]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/ADT/ArrayRef.h
Update the GNU DTS file from Linux 4.11
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / ADT / ArrayRef.h
1 //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #ifndef LLVM_ADT_ARRAYREF_H
11 #define LLVM_ADT_ARRAYREF_H
12
13 #include "llvm/ADT/Hashing.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include <array>
18 #include <vector>
19
20 namespace llvm {
21   /// ArrayRef - Represent a constant reference to an array (0 or more elements
22   /// consecutively in memory), i.e. a start pointer and a length.  It allows
23   /// various APIs to take consecutive elements easily and conveniently.
24   ///
25   /// This class does not own the underlying data, it is expected to be used in
26   /// situations where the data resides in some other buffer, whose lifetime
27   /// extends past that of the ArrayRef. For this reason, it is not in general
28   /// safe to store an ArrayRef.
29   ///
30   /// This is intended to be trivially copyable, so it should be passed by
31   /// value.
32   template<typename T>
33   class LLVM_NODISCARD ArrayRef {
34   public:
35     typedef const T *iterator;
36     typedef const T *const_iterator;
37     typedef size_t size_type;
38
39     typedef std::reverse_iterator<iterator> reverse_iterator;
40
41   private:
42     /// The start of the array, in an external buffer.
43     const T *Data;
44
45     /// The number of elements.
46     size_type Length;
47
48   public:
49     /// @name Constructors
50     /// @{
51
52     /// Construct an empty ArrayRef.
53     /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
54
55     /// Construct an empty ArrayRef from None.
56     /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
57
58     /// Construct an ArrayRef from a single element.
59     /*implicit*/ ArrayRef(const T &OneElt)
60       : Data(&OneElt), Length(1) {}
61
62     /// Construct an ArrayRef from a pointer and length.
63     /*implicit*/ ArrayRef(const T *data, size_t length)
64       : Data(data), Length(length) {}
65
66     /// Construct an ArrayRef from a range.
67     ArrayRef(const T *begin, const T *end)
68       : Data(begin), Length(end - begin) {}
69
70     /// Construct an ArrayRef from a SmallVector. This is templated in order to
71     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
72     /// copy-construct an ArrayRef.
73     template<typename U>
74     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
75       : Data(Vec.data()), Length(Vec.size()) {
76     }
77
78     /// Construct an ArrayRef from a std::vector.
79     template<typename A>
80     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
81       : Data(Vec.data()), Length(Vec.size()) {}
82
83     /// Construct an ArrayRef from a std::array
84     template <size_t N>
85     /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
86         : Data(Arr.data()), Length(N) {}
87
88     /// Construct an ArrayRef from a C array.
89     template <size_t N>
90     /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
91
92     /// Construct an ArrayRef from a std::initializer_list.
93     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
94     : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
95       Length(Vec.size()) {}
96
97     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
98     /// ensure that only ArrayRefs of pointers can be converted.
99     template <typename U>
100     ArrayRef(
101         const ArrayRef<U *> &A,
102         typename std::enable_if<
103            std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
104       : Data(A.data()), Length(A.size()) {}
105
106     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
107     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
108     /// whenever we copy-construct an ArrayRef.
109     template<typename U, typename DummyT>
110     /*implicit*/ ArrayRef(
111       const SmallVectorTemplateCommon<U *, DummyT> &Vec,
112       typename std::enable_if<
113           std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
114       : Data(Vec.data()), Length(Vec.size()) {
115     }
116
117     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
118     /// to ensure that only vectors of pointers can be converted.
119     template<typename U, typename A>
120     ArrayRef(const std::vector<U *, A> &Vec,
121              typename std::enable_if<
122                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
123       : Data(Vec.data()), Length(Vec.size()) {}
124
125     /// @}
126     /// @name Simple Operations
127     /// @{
128
129     iterator begin() const { return Data; }
130     iterator end() const { return Data + Length; }
131
132     reverse_iterator rbegin() const { return reverse_iterator(end()); }
133     reverse_iterator rend() const { return reverse_iterator(begin()); }
134
135     /// empty - Check if the array is empty.
