]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/ADT/ArrayRef.h
Merge ^/head r326936 through r327149.
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / ADT / ArrayRef.h
1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_ARRAYREF_H
11 #define LLVM_ADT_ARRAYREF_H
12
13 #include "llvm/ADT/Hashing.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Support/Compiler.h"
18 #include <algorithm>
19 #include <array>
20 #include <cassert>
21 #include <cstddef>
22 #include <initializer_list>
23 #include <iterator>
24 #include <memory>
25 #include <type_traits>
26 #include <vector>
27
28 namespace llvm {
29
30   /// ArrayRef - Represent a constant reference to an array (0 or more elements
31   /// consecutively in memory), i.e. a start pointer and a length.  It allows
32   /// various APIs to take consecutive elements easily and conveniently.
33   ///
34   /// This class does not own the underlying data, it is expected to be used in
35   /// situations where the data resides in some other buffer, whose lifetime
36   /// extends past that of the ArrayRef. For this reason, it is not in general
37   /// safe to store an ArrayRef.
38   ///
39   /// This is intended to be trivially copyable, so it should be passed by
40   /// value.
41   template<typename T>
42   class LLVM_NODISCARD ArrayRef {
43   public:
44     using iterator = const T *;
45     using const_iterator = const T *;
46     using size_type = size_t;
47     using reverse_iterator = std::reverse_iterator<iterator>;
48
49   private:
50     /// The start of the array, in an external buffer.
51     const T *Data = nullptr;
52
53     /// The number of elements.
54     size_type Length = 0;
55
56   public:
57     /// @name Constructors
58     /// @{
59
60     /// Construct an empty ArrayRef.
61     /*implicit*/ ArrayRef() = default;
62
63     /// Construct an empty ArrayRef from None.
64     /*implicit*/ ArrayRef(NoneType) {}
65
66     /// Construct an ArrayRef from a single element.
67     /*implicit*/ ArrayRef(const T &OneElt)
68       : Data(&OneElt), Length(1) {}
69
70     /// Construct an ArrayRef from a pointer and length.
71     /*implicit*/ ArrayRef(const T *data, size_t length)
72       : Data(data), Length(length) {}
73
74     /// Construct an ArrayRef from a range.
75     ArrayRef(const T *begin, const T *end)
76       : Data(begin), Length(end - begin) {}
77
78     /// Construct an ArrayRef from a SmallVector. This is templated in order to
79     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
80     /// copy-construct an ArrayRef.
81     template<typename U>
82     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
83       : Data(Vec.data()), Length(Vec.size()) {
84     }
85
86     /// Construct an ArrayRef from a std::vector.
87     template<typename A>
88     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
89       : Data(Vec.data()), Length(Vec.size()) {}
90
91     /// Construct an ArrayRef from a std::array
92     template <size_t N>
93     /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
94         : Data(Arr.data()), Length(N) {}
95
96     /// Construct an ArrayRef from a C array.
97     template <size_t N>
98     /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
99
100     /// Construct an ArrayRef from a std::initializer_list.
101     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
102     : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
103       Length(Vec.size()) {}
104
105     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
106     /// ensure that only ArrayRefs of pointers can be converted.
107     template <typename U>
108     ArrayRef(
109         const ArrayRef<U *> &A,
110         typename std::enable_if<
111            std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
112       : Data(A.data()), Length(A.size()) {}
113
114     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
115     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
116     /// whenever we copy-construct an ArrayRef.
117     template<typename U, typename DummyT>
118     /*implicit*/ ArrayRef(
119       const SmallVectorTemplateCommon<U *, DummyT> &Vec,
120       typename std::enable_if<
121           std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
122       : Data(Vec.data()), Length(Vec.size()) {
123     }
124
125     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
126     /// to ensure that only vectors of pointers can be converted.
127     template<typename U, typename A>
128     ArrayRef(const std::vector<U *, A> &Vec,
129              typename std::enable_if<
130                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
131       : Data(Vec.data()), Length(Vec.size()) {}
132
133     /// @}
134     /// @name Simple Operations
135     /// @{
136
137     iterator begin() const { return Data; }
138     iterator end() const { return Data + Length; }
139
140     reverse_iterator rbegin() const { return reverse_iterator(end()); }
141     reverse_iterator rend() const { return reverse_iterator(begin()); }
142
143     /// empty - Check if the array is empty.
