]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/ADT/FoldingSet.h
MFV r319948: 5428 provide fts(), reallocarray(), and strtonum()
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / ADT / FoldingSet.h
1 //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a hash set that can be used to remove duplication of nodes
11 // in a graph.  This code was originally created by Chris Lattner for use with
12 // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_FOLDINGSET_H
17 #define LLVM_ADT_FOLDINGSET_H
18
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator.h"
21 #include "llvm/Support/Allocator.h"
22 #include <cassert>
23 #include <cstddef>
24 #include <cstdint>
25 #include <utility>
26
27 namespace llvm {
28
29 /// This folding set used for two purposes:
30 ///   1. Given information about a node we want to create, look up the unique
31 ///      instance of the node in the set.  If the node already exists, return
32 ///      it, otherwise return the bucket it should be inserted into.
33 ///   2. Given a node that has already been created, remove it from the set.
34 ///
35 /// This class is implemented as a single-link chained hash table, where the
36 /// "buckets" are actually the nodes themselves (the next pointer is in the
37 /// node).  The last node points back to the bucket to simplify node removal.
38 ///
39 /// Any node that is to be included in the folding set must be a subclass of
40 /// FoldingSetNode.  The node class must also define a Profile method used to
41 /// establish the unique bits of data for the node.  The Profile method is
42 /// passed a FoldingSetNodeID object which is used to gather the bits.  Just
43 /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class.
44 /// NOTE: That the folding set does not own the nodes and it is the
45 /// responsibility of the user to dispose of the nodes.
46 ///
47 /// Eg.
48 ///    class MyNode : public FoldingSetNode {
49 ///    private:
50 ///      std::string Name;
51 ///      unsigned Value;
52 ///    public:
53 ///      MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
54 ///       ...
55 ///      void Profile(FoldingSetNodeID &ID) const {
56 ///        ID.AddString(Name);
57 ///        ID.AddInteger(Value);
58 ///      }
59 ///      ...
60 ///    };
61 ///
62 /// To define the folding set itself use the FoldingSet template;
63 ///
64 /// Eg.
65 ///    FoldingSet<MyNode> MyFoldingSet;
66 ///
67 /// Four public methods are available to manipulate the folding set;
68 ///
69 /// 1) If you have an existing node that you want add to the set but unsure
70 /// that the node might already exist then call;
71 ///
72 ///    MyNode *M = MyFoldingSet.GetOrInsertNode(N);
73 ///
74 /// If The result is equal to the input then the node has been inserted.
75 /// Otherwise, the result is the node existing in the folding set, and the
76 /// input can be discarded (use the result instead.)
77 ///
78 /// 2) If you are ready to construct a node but want to check if it already
79 /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
80 /// check;
81 ///
82 ///   FoldingSetNodeID ID;
83 ///   ID.AddString(Name);
84 ///   ID.AddInteger(Value);
85 ///   void *InsertPoint;
86 ///
87 ///    MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
88 ///
89 /// If found then M with be non-NULL, else InsertPoint will point to where it
90 /// should be inserted using InsertNode.
91 ///
92 /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
93 /// node with FindNodeOrInsertPos;
94 ///
95 ///    InsertNode(N, InsertPoint);
96 ///
97 /// 4) Finally, if you want to remove a node from the folding set call;
98 ///
99 ///    bool WasRemoved = RemoveNode(N);
100 ///
101 /// The result indicates whether the node existed in the folding set.
102
103 class FoldingSetNodeID;
104 class StringRef;
105
106 //===----------------------------------------------------------------------===//
107 /// FoldingSetImpl - Implements the folding set functionality.  The main
108 /// structure is an array of buckets.  Each bucket is indexed by the hash of
109 /// the nodes it contains.  The bucket itself points to the nodes contained
110 /// in the bucket via a singly linked list.  The last node in the list points
111 /// back to the bucket to facilitate node removal.
112 ///
113 class FoldingSetImpl {
114   virtual void anchor(); // Out of line virtual method.
115
116 protected:
117   /// Buckets - Array of bucket chains.
118   ///
119   void **Buckets;
120
121   /// NumBuckets - Length of the Buckets array.  Always a power of 2.
122   ///
123   unsigned NumBuckets;
124
125   /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
126   /// is greater than twice the number of buckets.