136     bool empty() const { return Length == 0; }
137
138     const T *data() const { return Data; }
139
140     /// size - Get the array size.
141     size_t size() const { return Length; }
142
143     /// front - Get the first element.
144     const T &front() const {
145       assert(!empty());
146       return Data[0];
147     }
148
149     /// back - Get the last element.
150     const T &back() const {
151       assert(!empty());
152       return Data[Length-1];
153     }
154
155     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
156     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
157       T *Buff = A.template Allocate<T>(Length);
158       std::uninitialized_copy(begin(), end(), Buff);
159       return ArrayRef<T>(Buff, Length);
160     }
161
162     /// equals - Check for element-wise equality.
163     bool equals(ArrayRef RHS) const {
164       if (Length != RHS.Length)
165         return false;
166       return std::equal(begin(), end(), RHS.begin());
167     }
168
169     /// slice(n, m) - Chop off the first N elements of the array, and keep M
170     /// elements in the array.
171     ArrayRef<T> slice(size_t N, size_t M) const {
172       assert(N+M <= size() && "Invalid specifier");
173       return ArrayRef<T>(data()+N, M);
174     }
175
176     /// slice(n) - Chop off the first N elements of the array.
177     ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
178
179     /// \brief Drop the first \p N elements of the array.
180     ArrayRef<T> drop_front(size_t N = 1) const {
181       assert(size() >= N && "Dropping more elements than exist");
182       return slice(N, size() - N);
183     }
184
185     /// \brief Drop the last \p N elements of the array.
186     ArrayRef<T> drop_back(size_t N = 1) const {
187       assert(size() >= N && "Dropping more elements than exist");
188       return slice(0, size() - N);
189     }
190
191     /// \brief Return a copy of *this with the first N elements satisfying the
192     /// given predicate removed.
193     template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
194       return ArrayRef<T>(find_if_not(*this, Pred), end());
195     }
196
197     /// \brief Return a copy of *this with the first N elements not satisfying
198     /// the given predicate removed.
199     template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
200       return ArrayRef<T>(find_if(*this, Pred), end());
201     }
202
203     /// \brief Return a copy of *this with only the first \p N elements.
204     ArrayRef<T> take_front(size_t N = 1) const {
205       if (N >= size())
206         return *this;
207       return drop_back(size() - N);
208     }
209
210     /// \brief Return a copy of *this with only the last \p N elements.
211     ArrayRef<T> take_back(size_t N = 1) const {
212       if (N >= size())
213         return *this;
214       return drop_front(size() - N);
215     }
216
217     /// \brief Return the first N elements of this Array that satisfy the given
218     /// predicate.
219     template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
220       return ArrayRef<T>(begin(), find_if_not(*this, Pred));
221     }
222
223     /// \brief Return the first N elements of this Array that don't satisfy the
224     /// given predicate.
225     template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
226       return ArrayRef<T>(begin(), find_if(*this, Pred));
227     }
228
229     /// @}
230     /// @name Operator Overloads
231     /// @{
232     const T &operator[](size_t Index) const {
233       assert(Index < Length && "Invalid index!");
234       return Data[Index];
235     }
236
237     /// Disallow accidental assignment from a temporary.
238     ///
239     /// The declaration here is extra complicated so that "arrayRef = {}"
240     /// continues to select the move assignment operator.
241     template <typename U>
242     typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
243     operator=(U &&Temporary) = delete;
244
245     /// Disallow accidental assignment from a temporary.
246     ///
247     /// The declaration here is extra complicated so that "arrayRef = {}"
248     /// continues to select the move assignment operator.