144     bool empty() const { return Length == 0; }
145
146     const T *data() const { return Data; }
147
148     /// size - Get the array size.
149     size_t size() const { return Length; }
150
151     /// front - Get the first element.
152     const T &front() const {
153       assert(!empty());
154       return Data[0];
155     }
156
157     /// back - Get the last element.
158     const T &back() const {
159       assert(!empty());
160       return Data[Length-1];
161     }
162
163     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
164     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
165       T *Buff = A.template Allocate<T>(Length);
166       std::uninitialized_copy(begin(), end(), Buff);
167       return ArrayRef<T>(Buff, Length);
168     }
169
170     /// equals - Check for element-wise equality.
171     bool equals(ArrayRef RHS) const {
172       if (Length != RHS.Length)
173         return false;
174       return std::equal(begin(), end(), RHS.begin());
175     }
176
177     /// slice(n, m) - Chop off the first N elements of the array, and keep M
178     /// elements in the array.
179     ArrayRef<T> slice(size_t N, size_t M) const {
180       assert(N+M <= size() && "Invalid specifier");
181       return ArrayRef<T>(data()+N, M);
182     }
183
184     /// slice(n) - Chop off the first N elements of the array.
185     ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
186
187     /// \brief Drop the first \p N elements of the array.
188     ArrayRef<T> drop_front(size_t N = 1) const {
189       assert(size() >= N && "Dropping more elements than exist");
190       return slice(N, size() - N);
191     }
192
193     /// \brief Drop the last \p N elements of the array.
194     ArrayRef<T> drop_back(size_t N = 1) const {
195       assert(size() >= N && "Dropping more elements than exist");
196       return slice(0, size() - N);
197     }
198
199     /// \brief Return a copy of *this with the first N elements satisfying the
200     /// given predicate removed.
201     template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
202       return ArrayRef<T>(find_if_not(*this, Pred), end());
203     }
204
205     /// \brief Return a copy of *this with the first N elements not satisfying
206     /// the given predicate removed.
207     template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
208       return ArrayRef<T>(find_if(*this, Pred), end());
209     }
210
211     /// \brief Return a copy of *this with only the first \p N elements.
212     ArrayRef<T> take_front(size_t N = 1) const {
213       if (N >= size())
214         return *this;
215       return drop_back(size() - N);
216     }
217
218     /// \brief Return a copy of *this with only the last \p N elements.
219     ArrayRef<T> take_back(size_t N = 1) const {
220       if (N >= size())
221         return *this;
222       return drop_front(size() - N);
223     }
224
225     /// \brief Return the first N elements of this Array that satisfy the given
226     /// predicate.
227     template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
228       return ArrayRef<T>(begin(), find_if_not(*this, Pred));
229     }
230
231     /// \brief Return the first N elements of this Array that don't satisfy the
232     /// given predicate.
233     template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
234       return ArrayRef<T>(begin(), find_if(*this, Pred));
235     }
236
237     /// @}
238     /// @name Operator Overloads
239     /// @{
240     const T &operator[](size_t Index) const {
241       assert(Index < Length && "Invalid index!");
242       return Data[Index];
243     }
244
245     /// Disallow accidental assignment from a temporary.
246     ///
247     /// The declaration here is extra complicated so that "arrayRef = {}"
248     /// continues to select the move assignment operator.
249     template <typename U>
250     typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
251     operator=(U &&Temporary) = delete;
252
253     /// Disallow accidental assignment from a temporary.
254     ///
255     /// The declaration here is extra complicated so that "arrayRef = {}"
256     /// continues to select the move assignment operator.
