]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/libcxxrt/guard.cc
Minimize libc++ errno-related header diffs with upstream
[FreeBSD/FreeBSD.git] / contrib / libcxxrt / guard.cc
1 /*
2  * Copyright 2010-2012 PathScale, Inc. All rights reserved.
3  * Copyright 2021 David Chisnall. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  *    this list of conditions and the following disclaimer in the documentation
13  *    and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
16  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
17  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
18  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
19  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27
28 /**
29  * guard.cc: Functions for thread-safe static initialisation.
30  *
31  * Static values in C++ can be initialised lazily their first use.  This file
32  * contains functions that are used to ensure that two threads attempting to
33  * initialize the same static do not call the constructor twice.  This is
34  * important because constructors can have side effects, so calling the
35  * constructor twice may be very bad.
36  *
37  * Statics that require initialisation are protected by a 64-bit value.  Any
38  * platform that can do 32-bit atomic test and set operations can use this
39  * value as a low-overhead lock.  Because statics (in most sane code) are
40  * accessed far more times than they are initialised, this lock implementation
41  * is heavily optimised towards the case where the static has already been
42  * initialised.
43  */
44 #include "atomic.h"
45 #include <assert.h>
46 #include <pthread.h>
47 #include <stdint.h>
48 #include <stdlib.h>
49
50 // Older GCC doesn't define __LITTLE_ENDIAN__
51 #ifndef __LITTLE_ENDIAN__
52 // If __BYTE_ORDER__ is defined, use that instead
53 #       ifdef __BYTE_ORDER__
54 #               if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
55 #                       define __LITTLE_ENDIAN__
56 #               endif
57 // x86 and ARM are the most common little-endian CPUs, so let's have a
58 // special case for them (ARM is already special cased).  Assume everything
59 // else is big endian.
60 #       elif defined(__x86_64) || defined(__i386)
61 #               define __LITTLE_ENDIAN__
62 #       endif
63 #endif
64
65 /*
66  * The Itanium C++ ABI defines guard words that are 64-bit (32-bit on AArch32)
67  * values with one bit defined to indicate that the guarded variable is and
68  * another bit to indicate that it's currently locked (initialisation in
69  * progress).  The bit to use depends on the byte order of the target.
70  *
71  * On many 32-bit platforms, 64-bit atomics are unavailable (or slow) and so we
72  * treat the two halves of the 64-bit word as independent values and establish
73  * an ordering on them such that the guard word is never modified unless the
74  * lock word is in the locked state.  This means that we can do double-checked
75  * locking by loading the guard word and, if it is not initialised, trying to
76  * transition the lock word from the unlocked to locked state, and then
77  * manipulate the guard word.
78  */
79 namespace
80 {
81         /**
82          * The state of the guard variable when an attempt is made to lock it.
83          */
84         enum class GuardState
85         {
86                 /**
87                  * The lock is not held but is not needed because initialisation is
88                  * one.
89                  */
90                 InitDone,
91
92                 /**
93                  * Initialisation is not done but the lock is held by the caller.
94                  */
95                 InitLockSucceeded,
96
97                 /**
98                  * Attempting to acquire the lock failed.
99                  */
100                 InitLockFailed
101         };
102
103         /**
104          * Class encapsulating a single atomic word being used to represent the
105          * guard.  The word size is defined by the type of `GuardWord`.  The bit
106          * used to indicate the locked state is `1<<LockedBit`, the bit used to
107          * indicate the initialised state is `1<<InitBit`.
108          */
109         template<typename GuardWord, int LockedBit, int InitBit>
110         struct SingleWordGuard
111         {
112                 /**
113                  * The value indicating that the lock bit is set (and no other bits).
114                  */
115                 static constexpr GuardWord locked = static_cast<GuardWord>(1)
116                                                     << LockedBit;
117
118                 /**
119                  * The value indicating that the initialised bit is set (and all other
120                  * bits are zero).
121                  */
122                 static constexpr GuardWord initialised = static_cast<GuardWord>(1)
123                                                          << InitBit;
124
125                 /**
126                  * The guard variable.
