]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/ADT/BitVector.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / ADT / BitVector.h
1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BitVector class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_ADT_BITVECTOR_H
14 #define LLVM_ADT_BITVECTOR_H
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Support/MathExtras.h"
19 #include <algorithm>
20 #include <cassert>
21 #include <climits>
22 #include <cstdint>
23 #include <cstdlib>
24 #include <cstring>
25 #include <utility>
26
27 namespace llvm {
28
29 /// ForwardIterator for the bits that are set.
30 /// Iterators get invalidated when resize / reserve is called.
31 template <typename BitVectorT> class const_set_bits_iterator_impl {
32   const BitVectorT &Parent;
33   int Current = 0;
34
35   void advance() {
36     assert(Current != -1 && "Trying to advance past end.");
37     Current = Parent.find_next(Current);
38   }
39
40 public:
41   const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
42       : Parent(Parent), Current(Current) {}
43   explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
44       : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
45   const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;
46
47   const_set_bits_iterator_impl operator++(int) {
48     auto Prev = *this;
49     advance();
50     return Prev;
51   }
52
53   const_set_bits_iterator_impl &operator++() {
54     advance();
55     return *this;
56   }
57
58   unsigned operator*() const { return Current; }
59
60   bool operator==(const const_set_bits_iterator_impl &Other) const {
61     assert(&Parent == &Other.Parent &&
62            "Comparing iterators from different BitVectors");
63     return Current == Other.Current;
64   }
65
66   bool operator!=(const const_set_bits_iterator_impl &Other) const {
67     assert(&Parent == &Other.Parent &&
68            "Comparing iterators from different BitVectors");
69     return Current != Other.Current;
70   }
71 };
72
73 class BitVector {
74   typedef unsigned long BitWord;
75
76   enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
77
78   static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
79                 "Unsupported word size");
80
81   MutableArrayRef<BitWord> Bits; // Actual bits.
82   unsigned Size;                 // Size of bitvector in bits.
83
84 public:
85   typedef unsigned size_type;
86   // Encapsulation of a single bit.
87   class reference {
88     friend class BitVector;
89
90     BitWord *WordRef;
91     unsigned BitPos;
92
93   public:
94     reference(BitVector &b, unsigned Idx) {
95       WordRef = &b.Bits[Idx / BITWORD_SIZE];
96       BitPos = Idx % BITWORD_SIZE;
97     }
98
99     reference() = delete;
100     reference(const reference&) = default;
101
102     reference &operator=(reference t) {
103       *this = bool(t);
104       return *this;
105     }
106
107     reference& operator=(bool t) {
108       if (t)
109         *WordRef |= BitWord(1) << BitPos;
110       else
111         *WordRef &= ~(BitWord(1) << BitPos);
112       return *this;
113     }
114
115     operator bool() const {
116       return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
117     }
118   };
119
120   typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
121   typedef const_set_bits_iterator set_iterator;
122
123   const_set_bits_iterator set_bits_begin() const {
124     return const_set_bits_iterator(*this);
125   }
126   const_set_bits_iterator set_bits_end() const {
127     return const_set_bits_iterator(*this, -1);
128   }
129   iterator_range<const_set_bits_iterator> set_bits() const {
130     return make_range(set_bits_begin(), set_bits_end());
131   }
132
133   /// BitVector default ctor - Creates an empty bitvector.
134   BitVector() : Size(0) {}
135
136   /// BitVector ctor - Creates a bitvector of specified number of bits. All
137   /// bits are initialized to the specified value.
138   explicit BitVector(unsigned s, bool t = false) : Size(s) {
139     size_t Capacity = NumBitWords(s);
140     Bits = allocate(Capacity);
141     init_words(Bits, t);
142     if (t)
143       clear_unused_bits();
144   }
145
146   /// BitVector copy ctor.
147   BitVector(const BitVector &RHS) : Size(RHS.size()) {
148     if (Size == 0) {
149       Bits = MutableArrayRef<BitWord>();
150       return;
151     }
152
153     size_t Capacity = NumBitWords(RHS.size());
154     Bits = allocate(Capacity);
155     std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
156   }
157
158   BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
159     RHS.Bits = MutableArrayRef<BitWord>();
160     RHS.Size = 0;
161   }
162
163   ~BitVector() { std::free(Bits.data()); }
164
165   /// empty - Tests whether there are no bits in this bitvector.