257     template <typename U>
258     typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
259     operator=(std::initializer_list<U>) = delete;
260
261     /// @}
262     /// @name Expensive Operations
263     /// @{
264     std::vector<T> vec() const {
265       return std::vector<T>(Data, Data+Length);
266     }
267
268     /// @}
269     /// @name Conversion operators
270     /// @{
271     operator std::vector<T>() const {
272       return std::vector<T>(Data, Data+Length);
273     }
274
275     /// @}
276   };
277
278   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
279   /// elements consecutively in memory), i.e. a start pointer and a length.  It
280   /// allows various APIs to take and modify consecutive elements easily and
281   /// conveniently.
282   ///
283   /// This class does not own the underlying data, it is expected to be used in
284   /// situations where the data resides in some other buffer, whose lifetime
285   /// extends past that of the MutableArrayRef. For this reason, it is not in
286   /// general safe to store a MutableArrayRef.
287   ///
288   /// This is intended to be trivially copyable, so it should be passed by
289   /// value.
290   template<typename T>
291   class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
292   public:
293     using iterator = T *;
294     using reverse_iterator = std::reverse_iterator<iterator>;
295
296     /// Construct an empty MutableArrayRef.
297     /*implicit*/ MutableArrayRef() = default;
298
299     /// Construct an empty MutableArrayRef from None.
300     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
301
302     /// Construct an MutableArrayRef from a single element.
303     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
304
305     /// Construct an MutableArrayRef from a pointer and length.
306     /*implicit*/ MutableArrayRef(T *data, size_t length)
307       : ArrayRef<T>(data, length) {}
308
309     /// Construct an MutableArrayRef from a range.
310     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
311
312     /// Construct an MutableArrayRef from a SmallVector.
313     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
314     : ArrayRef<T>(Vec) {}
315
316     /// Construct a MutableArrayRef from a std::vector.
317     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
318     : ArrayRef<T>(Vec) {}
319
320     /// Construct an ArrayRef from a std::array
321     template <size_t N>
322     /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
323         : ArrayRef<T>(Arr) {}
324
325     /// Construct an MutableArrayRef from a C array.
326     template <size_t N>
327     /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
328
329     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
330
331     iterator begin() const { return data(); }
332     iterator end() const { return data() + this->size(); }
333
334     reverse_iterator rbegin() const { return reverse_iterator(end()); }
335     reverse_iterator rend() const { return reverse_iterator(begin()); }
336
337     /// front - Get the first element.
338     T &front() const {
339       assert(!this->empty());
340       return data()[0];
341     }
342
343     /// back - Get the last element.
344     T &back() const {
345       assert(!this->empty());
346       return data()[this->size()-1];
347     }
348
349     /// slice(n, m) - Chop off the first N elements of the array, and keep M
350     /// elements in the array.
351     MutableArrayRef<T> slice(size_t N, size_t M) const {
352       assert(N + M <= this->size() && "Invalid specifier");
353       return MutableArrayRef<T>(this->data() + N, M);
354     }
355
356     /// slice(n) - Chop off the first N elements of the array.
357     MutableArrayRef<T> slice(size_t N) const {
358       return slice(N, this->size() - N);
359     }
360
361     /// \brief Drop the first \p N elements of the array.
362     MutableArrayRef<T> drop_front(size_t N = 1) const {
363       assert(this->size() >= N && "Dropping more elements than exist");
364       return slice(N, this->size() - N);
365     }
366
367     MutableArrayRef<T> drop_back(size_t N = 1) const {
368       assert(this->size() >= N && "Dropping more elements than exist");
369       return slice(0, this->size() - N);
370     }
371
372     /// \brief Return a copy of *this with the first N elements satisfying the
373     /// given predicate removed.
374     template <class PredicateT>
375     MutableArrayRef<T> drop_while(PredicateT Pred) const {
376       return MutableArrayRef<T>(find_if_not(*this, Pred), end());
377     }
378
379     /// \brief Return a copy of *this with the first N elements not satisfying
380     /// the given predicate removed.
381     template <class PredicateT>
382     MutableArrayRef<T> drop_until(PredicateT Pred) const {
383       return MutableArrayRef<T>(find_if(*this, Pred), end());
384     }
385
386     /// \brief Return a copy of *this with only the first \p N elements.