127                  */
128                 atomic<GuardWord> val;
129
130                 public:
131                 /**
132                  * Release the lock and set the initialised state.  In the single-word
133                  * implementation here, these are both done by a single store.
134                  */
135                 void unlock(bool isInitialised)
136                 {
137                         val.store(isInitialised ? initialised : 0, memory_order::release);
138 #ifndef NDEBUG
139                         GuardWord init_state = initialised;
140                         assert(*reinterpret_cast<uint8_t*>(&init_state) != 0);
141 #endif
142                 }
143
144                 /**
145                  * Try to acquire the lock.  This has a tri-state return, indicating
146                  * either that the lock was acquired, it wasn't acquired because it was
147                  * contended, or it wasn't acquired because the guarded variable is
148                  * already initialised.
149                  */
150                 GuardState try_lock()
151                 {
152                         GuardWord old = 0;
153                         // Try to acquire the lock, assuming that we are in the state where
154                         // the lock is not held and the variable is not initialised (so the
155                         // expected value is 0).
156                         if (val.compare_exchange(old, locked))
157                         {
158                                 return GuardState::InitLockSucceeded;
159                         }
160                         // If the CAS failed and the old value indicates that this is
161                         // initialised, return that initialisation is done and skip further
162                         // retries.
163                         if (old == initialised)
164                         {
165                                 return GuardState::InitDone;
166                         }
167                         // Otherwise, report failure.
168                         return GuardState::InitLockFailed;
169                 }
170
171                 /**
172                  * Check whether the guard indicates that the variable is initialised.
173                  */
174                 bool is_initialised()
175                 {
176                         return (val.load(memory_order::acquire) & initialised) ==
177                                initialised;
178                 }
179         };
180
181         /**
182          * Class encapsulating using two 32-bit atomic values to represent a 64-bit
183          * guard variable.
184          */
185         template<int LockedBit, int InitBit>
186         class DoubleWordGuard
187         {
188                 /**
189                  * The value of `lock_word` when the lock is held.
190                  */
191                 static constexpr uint32_t locked = static_cast<uint32_t>(1)
192                                                    << LockedBit;
193
194                 /**
195                  * The value of `init_word` when the guarded variable is initialised.
196                  */
197                 static constexpr uint32_t initialised = static_cast<uint32_t>(1)
198                                                         << InitBit;
199
200                 /**
201                  * The word used for the initialised flag.  This is always the first
202                  * word irrespective of endian because the generated code compares the
203                  * first byte in memory against 0.
204                  */
205                 atomic<uint32_t> init_word;
206
207                 /**
208                  * The word used for the lock.
209                  */
210                 atomic<uint32_t> lock_word;
211
212                 public:
213                 /**
214                  * Try to acquire the lock.  This has a tri-state return, indicating
215                  * either that the lock was acquired, it wasn't acquired because it was
216                  * contended, or it wasn't acquired because the guarded variable is
217                  * already initialised.
218                  */
219                 GuardState try_lock()
220                 {
221                         uint32_t old = 0;
222                         // Try to acquire the lock
223                         if (lock_word.compare_exchange(old, locked))
224                         {
225                                 // If we succeeded, check if initialisation has happened.  In
226                                 // this version, we don't have atomic manipulation of both the
227                                 // lock and initialised bits together.  Instead, we have an
228                                 // ordering rule that the initialised bit is only ever updated
229                                 // with the lock held.
230                                 if (is_initialised())
231                                 {
232                                         // If another thread did manage to initialise this, release
233                                         // the lock and notify the caller that initialisation is
234                                         // done.
235                                         lock_word.store(0, memory_order::release);
236                                         return GuardState::InitDone;
237                                 }
238                                 return GuardState::InitLockSucceeded;
239                         }
240                         return GuardState::InitLockFailed;
241                 }
242
243                 /**
244                  * Set the initialised state and release the lock.  In this
245                  * implementation, this is ordered, not atomic: the initialise bit is
246                  * set while the lock is held.