166   bool empty() const { return Size == 0; }
167
168   /// size - Returns the number of bits in this bitvector.
169   size_type size() const { return Size; }
170
171   /// count - Returns the number of bits which are set.
172   size_type count() const {
173     unsigned NumBits = 0;
174     for (unsigned i = 0; i < NumBitWords(size()); ++i)
175       NumBits += countPopulation(Bits[i]);
176     return NumBits;
177   }
178
179   /// any - Returns true if any bit is set.
180   bool any() const {
181     for (unsigned i = 0; i < NumBitWords(size()); ++i)
182       if (Bits[i] != 0)
183         return true;
184     return false;
185   }
186
187   /// all - Returns true if all bits are set.
188   bool all() const {
189     for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
190       if (Bits[i] != ~0UL)
191         return false;
192
193     // If bits remain check that they are ones. The unused bits are always zero.
194     if (unsigned Remainder = Size % BITWORD_SIZE)
195       return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
196
197     return true;
198   }
199
200   /// none - Returns true if none of the bits are set.
201   bool none() const {
202     return !any();
203   }
204
205   /// find_first_in - Returns the index of the first set bit in the range
206   /// [Begin, End).  Returns -1 if all bits in the range are unset.
207   int find_first_in(unsigned Begin, unsigned End) const {
208     assert(Begin <= End && End <= Size);
209     if (Begin == End)
210       return -1;
211
212     unsigned FirstWord = Begin / BITWORD_SIZE;
213     unsigned LastWord = (End - 1) / BITWORD_SIZE;
214
215     // Check subsequent words.
216     for (unsigned i = FirstWord; i <= LastWord; ++i) {
217       BitWord Copy = Bits[i];
218
219       if (i == FirstWord) {
220         unsigned FirstBit = Begin % BITWORD_SIZE;
221         Copy &= maskTrailingZeros<BitWord>(FirstBit);
222       }
223
224       if (i == LastWord) {
225         unsigned LastBit = (End - 1) % BITWORD_SIZE;
226         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
227       }
228       if (Copy != 0)
229         return i * BITWORD_SIZE + countTrailingZeros(Copy);
230     }
231     return -1;
232   }
233
234   /// find_last_in - Returns the index of the last set bit in the range
235   /// [Begin, End).  Returns -1 if all bits in the range are unset.
236   int find_last_in(unsigned Begin, unsigned End) const {
237     assert(Begin <= End && End <= Size);
238     if (Begin == End)
239       return -1;
240
241     unsigned LastWord = (End - 1) / BITWORD_SIZE;
242     unsigned FirstWord = Begin / BITWORD_SIZE;
243
244     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
245       unsigned CurrentWord = i - 1;
246
247       BitWord Copy = Bits[CurrentWord];
248       if (CurrentWord == LastWord) {
249         unsigned LastBit = (End - 1) % BITWORD_SIZE;
250         Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
251       }
252
253       if (CurrentWord == FirstWord) {
254         unsigned FirstBit = Begin % BITWORD_SIZE;
255         Copy &= maskTrailingZeros<BitWord>(FirstBit);
256       }
257
258       if (Copy != 0)
259         return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
260     }
261
262     return -1;
263   }
264
265   /// find_first_unset_in - Returns the index of the first unset bit in the
266   /// range [Begin, End).  Returns -1 if all bits in the range are set.
267   int find_first_unset_in(unsigned Begin, unsigned End) const {
268     assert(Begin <= End && End <= Size);
269     if (Begin == End)
270       return -1;
271
272     unsigned FirstWord = Begin / BITWORD_SIZE;
273     unsigned LastWord = (End - 1) / BITWORD_SIZE;
274
275     // Check subsequent words.