387     MutableArrayRef<T> take_front(size_t N = 1) const {
388       if (N >= this->size())
389         return *this;
390       return drop_back(this->size() - N);
391     }
392
393     /// \brief Return a copy of *this with only the last \p N elements.
394     MutableArrayRef<T> take_back(size_t N = 1) const {
395       if (N >= this->size())
396         return *this;
397       return drop_front(this->size() - N);
398     }
399
400     /// \brief Return the first N elements of this Array that satisfy the given
401     /// predicate.
402     template <class PredicateT>
403     MutableArrayRef<T> take_while(PredicateT Pred) const {
404       return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
405     }
406
407     /// \brief Return the first N elements of this Array that don't satisfy the
408     /// given predicate.
409     template <class PredicateT>
410     MutableArrayRef<T> take_until(PredicateT Pred) const {
411       return MutableArrayRef<T>(begin(), find_if(*this, Pred));
412     }
413
414     /// @}
415     /// @name Operator Overloads
416     /// @{
417     T &operator[](size_t Index) const {
418       assert(Index < this->size() && "Invalid index!");
419       return data()[Index];
420     }
421   };
422
423   /// This is a MutableArrayRef that owns its array.
424   template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
425   public:
426     OwningArrayRef() = default;
427     OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
428
429     OwningArrayRef(ArrayRef<T> Data)
430         : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
431       std::copy(Data.begin(), Data.end(), this->begin());
432     }
433
434     OwningArrayRef(OwningArrayRef &&Other) { *this = Other; }
435
436     OwningArrayRef &operator=(OwningArrayRef &&Other) {
437       delete[] this->data();
438       this->MutableArrayRef<T>::operator=(Other);
439       Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
440       return *this;
441     }
442
443     ~OwningArrayRef() { delete[] this->data(); }
444   };
445
446   /// @name ArrayRef Convenience constructors
447   /// @{
448
449   /// Construct an ArrayRef from a single element.
450   template<typename T>
451   ArrayRef<T> makeArrayRef(const T &OneElt) {
452     return OneElt;
453   }
454
455   /// Construct an ArrayRef from a pointer and length.
456   template<typename T>
457   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
458     return ArrayRef<T>(data, length);
459   }
460
461   /// Construct an ArrayRef from a range.
462   template<typename T>
463   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
464     return ArrayRef<T>(begin, end);
465   }
466
467   /// Construct an ArrayRef from a SmallVector.
468   template <typename T>
469   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
470     return Vec;
471   }
472
473   /// Construct an ArrayRef from a SmallVector.
474   template <typename T, unsigned N>
475   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
476     return Vec;
477   }
478
479   /// Construct an ArrayRef from a std::vector.
480   template<typename T>
481   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
482     return Vec;
483   }
484
485   /// Construct an ArrayRef from an ArrayRef (no-op) (const)
486   template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
487     return Vec;
488   }
489
490   /// Construct an ArrayRef from an ArrayRef (no-op)
491   template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
492     return Vec;
493   }
494
495   /// Construct an ArrayRef from a C array.
496   template<typename T, size_t N>
497   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
498     return ArrayRef<T>(Arr);
499   }
500
501   /// Construct a MutableArrayRef from a single element.
502   template<typename T>
503   MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
504     return OneElt;
505   }
506
507   /// Construct a MutableArrayRef from a pointer and length.
508   template<typename T>
509   MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
510     return MutableArrayRef<T>(data, length);
511   }
512
513   /// @}
514   /// @name ArrayRef Comparison Operators
515   /// @{
516
517   template<typename T>
518   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
519     return LHS.equals(RHS);
520   }
521
522   template<typename T>
523   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
524     return !(LHS == RHS);
525   }
526
527   /// @}
528
529   // ArrayRefs can be treated like a POD type.
530   template <typename T> struct isPodLike;
531   template <typename T> struct isPodLike<ArrayRef<T>> {
532     static const bool value = true;
533   };
534
535   template <typename T> hash_code hash_value(ArrayRef<T> S) {
536     return hash_combine_range(S.begin(), S.end());
537   }
538
539 } // end namespace llvm
540
541 #endif // LLVM_ADT_ARRAYREF_H