247                  */
248                 void unlock(bool isInitialised)
249                 {
250                         init_word.store(isInitialised ? initialised : 0,
251                                           memory_order::release);
252                         lock_word.store(0, memory_order::release);
253                         assert((*reinterpret_cast<uint8_t*>(this) != 0) == isInitialised);
254                 }
255
256                 /**
257                  * Return whether the guarded variable is initialised.
258                  */
259                 bool is_initialised()
260                 {
261                         return (init_word.load(memory_order::acquire) & initialised) ==
262                                initialised;
263                 }
264         };
265
266         // Check that the two implementations are the correct size.
267         static_assert(sizeof(SingleWordGuard<uint32_t, 31, 0>) == sizeof(uint32_t),
268                       "Single-word 32-bit guard must be 32 bits");
269         static_assert(sizeof(SingleWordGuard<uint64_t, 63, 0>) == sizeof(uint64_t),
270                       "Single-word 64-bit guard must be 64 bits");
271         static_assert(sizeof(DoubleWordGuard<31, 0>) == sizeof(uint64_t),
272                       "Double-word guard must be 64 bits");
273
274 #ifdef __arm__
275         /**
276          * The Arm PCS defines a variant of the Itanium ABI with 32-bit lock words.
277          */
278         using Guard = SingleWordGuard<uint32_t, 31, 0>;
279 #elif defined(_LP64)
280 #       if defined(__LITTLE_ENDIAN__)
281         /**
282          * On little-endian 64-bit platforms the guard word is a single 64-bit
283          * atomic with the lock in the high bit and the initialised flag in the low
284          * bit.
285          */
286         using Guard = SingleWordGuard<uint64_t, 63, 0>;
287 #       else
288         /**
289          * On bit-endian 64-bit platforms, the guard word is a single 64-bit atomic
290          * with the lock in the low bit and the initialised bit in the highest
291          * byte.
292          */
293         using Guard = SingleWordGuard<uint64_t, 0, 56>;
294 #       endif
295 #else
296 #       if defined(__LITTLE_ENDIAN__)
297         /**
298          * 32-bit platforms use the same layout as 64-bit.
299          */
300         using Guard = DoubleWordGuard<31, 0>;
301 #       else
302         /**
303          * 32-bit platforms use the same layout as 64-bit.
304          */
305         using Guard = DoubleWordGuard<0, 24>;
306 #       endif
307 #endif
308
309 } // namespace
310
311 /**
312  * Acquires a lock on a guard, returning 0 if the object has already been
313  * initialised, and 1 if it has not.  If the object is already constructed then
314  * this function just needs to read a byte from memory and return.
315  */
316 extern "C" int __cxa_guard_acquire(Guard *guard_object)
317 {
318         // Check if this is already initialised.  If so, we don't have to do
319         // anything.
320         if (guard_object->is_initialised())
321         {
322                 return 0;
323         }
324         // Spin trying to acquire the lock.  If we fail to acquire the lock the
325         // first time then another thread will *probably* initialise it, but if the
326         // constructor throws an exception then we may have to try again in this
327         // thread.
328         for (;;)
329         {
330                 // Try to acquire the lock.
331                 switch (guard_object->try_lock())
332                 {
333                         // If we failed to acquire the lock but another thread has
334                         // initialised the lock while we were waiting, return immediately
335                         // indicating that initialisation is not required.
336                         case GuardState::InitDone:
337                                 return 0;
338                         // If we acquired the lock, return immediately to start
339                         // initialisation.
340                         case GuardState::InitLockSucceeded:
341                                 return 1;
342                         // If we didn't acquire the lock, pause and retry.
343                         case GuardState::InitLockFailed:
344                                 break;
345                 }
346                 sched_yield();
347         }
348 }
349
350 /**
351  * Releases the lock without marking the object as initialised.  This function
352  * is called if initialising a static causes an exception to be thrown.
353  */
354 extern "C" void __cxa_guard_abort(Guard *guard_object)
355 {
356         guard_object->unlock(false);
357 }
358
359 /**
360  * Releases the guard and marks the object as initialised.  This function is
361  * called after successful initialisation of a static.
362  */
363 extern "C" void __cxa_guard_release(Guard *guard_object)
364 {
365         guard_object->unlock(true);
366 }