276     for (unsigned i = FirstWord; i <= LastWord; ++i) {
277       BitWord Copy = Bits[i];
278
279       if (i == FirstWord) {
280         unsigned FirstBit = Begin % BITWORD_SIZE;
281         Copy |= maskTrailingOnes<BitWord>(FirstBit);
282       }
283
284       if (i == LastWord) {
285         unsigned LastBit = (End - 1) % BITWORD_SIZE;
286         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
287       }
288       if (Copy != ~0UL) {
289         unsigned Result = i * BITWORD_SIZE + countTrailingOnes(Copy);
290         return Result < size() ? Result : -1;
291       }
292     }
293     return -1;
294   }
295
296   /// find_last_unset_in - Returns the index of the last unset bit in the
297   /// range [Begin, End).  Returns -1 if all bits in the range are set.
298   int find_last_unset_in(unsigned Begin, unsigned End) const {
299     assert(Begin <= End && End <= Size);
300     if (Begin == End)
301       return -1;
302
303     unsigned LastWord = (End - 1) / BITWORD_SIZE;
304     unsigned FirstWord = Begin / BITWORD_SIZE;
305
306     for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
307       unsigned CurrentWord = i - 1;
308
309       BitWord Copy = Bits[CurrentWord];
310       if (CurrentWord == LastWord) {
311         unsigned LastBit = (End - 1) % BITWORD_SIZE;
312         Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
313       }
314
315       if (CurrentWord == FirstWord) {
316         unsigned FirstBit = Begin % BITWORD_SIZE;
317         Copy |= maskTrailingOnes<BitWord>(FirstBit);
318       }
319
320       if (Copy != ~0UL) {
321         unsigned Result =
322             (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
323         return Result < Size ? Result : -1;
324       }
325     }
326     return -1;
327   }
328
329   /// find_first - Returns the index of the first set bit, -1 if none
330   /// of the bits are set.
331   int find_first() const { return find_first_in(0, Size); }
332
333   /// find_last - Returns the index of the last set bit, -1 if none of the bits
334   /// are set.
335   int find_last() const { return find_last_in(0, Size); }
336
337   /// find_next - Returns the index of the next set bit following the
338   /// "Prev" bit. Returns -1 if the next set bit is not found.
339   int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }
340
341   /// find_prev - Returns the index of the first set bit that precedes the
342   /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
343   int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }
344
345   /// find_first_unset - Returns the index of the first unset bit, -1 if all
346   /// of the bits are set.
347   int find_first_unset() const { return find_first_unset_in(0, Size); }
348
349   /// find_next_unset - Returns the index of the next unset bit following the
350   /// "Prev" bit.  Returns -1 if all remaining bits are set.
351   int find_next_unset(unsigned Prev) const {
352     return find_first_unset_in(Prev + 1, Size);
353   }
354
355   /// find_last_unset - Returns the index of the last unset bit, -1 if all of
356   /// the bits are set.
357   int find_last_unset() const { return find_last_unset_in(0, Size); }
358
359   /// find_prev_unset - Returns the index of the first unset bit that precedes
360   /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
361   int find_prev_unset(unsigned PriorTo) {
362     return find_last_unset_in(0, PriorTo);
363   }
364
365   /// clear - Removes all bits from the bitvector. Does not change capacity.
366   void clear() {
367     Size = 0;
368   }
369
370   /// resize - Grow or shrink the bitvector.
371   void resize(unsigned N, bool t = false) {
372     if (N > getBitCapacity()) {
373       unsigned OldCapacity = Bits.size();
374       grow(N);
375       init_words(Bits.drop_front(OldCapacity), t);
376     }
377
378     // Set any old unused bits that are now included in the BitVector. This
379     // may set bits that are not included in the new vector, but we will clear
380     // them back out below.