249     template <typename U>
250     typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
251     operator=(std::initializer_list<U>) = delete;
252
253     /// @}
254     /// @name Expensive Operations
255     /// @{
256     std::vector<T> vec() const {
257       return std::vector<T>(Data, Data+Length);
258     }
259
260     /// @}
261     /// @name Conversion operators
262     /// @{
263     operator std::vector<T>() const {
264       return std::vector<T>(Data, Data+Length);
265     }
266
267     /// @}
268   };
269
270   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
271   /// elements consecutively in memory), i.e. a start pointer and a length.  It
272   /// allows various APIs to take and modify consecutive elements easily and
273   /// conveniently.
274   ///
275   /// This class does not own the underlying data, it is expected to be used in
276   /// situations where the data resides in some other buffer, whose lifetime
277   /// extends past that of the MutableArrayRef. For this reason, it is not in
278   /// general safe to store a MutableArrayRef.
279   ///
280   /// This is intended to be trivially copyable, so it should be passed by
281   /// value.
282   template<typename T>
283   class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
284   public:
285     typedef T *iterator;
286
287     typedef std::reverse_iterator<iterator> reverse_iterator;
288
289     /// Construct an empty MutableArrayRef.
290     /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
291
292     /// Construct an empty MutableArrayRef from None.
293     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
294
295     /// Construct an MutableArrayRef from a single element.
296     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
297
298     /// Construct an MutableArrayRef from a pointer and length.
299     /*implicit*/ MutableArrayRef(T *data, size_t length)
300       : ArrayRef<T>(data, length) {}
301
302     /// Construct an MutableArrayRef from a range.
303     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
304
305     /// Construct an MutableArrayRef from a SmallVector.
306     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
307     : ArrayRef<T>(Vec) {}
308
309     /// Construct a MutableArrayRef from a std::vector.
310     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
311     : ArrayRef<T>(Vec) {}
312
313     /// Construct an ArrayRef from a std::array
314     template <size_t N>
315     /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
316         : ArrayRef<T>(Arr) {}
317
318     /// Construct an MutableArrayRef from a C array.
319     template <size_t N>
320     /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
321
322     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
323
324     iterator begin() const { return data(); }
325     iterator end() const { return data() + this->size(); }
326
327     reverse_iterator rbegin() const { return reverse_iterator(end()); }
328     reverse_iterator rend() const { return reverse_iterator(begin()); }
329
330     /// front - Get the first element.
331     T &front() const {
332       assert(!this->empty());
333       return data()[0];
334     }
335
336     /// back - Get the last element.
337     T &back() const {
338       assert(!this->empty());
339       return data()[this->size()-1];
340     }
341
342     /// slice(n, m) - Chop off the first N elements of the array, and keep M
343     /// elements in the array.
344     MutableArrayRef<T> slice(size_t N, size_t M) const {
345       assert(N + M <= this->size() && "Invalid specifier");
346       return MutableArrayRef<T>(this->data() + N, M);
347     }
348
349     /// slice(n) - Chop off the first N elements of the array.
350     MutableArrayRef<T> slice(size_t N) const {
351       return slice(N, this->size() - N);
352     }
353
354     /// \brief Drop the first \p N elements of the array.
355     MutableArrayRef<T> drop_front(size_t N = 1) const {
356       assert(this->size() >= N && "Dropping more elements than exist");
357       return slice(N, this->size() - N);
358     }
359
360     MutableArrayRef<T> drop_back(size_t N = 1) const {
361       assert(this->size() >= N && "Dropping more elements than exist");
362       return slice(0, this->size() - N);
363     }
364
365     /// \brief Return a copy of *this with the first N elements satisfying the
366     /// given predicate removed.
367     template <class PredicateT>
368     MutableArrayRef<T> drop_while(PredicateT Pred) const {
369       return MutableArrayRef<T>(find_if_not(*this, Pred), end());
370     }
371
372     /// \brief Return a copy of *this with the first N elements not satisfying
373     /// the given predicate removed.
374     template <class PredicateT>
375     MutableArrayRef<T> drop_until(PredicateT Pred) const {
376       return MutableArrayRef<T>(find_if(*this, Pred), end());
377     }
378
379     /// \brief Return a copy of *this with only the first \p N elements.
