.\&.]
2144   <thread_99_aggregate>: <curobjs>: <curbytes>[<cumobjs>: <cumbytes>]
2145   [\&.\&.\&.]
2146 @ <top_frame> <frame> [\&.\&.\&.] <frame> <frame> <frame> [\&.\&.\&.]
2147   <backtrace_aggregate>: <curobjs>: <curbytes> [<cumobjs>: <cumbytes>]
2148   <backtrace_thread_3>: <curobjs>: <curbytes> [<cumobjs>: <cumbytes>]
2149   <backtrace_thread_99>: <curobjs>: <curbytes> [<cumobjs>: <cumbytes>]
2150 [\&.\&.\&.]
2151
2152 MAPPED_LIBRARIES:
2153 </proc/<pid>/maps>
2154 .fi
2155 .if n \{\
2156 .RE
2157 .\}
2158 .SH "DEBUGGING MALLOC PROBLEMS"
2159 .PP
2160 When debugging, it is a good idea to configure/build jemalloc with the
2161 \fB\-\-enable\-debug\fR
2162 and
2163 \fB\-\-enable\-fill\fR
2164 options, and recompile the program with suitable options and symbols for debugger support\&. When so configured, jemalloc incorporates a wide variety of run\-time assertions that catch application errors such as double\-free, write\-after\-free, etc\&.
2165 .PP
2166 Programs often accidentally depend on
2167 \(lquninitialized\(rq
2168 memory actually being filled with zero bytes\&. Junk filling (see the
2169 opt\&.junk
2170 option) tends to expose such bugs in the form of obviously incorrect results and/or coredumps\&. Conversely, zero filling (see the
2171 opt\&.zero
2172 option) eliminates the symptoms of such bugs\&. Between these two options, it is usually possible to quickly detect, diagnose, and eliminate such bugs\&.
2173 .PP
2174 This implementation does not provide much detail about the problems it detects, because the performance impact for storing such information would be prohibitive\&.
2175 .SH "DIAGNOSTIC MESSAGES"
2176 .PP
2177 If any of the memory allocation/deallocation functions detect an error or warning condition, a message will be printed to file descriptor
2178 \fBSTDERR_FILENO\fR\&. Errors will result in the process dumping core\&. If the
2179 opt\&.abort
2180 option is set, most warnings are treated as errors\&.
2181 .PP
2182 The
2183 \fImalloc_message\fR
2184 variable allows the programmer to override the function which emits the text strings forming the errors and warnings if for some reason the
2185 \fBSTDERR_FILENO\fR
2186 file descriptor is not suitable for this\&.
2187 malloc_message()
2188 takes the
2189 \fIcbopaque\fR
2190 pointer argument that is
2191 \fBNULL\fR
2192 unless overridden by the arguments in a call to
2193 malloc_stats_print(), followed by a string pointer\&. Please note that doing anything which tries to allocate memory in this function is likely to result in a crash or deadlock\&.
2194 .PP
2195 All messages are prefixed by
2196 \(lq<jemalloc>: \(rq\&.
2197 .SH "RETURN VALUES"
2198 .SS "Standard API"
2199 .PP
2200 The
2201 malloc()
2202 and
2203 calloc()
2204 functions return a pointer to the allocated memory if successful; otherwise a
2205 \fBNULL\fR
2206 pointer is returned and
2207 \fIerrno\fR
2208 is set to
2209 ENOMEM\&.
2210 .PP
2211 The
2212 posix_memalign()
2213 function returns the value 0 if successful; otherwise it returns an error value\&. The
2214 posix_memalign()
2215 function will fail if:
2216 .PP
2217 EINVAL
2218 .RS 4
2219 The
2220 \fIalignment\fR
2221 parameter is not a power of 2 at least as large as
2222 sizeof(\fBvoid *\fR)\&.
2223 .RE
2224 .PP
2225 ENOMEM
2226 .RS 4
2227 Memory allocation error\&.
2228 .RE
2229 .PP
2230 The
2231 aligned_alloc()
2232 function returns a pointer to the allocated memory if successful; otherwise a
2233 \fBNULL\fR
2234 pointer is returned and
2235 \fIerrno\fR
2236 is set\&. The
2237 aligned_alloc()
2238 function will fail if:
2239 .PP
2240 EINVAL
2241 .RS 4
2242 The
2243 \fIalignment\fR
2244 parameter is not a power of 2\&.
2245 .RE
2246 .PP
2247 ENOMEM
2248 .RS 4
2249 Memory allocation error\&.
2250 .RE
2251 .PP
2252 The
2253 realloc()
2254 function returns a pointer, possibly identical to
2255 \fIptr\fR, to the allocated memory if successful; otherwise a
2256 \fBNULL\fR
2257 pointer is returned, and
2258 \fIerrno\fR
2259 is set to
2260 ENOMEM
2261 if the error was the result of an allocation failure\&. The
2262 realloc()
2263 function always leaves the original buffer intact when an error occurs\&.
2264 .PP
2265 The
2266 free()
2267 function returns no value\&.