381     if (N > Size)
382       set_unused_bits(t);
383
384     // Update the size, and clear out any bits that are now unused
385     unsigned OldSize = Size;
386     Size = N;
387     if (t || N < OldSize)
388       clear_unused_bits();
389   }
390
391   void reserve(unsigned N) {
392     if (N > getBitCapacity())
393       grow(N);
394   }
395
396   // Set, reset, flip
397   BitVector &set() {
398     init_words(Bits, true);
399     clear_unused_bits();
400     return *this;
401   }
402
403   BitVector &set(unsigned Idx) {
404     assert(Bits.data() && "Bits never allocated");
405     Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
406     return *this;
407   }
408
409   /// set - Efficiently set a range of bits in [I, E)
410   BitVector &set(unsigned I, unsigned E) {
411     assert(I <= E && "Attempted to set backwards range!");
412     assert(E <= size() && "Attempted to set out-of-bounds range!");
413
414     if (I == E) return *this;
415
416     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
417       BitWord EMask = 1UL << (E % BITWORD_SIZE);
418       BitWord IMask = 1UL << (I % BITWORD_SIZE);
419       BitWord Mask = EMask - IMask;
420       Bits[I / BITWORD_SIZE] |= Mask;
421       return *this;
422     }
423
424     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
425     Bits[I / BITWORD_SIZE] |= PrefixMask;
426     I = alignTo(I, BITWORD_SIZE);
427
428     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
429       Bits[I / BITWORD_SIZE] = ~0UL;
430
431     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
432     if (I < E)
433       Bits[I / BITWORD_SIZE] |= PostfixMask;
434
435     return *this;
436   }
437
438   BitVector &reset() {
439     init_words(Bits, false);
440     return *this;
441   }
442
443   BitVector &reset(unsigned Idx) {
444     Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
445     return *this;
446   }
447
448   /// reset - Efficiently reset a range of bits in [I, E)
449   BitVector &reset(unsigned I, unsigned E) {
450     assert(I <= E && "Attempted to reset backwards range!");
451     assert(E <= size() && "Attempted to reset out-of-bounds range!");
452
453     if (I == E) return *this;
454
455     if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
456       BitWord EMask = 1UL << (E % BITWORD_SIZE);
457       BitWord IMask = 1UL << (I % BITWORD_SIZE);
458       BitWord Mask = EMask - IMask;
459       Bits[I / BITWORD_SIZE] &= ~Mask;
460       return *this;
461     }
462
463     BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
464     Bits[I / BITWORD_SIZE] &= ~PrefixMask;
465     I = alignTo(I, BITWORD_SIZE);
466
467     for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
468       Bits[I / BITWORD_SIZE] = 0UL;
469
470     BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
471     if (I < E)
472       Bits[I / BITWORD_SIZE] &= ~PostfixMask;
473
474     return *this;
475   }
476
477   BitVector &flip() {
478     for (unsigned i = 0; i < NumBitWords(size()); ++i)
479       Bits[i] = ~Bits[i];
480     clear_unused_bits();
481     return *this;
482   }
483
484   BitVector &flip(unsigned Idx) {
485     Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
486     return *this;
487   }
488
489   // Indexing.
490   reference operator[](unsigned Idx) {
491     assert (Idx < Size && "Out-of-bounds Bit access.");
492     return reference(*this, Idx);
493   }
494
495   bool operator[](unsigned Idx) const {
496     assert (Idx < Size && "Out-of-bounds Bit access.");
497     BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
498     return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
499   }
500
501   bool test(unsigned Idx) const {
502     return (*this)[Idx];
503   }
504
505   // Push single bit to end of vector.
506   void push_back(bool Val) {
507     unsigned OldSize = Size;
508     unsigned NewSize = Size + 1;
509
510     // Resize, which will insert zeros.
511     // If we already fit then the unused bits will be already zero.
512     if (NewSize > getBitCapacity())
513       resize(NewSize, false);
514     else
515       Size = NewSize;
516
517     // If true, set single bit.
518     if (Val)
519       set(OldSize);
520   }
521
522   /// Test if any common bits are set.
523   bool anyCommon(const BitVector &RHS) const {
524     unsigned ThisWords = NumBitWords(size());
525     unsigned RHSWords  = NumBitWords(RHS.size());
526     for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
527       if (Bits[i] & RHS.Bits[i])
528         return true;
529     return false;
530   }
531
532   // Comparison operators.
533   bool operator==(const BitVector &RHS) const {
534     unsigned ThisWords = NumBitWords(size());
535     unsigned RHSWords  = NumBitWords(RHS.size());
536     unsigned i;
537     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
538       if (Bits[i] != RHS.Bits[i])
539         return false;
540
541     // Verify that any extra words are all zeros.
542     if (i != ThisWords) {
543       for (; i != ThisWords; ++i)
544         if (Bits[i])
545           return false;
546     } else if (i != RHSWords) {
547       for (; i != RHSWords; ++i)
548         if (RHS.Bits[i])
549           return false;
550     }
551     return true;
552   }
553
554   bool operator!=(const BitVector &RHS) const {
555     return !(*this == RHS);
556   }
557
558   /// Intersection, union, disjoint union.
