]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/jemalloc/src/rtree.c
amd64: use register macros for gdb_cpu_getreg()
[FreeBSD/FreeBSD.git] / contrib / jemalloc / src / rtree.c
1 #define JEMALLOC_RTREE_C_
2 #include "jemalloc/internal/jemalloc_preamble.h"
3 #include "jemalloc/internal/jemalloc_internal_includes.h"
4
5 #include "jemalloc/internal/assert.h"
6 #include "jemalloc/internal/mutex.h"
7
8 /*
9  * Only the most significant bits of keys passed to rtree_{read,write}() are
10  * used.
11  */
12 bool
13 rtree_new(rtree_t *rtree, bool zeroed) {
14 #ifdef JEMALLOC_JET
15         if (!zeroed) {
16                 memset(rtree, 0, sizeof(rtree_t)); /* Clear root. */
17         }
18 #else
19         assert(zeroed);
20 #endif
21
22         if (malloc_mutex_init(&rtree->init_lock, "rtree", WITNESS_RANK_RTREE,
23             malloc_mutex_rank_exclusive)) {
24                 return true;
25         }
26
27         return false;
28 }
29
30 static rtree_node_elm_t *
31 rtree_node_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) {
32         return (rtree_node_elm_t *)base_alloc(tsdn, b0get(), nelms *
33             sizeof(rtree_node_elm_t), CACHELINE);
34 }
35 rtree_node_alloc_t *JET_MUTABLE rtree_node_alloc = rtree_node_alloc_impl;
36
37 static void
38 rtree_node_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *node) {
39         /* Nodes are never deleted during normal operation. */
40         not_reached();
41 }
42 rtree_node_dalloc_t *JET_MUTABLE rtree_node_dalloc =
43     rtree_node_dalloc_impl;
44
45 static rtree_leaf_elm_t *
46 rtree_leaf_alloc_impl(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) {
47         return (rtree_leaf_elm_t *)base_alloc(tsdn, b0get(), nelms *
48             sizeof(rtree_leaf_elm_t), CACHELINE);
49 }
50 rtree_leaf_alloc_t *JET_MUTABLE rtree_leaf_alloc = rtree_leaf_alloc_impl;
51
52 static void
53 rtree_leaf_dalloc_impl(tsdn_t *tsdn, rtree_t *rtree, rtree_leaf_elm_t *leaf) {
54         /* Leaves are never deleted during normal operation. */
55         not_reached();
56 }
57 rtree_leaf_dalloc_t *JET_MUTABLE rtree_leaf_dalloc =
58     rtree_leaf_dalloc_impl;
59
60 #ifdef JEMALLOC_JET
61 #  if RTREE_HEIGHT > 1
62 static void
63 rtree_delete_subtree(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *subtree,
64     unsigned level) {
65         size_t nchildren = ZU(1) << rtree_levels[level].bits;
66         if (level + 2 < RTREE_HEIGHT) {
67                 for (size_t i = 0; i < nchildren; i++) {
68                         rtree_node_elm_t *node =
69                             (rtree_node_elm_t *)atomic_load_p(&subtree[i].child,
70                             ATOMIC_RELAXED);
71                         if (node != NULL) {
72                                 rtree_delete_subtree(tsdn, rtree, node, level +
73                                     1);
74                         }
75                 }
76         } else {
77                 for (size_t i = 0; i < nchildren; i++) {
78                         rtree_leaf_elm_t *leaf =
79                             (rtree_leaf_elm_t *)atomic_load_p(&subtree[i].child,
80                             ATOMIC_RELAXED);
81                         if (leaf != NULL) {
82                                 rtree_leaf_dalloc(tsdn, rtree, leaf);
83                         }
84                 }
85         }
86
87         if (subtree != rtree->root) {
88                 rtree_node_dalloc(tsdn, rtree, subtree);
89         }
90 }
91 #  endif
92
93 void
94 rtree_delete(tsdn_t *tsdn, rtree_t *rtree) {
95 #  if RTREE_HEIGHT > 1
96         rtree_delete_subtree(tsdn, rtree, rtree->root, 0);
97 #  endif
98 }
99 #endif
100
101 static rtree_node_elm_t *
102 rtree_node_init(tsdn_t *tsdn, rtree_t *rtree, unsigned level,
103     atomic_p_t *elmp) {
104         malloc_mutex_lock(tsdn, &rtree->init_lock);
105         /*
106          * If *elmp is non-null, then it was initialized with the init lock
107          * held, so we can get by with 'relaxed' here.