380     MutableArrayRef<T> take_front(size_t N = 1) const {
381       if (N >= this->size())
382         return *this;
383       return drop_back(this->size() - N);
384     }
385
386     /// \brief Return a copy of *this with only the last \p N elements.
387     MutableArrayRef<T> take_back(size_t N = 1) const {
388       if (N >= this->size())
389         return *this;
390       return drop_front(this->size() - N);
391     }
392
393     /// \brief Return the first N elements of this Array that satisfy the given
394     /// predicate.
395     template <class PredicateT>
396     MutableArrayRef<T> take_while(PredicateT Pred) const {
397       return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
398     }
399
400     /// \brief Return the first N elements of this Array that don't satisfy the
401     /// given predicate.
402     template <class PredicateT>
403     MutableArrayRef<T> take_until(PredicateT Pred) const {
404       return MutableArrayRef<T>(begin(), find_if(*this, Pred));
405     }
406
407     /// @}
408     /// @name Operator Overloads
409     /// @{
410     T &operator[](size_t Index) const {
411       assert(Index < this->size() && "Invalid index!");
412       return data()[Index];
413     }
414   };
415
416   /// This is a MutableArrayRef that owns its array.
417   template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
418   public:
419     OwningArrayRef() {}
420     OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
421     OwningArrayRef(ArrayRef<T> Data)
422         : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
423       std::copy(Data.begin(), Data.end(), this->begin());
424     }
425     OwningArrayRef(OwningArrayRef &&Other) { *this = Other; }
426     OwningArrayRef &operator=(OwningArrayRef &&Other) {
427       delete[] this->data();
428       this->MutableArrayRef<T>::operator=(Other);
429       Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
430       return *this;
431     }
432     ~OwningArrayRef() { delete[] this->data(); }
433   };
434
435   /// @name ArrayRef Convenience constructors
436   /// @{
437
438   /// Construct an ArrayRef from a single element.
439   template<typename T>
440   ArrayRef<T> makeArrayRef(const T &OneElt) {
441     return OneElt;
442   }
443
444   /// Construct an ArrayRef from a pointer and length.
445   template<typename T>
446   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
447     return ArrayRef<T>(data, length);
448   }
449
450   /// Construct an ArrayRef from a range.
451   template<typename T>
452   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
453     return ArrayRef<T>(begin, end);
454   }
455
456   /// Construct an ArrayRef from a SmallVector.
457   template <typename T>
458   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
459     return Vec;
460   }
461
462   /// Construct an ArrayRef from a SmallVector.
463   template <typename T, unsigned N>
464   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
465     return Vec;
466   }
467
468   /// Construct an ArrayRef from a std::vector.
469   template<typename T>
470   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
471     return Vec;
472   }
473
474   /// Construct an ArrayRef from an ArrayRef (no-op) (const)
475   template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
476     return Vec;
477   }
478
479   /// Construct an ArrayRef from an ArrayRef (no-op)
480   template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
481     return Vec;
482   }
483
484   /// Construct an ArrayRef from a C array.
485   template<typename T, size_t N>
486   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
487     return ArrayRef<T>(Arr);
488   }
489
490   /// @}
491   /// @name ArrayRef Comparison Operators
492   /// @{
493
494   template<typename T>
495   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
496     return LHS.equals(RHS);
497   }
498
499   template<typename T>
500   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
501     return !(LHS == RHS);
502   }
503
504   /// @}
505
506   // ArrayRefs can be treated like a POD type.
507   template <typename T> struct isPodLike;
508   template <typename T> struct isPodLike<ArrayRef<T> > {
509     static const bool value = true;
510   };
511
512   template <typename T> hash_code hash_value(ArrayRef<T> S) {
513     return hash_combine_range(S.begin(), S.end());
514   }
515 } // end namespace llvm
516
517 #endif // LLVM_ADT_ARRAYREF_H