559   BitVector &operator&=(const BitVector &RHS) {
560     unsigned ThisWords = NumBitWords(size());
561     unsigned RHSWords  = NumBitWords(RHS.size());
562     unsigned i;
563     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
564       Bits[i] &= RHS.Bits[i];
565
566     // Any bits that are just in this bitvector become zero, because they aren't
567     // in the RHS bit vector.  Any words only in RHS are ignored because they
568     // are already zero in the LHS.
569     for (; i != ThisWords; ++i)
570       Bits[i] = 0;
571
572     return *this;
573   }
574
575   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
576   BitVector &reset(const BitVector &RHS) {
577     unsigned ThisWords = NumBitWords(size());
578     unsigned RHSWords  = NumBitWords(RHS.size());
579     unsigned i;
580     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
581       Bits[i] &= ~RHS.Bits[i];
582     return *this;
583   }
584
585   /// test - Check if (This - RHS) is zero.
586   /// This is the same as reset(RHS) and any().
587   bool test(const BitVector &RHS) const {
588     unsigned ThisWords = NumBitWords(size());
589     unsigned RHSWords  = NumBitWords(RHS.size());
590     unsigned i;
591     for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
592       if ((Bits[i] & ~RHS.Bits[i]) != 0)
593         return true;
594
595     for (; i != ThisWords ; ++i)
596       if (Bits[i] != 0)
597         return true;
598
599     return false;
600   }
601
602   BitVector &operator|=(const BitVector &RHS) {
603     if (size() < RHS.size())
604       resize(RHS.size());
605     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
606       Bits[i] |= RHS.Bits[i];
607     return *this;
608   }
609
610   BitVector &operator^=(const BitVector &RHS) {
611     if (size() < RHS.size())
612       resize(RHS.size());
613     for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
614       Bits[i] ^= RHS.Bits[i];
615     return *this;
616   }
617
618   BitVector &operator>>=(unsigned N) {
619     assert(N <= Size);
620     if (LLVM_UNLIKELY(empty() || N == 0))
621       return *this;
622
623     unsigned NumWords = NumBitWords(Size);
624     assert(NumWords >= 1);
625
626     wordShr(N / BITWORD_SIZE);
627
628     unsigned BitDistance = N % BITWORD_SIZE;
629     if (BitDistance == 0)
630       return *this;
631
632     // When the shift size is not a multiple of the word size, then we have
633     // a tricky situation where each word in succession needs to extract some
634     // of the bits from the next word and or them into this word while
635     // shifting this word to make room for the new bits.  This has to be done
636     // for every word in the array.
637
638     // Since we're shifting each word right, some bits will fall off the end
639     // of each word to the right, and empty space will be created on the left.
640     // The final word in the array will lose bits permanently, so starting at
641     // the beginning, work forwards shifting each word to the right, and
642     // OR'ing in the bits from the end of the next word to the beginning of
643     // the current word.
644
645     // Example:
646     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
647     //   by 4 bits.
648     // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
649     // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
650     // Step 3: Word[1] >>= 4           ; 0x0EEFF001
651     // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
652     // Step 5: Word[2] >>= 4           ; 0x02334455
653     // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
654     const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
655     const unsigned LSH = BITWORD_SIZE - BitDistance;
656
657     for (unsigned I = 0; I < NumWords - 1; ++I) {
658       Bits[I] >>= BitDistance;
659       Bits[I] |= (Bits[I + 1] & Mask) << LSH;
660     }
661
662     Bits[NumWords - 1] >>= BitDistance;
663
664     return *this;
665   }
666
667   BitVector &operator<<=(unsigned N) {
668     assert(N <= Size);
669     if (LLVM_UNLIKELY(empty() || N == 0))
670       return *this;
671
672     unsigned NumWords = NumBitWords(Size);
673     assert(NumWords >= 1);
674
675     wordShl(N / BITWORD_SIZE);
676
677     unsigned BitDistance = N % BITWORD_SIZE;
678     if (BitDistance == 0)
679       return *this;
680
681     // When the shift size is not a multiple of the word size, then we have
682     // a tricky situation where each word in succession needs to extract some
683     // of the bits from the previous word and or them into this word while
684     // shifting this word to make room for the new bits.  This has to be done
685     // for every word in the array.  This is similar to the algorithm outlined
686     // in operator>>=, but backwards.