108          */
109         rtree_node_elm_t *node = atomic_load_p(elmp, ATOMIC_RELAXED);
110         if (node == NULL) {
111                 node = rtree_node_alloc(tsdn, rtree, ZU(1) <<
112                     rtree_levels[level].bits);
113                 if (node == NULL) {
114                         malloc_mutex_unlock(tsdn, &rtree->init_lock);
115                         return NULL;
116                 }
117                 /*
118                  * Even though we hold the lock, a later reader might not; we
119                  * need release semantics.
120                  */
121                 atomic_store_p(elmp, node, ATOMIC_RELEASE);
122         }
123         malloc_mutex_unlock(tsdn, &rtree->init_lock);
124
125         return node;
126 }
127
128 static rtree_leaf_elm_t *
129 rtree_leaf_init(tsdn_t *tsdn, rtree_t *rtree, atomic_p_t *elmp) {
130         malloc_mutex_lock(tsdn, &rtree->init_lock);
131         /*
132          * If *elmp is non-null, then it was initialized with the init lock
133          * held, so we can get by with 'relaxed' here.
134          */
135         rtree_leaf_elm_t *leaf = atomic_load_p(elmp, ATOMIC_RELAXED);
136         if (leaf == NULL) {
137                 leaf = rtree_leaf_alloc(tsdn, rtree, ZU(1) <<
138                     rtree_levels[RTREE_HEIGHT-1].bits);
139                 if (leaf == NULL) {
140                         malloc_mutex_unlock(tsdn, &rtree->init_lock);
141                         return NULL;
142                 }
143                 /*
144                  * Even though we hold the lock, a later reader might not; we
145                  * need release semantics.
146                  */
147                 atomic_store_p(elmp, leaf, ATOMIC_RELEASE);
148         }
149         malloc_mutex_unlock(tsdn, &rtree->init_lock);
150
151         return leaf;
152 }
153
154 static bool
155 rtree_node_valid(rtree_node_elm_t *node) {
156         return ((uintptr_t)node != (uintptr_t)0);
157 }
158
159 static bool
160 rtree_leaf_valid(rtree_leaf_elm_t *leaf) {
161         return ((uintptr_t)leaf != (uintptr_t)0);
162 }
163
164 static rtree_node_elm_t *
165 rtree_child_node_tryread(rtree_node_elm_t *elm, bool dependent) {
166         rtree_node_elm_t *node;
167
168         if (dependent) {
169                 node = (rtree_node_elm_t *)atomic_load_p(&elm->child,
170                     ATOMIC_RELAXED);
171         } else {
172                 node = (rtree_node_elm_t *)atomic_load_p(&elm->child,
173                     ATOMIC_ACQUIRE);
174         }
175
176         assert(!dependent || node != NULL);
177         return node;
178 }
179
180 static rtree_node_elm_t *
181 rtree_child_node_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm,
182     unsigned level, bool dependent) {
183         rtree_node_elm_t *node;
184
185         node = rtree_child_node_tryread(elm, dependent);
186         if (!dependent && unlikely(!rtree_node_valid(node))) {
187                 node = rtree_node_init(tsdn, rtree, level + 1, &elm->child);
188         }
189         assert(!dependent || node != NULL);
190         return node;
191 }
192
193 static rtree_leaf_elm_t *
194 rtree_child_leaf_tryread(rtree_node_elm_t *elm, bool dependent) {
195         rtree_leaf_elm_t *leaf;
196
197         if (dependent) {
198                 leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child,
199                     ATOMIC_RELAXED);
200         } else {
201                 leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child,
202                     ATOMIC_ACQUIRE);
203         }
204
205         assert(!dependent || leaf != NULL);
206         return leaf;
207 }
208
209 static rtree_leaf_elm_t *
210 rtree_child_leaf_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm,
211     unsigned level, bool dependent) {
212         rtree_leaf_elm_t *leaf;
213
214         leaf = rtree_child_leaf_tryread(elm, dependent);
215         if (!dependent && unlikely(!rtree_leaf_valid(leaf))) {
216                 leaf = rtree_leaf_init(tsdn, rtree, &elm->child);
217         }
218         assert(!dependent || leaf != NULL);
219         return leaf;
220 }
221
222 rtree_leaf_elm_t *
223 rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
224     uintptr_t key, bool dependent, bool init_missing) {
225         rtree_node_elm_t *node;
226         rtree_leaf_elm_t *leaf;
227 #if RTREE_HEIGHT > 1
228         node = rtree->root;
229 #else
230         leaf = rtree->root;
231 #endif
232
233         if (config_debug) {
234                 uintptr_t leafkey = rtree_leafkey(key);
235                 for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) {
236                         assert(rtree_ctx->cache[i].leafkey != leafkey);
237                 }