127   unsigned NumNodes;
128
129   explicit FoldingSetImpl(unsigned Log2InitSize = 6);
130   FoldingSetImpl(FoldingSetImpl &&Arg);
131   FoldingSetImpl &operator=(FoldingSetImpl &&RHS);
132   ~FoldingSetImpl();
133
134 public:
135   //===--------------------------------------------------------------------===//
136   /// Node - This class is used to maintain the singly linked bucket list in
137   /// a folding set.
138   ///
139   class Node {
140   private:
141     // NextInFoldingSetBucket - next link in the bucket list.
142     void *NextInFoldingSetBucket;
143
144   public:
145     Node() : NextInFoldingSetBucket(nullptr) {}
146
147     // Accessors
148     void *getNextInBucket() const { return NextInFoldingSetBucket; }
149     void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
150   };
151
152   /// clear - Remove all nodes from the folding set.
153   void clear();
154
155   /// RemoveNode - Remove a node from the folding set, returning true if one
156   /// was removed or false if the node was not in the folding set.
157   bool RemoveNode(Node *N);
158
159   /// GetOrInsertNode - If there is an existing simple Node exactly
160   /// equal to the specified node, return it.  Otherwise, insert 'N' and return
161   /// it instead.
162   Node *GetOrInsertNode(Node *N);
163
164   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
165   /// return it.  If not, return the insertion token that will make insertion
166   /// faster.
167   Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
168
169   /// InsertNode - Insert the specified node into the folding set, knowing that
170   /// it is not already in the folding set.  InsertPos must be obtained from
171   /// FindNodeOrInsertPos.
172   void InsertNode(Node *N, void *InsertPos);
173
174   /// InsertNode - Insert the specified node into the folding set, knowing that
175   /// it is not already in the folding set.
176   void InsertNode(Node *N) {
177     Node *Inserted = GetOrInsertNode(N);
178     (void)Inserted;
179     assert(Inserted == N && "Node already inserted!");
180   }
181
182   /// size - Returns the number of nodes in the folding set.
183   unsigned size() const { return NumNodes; }
184
185   /// empty - Returns true if there are no nodes in the folding set.
186   bool empty() const { return NumNodes == 0; }
187
188   /// reserve - Increase the number of buckets such that adding the
189   /// EltCount-th node won't cause a rebucket operation. reserve is permitted
190   /// to allocate more space than requested by EltCount.
191   void reserve(unsigned EltCount);
192
193   /// capacity - Returns the number of nodes permitted in the folding set
194   /// before a rebucket operation is performed.
195   unsigned capacity() {
196     // We allow a load factor of up to 2.0,
197     // so that means our capacity is NumBuckets * 2
198     return NumBuckets * 2;
199   }
200
201 private:
202   /// GrowHashTable - Double the size of the hash table and rehash everything.
203   void GrowHashTable();
204
205   /// GrowBucketCount - resize the hash table and rehash everything.
206   /// NewBucketCount must be a power of two, and must be greater than the old
207   /// bucket count.
208   void GrowBucketCount(unsigned NewBucketCount);
209
210 protected:
211   /// GetNodeProfile - Instantiations of the FoldingSet template implement
212   /// this function to gather data bits for the given node.
213   virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
214
215   /// NodeEquals - Instantiations of the FoldingSet template implement
216   /// this function to compare the given node with the given ID.
217   virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
218                           FoldingSetNodeID &TempID) const=0;
219
220   /// ComputeNodeHash - Instantiations of the FoldingSet template implement
221   /// this function to compute a hash value for the given node.
222   virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
223 };
224
225 //===----------------------------------------------------------------------===//
226
227 /// DefaultFoldingSetTrait - This class provides default implementations
228 /// for FoldingSetTrait implementations.
229 ///
230 template<typename T> struct DefaultFoldingSetTrait {
231   static void Profile(const T &X, FoldingSetNodeID &ID) {
232     X.Profile(ID);
233   }
234   static void Profile(T &X, FoldingSetNodeID &ID) {
235     X.Profile(ID);
236   }
237
238   // Equals - Test if the profile for X would match ID, using TempID
239   // to compute a temporary ID if necessary. The default implementation
240   // just calls Profile and does a regular comparison. Implementations
241   // can override this to provide more efficient implementations.
242   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
243                             FoldingSetNodeID &TempID);
244
245   // ComputeHash - Compute a hash value for X, using TempID to
246   // compute a temporary ID if necessary. The default implementation
247   // just calls Profile and does a regular hash computation.