687
688     // Since we're shifting each word left, some bits will fall off the end
689     // of each word to the left, and empty space will be created on the right.
690     // The first word in the array will lose bits permanently, so starting at
691     // the end, work backwards shifting each word to the left, and OR'ing
692     // in the bits from the end of the next word to the beginning of the
693     // current word.
694
695     // Example:
696     //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
697     //   by 4 bits.
698     // Step 1: Word[2] <<= 4           ; 0x23344550
699     // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
700     // Step 3: Word[1] <<= 4           ; 0xEFF00110
701     // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
702     // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
703     // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
704     const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
705     const unsigned RSH = BITWORD_SIZE - BitDistance;
706
707     for (int I = NumWords - 1; I > 0; --I) {
708       Bits[I] <<= BitDistance;
709       Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
710     }
711     Bits[0] <<= BitDistance;
712     clear_unused_bits();
713
714     return *this;
715   }
716
717   // Assignment operator.
718   const BitVector &operator=(const BitVector &RHS) {
719     if (this == &RHS) return *this;
720
721     Size = RHS.size();
722     unsigned RHSWords = NumBitWords(Size);
723     if (Size <= getBitCapacity()) {
724       if (Size)
725         std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
726       clear_unused_bits();
727       return *this;
728     }
729
730     // Grow the bitvector to have enough elements.
731     unsigned NewCapacity = RHSWords;
732     assert(NewCapacity > 0 && "negative capacity?");
733     auto NewBits = allocate(NewCapacity);
734     std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));
735
736     // Destroy the old bits.
737     std::free(Bits.data());
738     Bits = NewBits;
739
740     return *this;
741   }
742
743   const BitVector &operator=(BitVector &&RHS) {
744     if (this == &RHS) return *this;
745
746     std::free(Bits.data());
747     Bits = RHS.Bits;
748     Size = RHS.Size;
749
750     RHS.Bits = MutableArrayRef<BitWord>();
751     RHS.Size = 0;
752
753     return *this;
754   }
755
756   void swap(BitVector &RHS) {
757     std::swap(Bits, RHS.Bits);
758     std::swap(Size, RHS.Size);
759   }
760
761   //===--------------------------------------------------------------------===//
762   // Portable bit mask operations.
763   //===--------------------------------------------------------------------===//
764   //
765   // These methods all operate on arrays of uint32_t, each holding 32 bits. The
766   // fixed word size makes it easier to work with literal bit vector constants
767   // in portable code.
768   //
769   // The LSB in each word is the lowest numbered bit.  The size of a portable
770   // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
771   // given, the bit mask is assumed to cover the entire BitVector.
772
773   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
774   /// This computes "*this |= Mask".
775   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
776     applyMask<true, false>(Mask, MaskWords);
777   }
778
779   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
780   /// Don't resize. This computes "*this &= ~Mask".
781   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
782     applyMask<false, false>(Mask, MaskWords);
783   }
784
785   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
786   /// Don't resize.  This computes "*this |= ~Mask".
787   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
788     applyMask<true, true>(Mask, MaskWords);
789   }
790
791   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
792   /// Don't resize.  This computes "*this &= Mask".
793   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
794     applyMask<false, true>(Mask, MaskWords);
795   }
796
797 private:
798   /// Perform a logical left shift of \p Count words by moving everything
799   /// \p Count words to the right in memory.
800   ///
801   /// While confusing, words are stored from least significant at Bits[0] to
802   /// most significant at Bits[NumWords-1].  A logical shift left, however,
803   /// moves the current least significant bit to a higher logical index, and
804   /// fills the previous least significant bits with 0.  Thus, we actually
805   /// need to move the bytes of the memory to the right, not to the left.
806   /// Example:
807   ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
808   /// represents a BitVector where 0xBBBBAAAA contain the least significant
809   /// bits.  So if we want to shift the BitVector left by 2 words, we need to
810   /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
811   /// memmove which moves right, not left.