2268 .SS "Non\-standard API"
2269 .PP
2270 The
2271 mallocx()
2272 and
2273 rallocx()
2274 functions return a pointer to the allocated memory if successful; otherwise a
2275 \fBNULL\fR
2276 pointer is returned to indicate insufficient contiguous memory was available to service the allocation request\&.
2277 .PP
2278 The
2279 xallocx()
2280 function returns the real size of the resulting resized allocation pointed to by
2281 \fIptr\fR, which is a value less than
2282 \fIsize\fR
2283 if the allocation could not be adequately grown in place\&.
2284 .PP
2285 The
2286 sallocx()
2287 function returns the real size of the allocation pointed to by
2288 \fIptr\fR\&.
2289 .PP
2290 The
2291 nallocx()
2292 returns the real size that would result from a successful equivalent
2293 mallocx()
2294 function call, or zero if insufficient memory is available to perform the size computation\&.
2295 .PP
2296 The
2297 mallctl(),
2298 mallctlnametomib(), and
2299 mallctlbymib()
2300 functions return 0 on success; otherwise they return an error value\&. The functions will fail if:
2301 .PP
2302 EINVAL
2303 .RS 4
2304 \fInewp\fR
2305 is not
2306 \fBNULL\fR, and
2307 \fInewlen\fR
2308 is too large or too small\&. Alternatively,
2309 \fI*oldlenp\fR
2310 is too large or too small; in this case as much data as possible are read despite the error\&.
2311 .RE
2312 .PP
2313 ENOENT
2314 .RS 4
2315 \fIname\fR
2316 or
2317 \fImib\fR
2318 specifies an unknown/invalid value\&.
2319 .RE
2320 .PP
2321 EPERM
2322 .RS 4
2323 Attempt to read or write void value, or attempt to write read\-only value\&.
2324 .RE
2325 .PP
2326 EAGAIN
2327 .RS 4
2328 A memory allocation failure occurred\&.
2329 .RE
2330 .PP
2331 EFAULT
2332 .RS 4
2333 An interface with side effects failed in some way not directly related to
2334 mallctl*()
2335 read/write processing\&.
2336 .RE
2337 .PP
2338 The
2339 malloc_usable_size()
2340 function returns the usable size of the allocation pointed to by
2341 \fIptr\fR\&.
2342 .SH "ENVIRONMENT"
2343 .PP
2344 The following environment variable affects the execution of the allocation functions:
2345 .PP
2346 \fBMALLOC_CONF\fR
2347 .RS 4
2348 If the environment variable
2349 \fBMALLOC_CONF\fR
2350 is set, the characters it contains will be interpreted as options\&.
2351 .RE
2352 .SH "EXAMPLES"
2353 .PP
2354 To dump core whenever a problem occurs:
2355 .sp
2356 .if n \{\
2357 .RS 4
2358 .\}
2359 .nf
2360 ln \-s \*(Aqabort:true\*(Aq /etc/malloc\&.conf
2361 .fi
2362 .if n \{\
2363 .RE
2364 .\}
2365 .PP
2366 To specify in the source that only one arena should be automatically created:
2367 .sp
2368 .if n \{\
2369 .RS 4
2370 .\}
2371 .nf
2372 malloc_conf = "narenas:1";
2373 .fi
2374 .if n \{\
2375 .RE
2376 .\}
2377 .SH "SEE ALSO"
2378 .PP
2379 \fBmadvise\fR(2),
2380 \fBmmap\fR(2),
2381 \fBsbrk\fR(2),
2382 \fButrace\fR(2),
2383 \fBalloca\fR(3),
2384 \fBatexit\fR(3),
2385 \fBgetpagesize\fR(3)
2386 .SH "STANDARDS"
2387 .PP
2388 The
2389 malloc(),
2390 calloc(),
2391 realloc(), and
2392 free()
2393 functions conform to ISO/IEC 9899:1990 (\(lqISO C90\(rq)\&.
2394 .PP
2395 The
2396 posix_memalign()
2397 function conforms to IEEE Std 1003\&.1\-2001 (\(lqPOSIX\&.1\(rq)\&.
2398 .SH "HISTORY"
2399 .PP
2400 The
2401 malloc_usable_size()
2402 and
2403 posix_memalign()
2404 functions first appeared in FreeBSD 7\&.0\&.
2405 .PP
2406 The
2407 aligned_alloc(),
2408 malloc_stats_print(), and
2409 mallctl*()
2410 functions first appeared in FreeBSD 10\&.0\&.
2411 .PP
2412 The
2413 *allocx()
2414 functions first appeared in FreeBSD 11\&.0\&.
2415 .SH "AUTHOR"
2416 .PP
2417 \fBJason Evans\fR
2418 .RS 4
2419 .RE
2420 .SH "NOTES"
2421 .IP " 1." 4
2422 jemalloc website
2423 .RS 4
2424 \%http://jemalloc.net/
2425 .RE
2426 .IP " 2." 4
2427 JSON format
2428 .RS 4
2429 \%http://www.json.org/
2430 .RE
2431 .IP " 3." 4
2432 gperftools package
2433 .RS 4
2434 \%http://code.google.com/p/gperftools/
2435 .RE