238                 for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) {
239                         assert(rtree_ctx->l2_cache[i].leafkey != leafkey);
240                 }
241         }
242
243 #define RTREE_GET_CHILD(level) {                                        \
244                 assert(level < RTREE_HEIGHT-1);                         \
245                 if (level != 0 && !dependent &&                         \
246                     unlikely(!rtree_node_valid(node))) {                \
247                         return NULL;                                    \
248                 }                                                       \
249                 uintptr_t subkey = rtree_subkey(key, level);            \
250                 if (level + 2 < RTREE_HEIGHT) {                         \
251                         node = init_missing ?                           \
252                             rtree_child_node_read(tsdn, rtree,          \
253                             &node[subkey], level, dependent) :          \
254                             rtree_child_node_tryread(&node[subkey],     \
255                             dependent);                                 \
256                 } else {                                                \
257                         leaf = init_missing ?                           \
258                             rtree_child_leaf_read(tsdn, rtree,          \
259                             &node[subkey], level, dependent) :          \
260                             rtree_child_leaf_tryread(&node[subkey],     \
261                             dependent);                                 \
262                 }                                                       \
263         }
264         /*
265          * Cache replacement upon hard lookup (i.e. L1 & L2 rtree cache miss):
266          * (1) evict last entry in L2 cache; (2) move the collision slot from L1
267          * cache down to L2; and 3) fill L1.
268          */
269 #define RTREE_GET_LEAF(level) {                                         \
270                 assert(level == RTREE_HEIGHT-1);                        \
271                 if (!dependent && unlikely(!rtree_leaf_valid(leaf))) {  \
272                         return NULL;                                    \
273                 }                                                       \
274                 if (RTREE_CTX_NCACHE_L2 > 1) {                          \
275                         memmove(&rtree_ctx->l2_cache[1],                \
276                             &rtree_ctx->l2_cache[0],                    \
277                             sizeof(rtree_ctx_cache_elm_t) *             \
278                             (RTREE_CTX_NCACHE_L2 - 1));                 \
279                 }                                                       \
280                 size_t slot = rtree_cache_direct_map(key);              \
281                 rtree_ctx->l2_cache[0].leafkey =                        \
282                     rtree_ctx->cache[slot].leafkey;                     \
283                 rtree_ctx->l2_cache[0].leaf =                           \
284                     rtree_ctx->cache[slot].leaf;                        \
285                 uintptr_t leafkey = rtree_leafkey(key);                 \
286                 rtree_ctx->cache[slot].leafkey = leafkey;               \
287                 rtree_ctx->cache[slot].leaf = leaf;                     \
288                 uintptr_t subkey = rtree_subkey(key, level);            \
289                 return &leaf[subkey];                                   \
290         }
291         if (RTREE_HEIGHT > 1) {
292                 RTREE_GET_CHILD(0)
293         }
294         if (RTREE_HEIGHT > 2) {
295                 RTREE_GET_CHILD(1)
296         }
297         if (RTREE_HEIGHT > 3) {
298                 for (unsigned i = 2; i < RTREE_HEIGHT-1; i++) {
299                         RTREE_GET_CHILD(i)
300                 }
301         }
302         RTREE_GET_LEAF(RTREE_HEIGHT-1)
303 #undef RTREE_GET_CHILD
304 #undef RTREE_GET_LEAF
305         not_reached();
306 }
307
308 void
309 rtree_ctx_data_init(rtree_ctx_t *ctx) {
310         for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) {
311                 rtree_ctx_cache_elm_t *cache = &ctx->cache[i];
312                 cache->leafkey = RTREE_LEAFKEY_INVALID;
313                 cache->leaf = NULL;
314         }
315         for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) {
316                 rtree_ctx_cache_elm_t *cache = &ctx->l2_cache[i];
317                 cache->leafkey = RTREE_LEAFKEY_INVALID;
318                 cache->leaf = NULL;
319         }
320 }