812   void wordShl(uint32_t Count) {
813     if (Count == 0)
814       return;
815
816     uint32_t NumWords = NumBitWords(Size);
817
818     auto Src = Bits.take_front(NumWords).drop_back(Count);
819     auto Dest = Bits.take_front(NumWords).drop_front(Count);
820
821     // Since we always move Word-sized chunks of data with src and dest both
822     // aligned to a word-boundary, we don't need to worry about endianness
823     // here.
824     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
825     std::memset(Bits.data(), 0, Count * sizeof(BitWord));
826     clear_unused_bits();
827   }
828
829   /// Perform a logical right shift of \p Count words by moving those
830   /// words to the left in memory.  See wordShl for more information.
831   ///
832   void wordShr(uint32_t Count) {
833     if (Count == 0)
834       return;
835
836     uint32_t NumWords = NumBitWords(Size);
837
838     auto Src = Bits.take_front(NumWords).drop_front(Count);
839     auto Dest = Bits.take_front(NumWords).drop_back(Count);
840     assert(Dest.size() == Src.size());
841
842     std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
843     std::memset(Dest.end(), 0, Count * sizeof(BitWord));
844   }
845
846   MutableArrayRef<BitWord> allocate(size_t NumWords) {
847     BitWord *RawBits = static_cast<BitWord *>(
848         safe_malloc(NumWords * sizeof(BitWord)));
849     return MutableArrayRef<BitWord>(RawBits, NumWords);
850   }
851
852   int next_unset_in_word(int WordIndex, BitWord Word) const {
853     unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
854     return Result < size() ? Result : -1;
855   }
856
857   unsigned NumBitWords(unsigned S) const {
858     return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
859   }
860
861   // Set the unused bits in the high words.
862   void set_unused_bits(bool t = true) {
863     //  Set high words first.
864     unsigned UsedWords = NumBitWords(Size);
865     if (Bits.size() > UsedWords)
866       init_words(Bits.drop_front(UsedWords), t);
867
868     //  Then set any stray high bits of the last used word.
869     unsigned ExtraBits = Size % BITWORD_SIZE;
870     if (ExtraBits) {
871       BitWord ExtraBitMask = ~0UL << ExtraBits;
872       if (t)
873         Bits[UsedWords-1] |= ExtraBitMask;
874       else
875         Bits[UsedWords-1] &= ~ExtraBitMask;
876     }
877   }
878
879   // Clear the unused bits in the high words.
880   void clear_unused_bits() {
881     set_unused_bits(false);
882   }
883
884   void grow(unsigned NewSize) {
885     size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
886     assert(NewCapacity > 0 && "realloc-ing zero space");
887     BitWord *NewBits = static_cast<BitWord *>(
888         safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord)));
889     Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
890     clear_unused_bits();
891   }
892
893   void init_words(MutableArrayRef<BitWord> B, bool t) {
894     if (B.size() > 0)
895       memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
896   }
897
898   template<bool AddBits, bool InvertMask>
899   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
900     static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
901     MaskWords = std::min(MaskWords, (size() + 31) / 32);
902     const unsigned Scale = BITWORD_SIZE / 32;
903     unsigned i;
904     for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
905       BitWord BW = Bits[i];
906       // This inner loop should unroll completely when BITWORD_SIZE > 32.
907       for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
908         uint32_t M = *Mask++;
909         if (InvertMask) M = ~M;
910         if (AddBits) BW |=   BitWord(M) << b;
911         else         BW &= ~(BitWord(M) << b);
912       }
913       Bits[i] = BW;
914     }
915     for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
916       uint32_t M = *Mask++;
917       if (InvertMask) M = ~M;
918       if (AddBits) Bits[i] |=   BitWord(M) << b;
919       else         Bits[i] &= ~(BitWord(M) << b);
920     }
921     if (AddBits)
922       clear_unused_bits();
923   }
924
925 public:
926   /// Return the size (in bytes) of the bit vector.
927   size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
928   size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
929 };
930
931 inline size_t capacity_in_bytes(const BitVector &X) {
932   return X.getMemorySize();
933 }
934
935 } // end namespace llvm
936
937 namespace std {
938   /// Implement std::swap in terms of BitVector swap.
939   inline void
940   swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
941     LHS.swap(RHS);
942   }
943 } // end namespace std
944
945 #endif // LLVM_ADT_BITVECTOR_H