248   // Implementations can override this to provide more efficient
249   // implementations.
250   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
251 };
252
253 /// FoldingSetTrait - This trait class is used to define behavior of how
254 /// to "profile" (in the FoldingSet parlance) an object of a given type.
255 /// The default behavior is to invoke a 'Profile' method on an object, but
256 /// through template specialization the behavior can be tailored for specific
257 /// types.  Combined with the FoldingSetNodeWrapper class, one can add objects
258 /// to FoldingSets that were not originally designed to have that behavior.
259 template<typename T> struct FoldingSetTrait
260   : public DefaultFoldingSetTrait<T> {};
261
262 /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
263 /// for ContextualFoldingSets.
264 template<typename T, typename Ctx>
265 struct DefaultContextualFoldingSetTrait {
266   static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
267     X.Profile(ID, Context);
268   }
269
270   static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
271                             FoldingSetNodeID &TempID, Ctx Context);
272   static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
273                                      Ctx Context);
274 };
275
276 /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
277 /// ContextualFoldingSets.
278 template<typename T, typename Ctx> struct ContextualFoldingSetTrait
279   : public DefaultContextualFoldingSetTrait<T, Ctx> {};
280
281 //===--------------------------------------------------------------------===//
282 /// FoldingSetNodeIDRef - This class describes a reference to an interned
283 /// FoldingSetNodeID, which can be a useful to store node id data rather
284 /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
285 /// is often much larger than necessary, and the possibility of heap
286 /// allocation means it requires a non-trivial destructor call.
287 class FoldingSetNodeIDRef {
288   const unsigned *Data = nullptr;
289   size_t Size = 0;
290
291 public:
292   FoldingSetNodeIDRef() = default;
293   FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
294
295   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
296   /// used to lookup the node in the FoldingSetImpl.
297   unsigned ComputeHash() const;
298
299   bool operator==(FoldingSetNodeIDRef) const;
300
301   bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
302
303   /// Used to compare the "ordering" of two nodes as defined by the
304   /// profiled bits and their ordering defined by memcmp().
305   bool operator<(FoldingSetNodeIDRef) const;
306
307   const unsigned *getData() const { return Data; }
308   size_t getSize() const { return Size; }
309 };
310
311 //===--------------------------------------------------------------------===//
312 /// FoldingSetNodeID - This class is used to gather all the unique data bits of
313 /// a node.  When all the bits are gathered this class is used to produce a
314 /// hash value for the node.
315 ///
316 class FoldingSetNodeID {
317   /// Bits - Vector of all the data bits that make the node unique.
318   /// Use a SmallVector to avoid a heap allocation in the common case.
319   SmallVector<unsigned, 32> Bits;
320
321 public:
322   FoldingSetNodeID() = default;
323
324   FoldingSetNodeID(FoldingSetNodeIDRef Ref)
325     : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
326
327   /// Add* - Add various data types to Bit data.
328   ///
329   void AddPointer(const void *Ptr);
330   void AddInteger(signed I);
331   void AddInteger(unsigned I);
332   void AddInteger(long I);
333   void AddInteger(unsigned long I);
334   void AddInteger(long long I);
335   void AddInteger(unsigned long long I);
336   void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
337   void AddString(StringRef String);
338   void AddNodeID(const FoldingSetNodeID &ID);
339
340   template <typename T>
341   inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
342
343   /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
344   /// object to be used to compute a new profile.
345   inline void clear() { Bits.clear(); }
346
347   /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
348   /// to lookup the node in the FoldingSetImpl.
349   unsigned ComputeHash() const;
350
351   /// operator== - Used to compare two nodes to each other.
352   ///
353   bool operator==(const FoldingSetNodeID &RHS) const;
354   bool operator==(const FoldingSetNodeIDRef RHS) const;
355
356   bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
357   bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
358
359   /// Used to compare the "ordering" of two nodes as defined by the
360   /// profiled bits and their ordering defined by memcmp().
361   bool operator<(const FoldingSetNodeID &RHS) const;
362   bool operator<(const FoldingSetNodeIDRef RHS) const;
363
364   /// Intern - Copy this node's data to a memory region allocated from the
365   /// given allocator and return a FoldingSetNodeIDRef describing the
366   /// interned data.
367   FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
368 };
369
370 // Convenience type to hide the implementation of the folding set.
371 typedef FoldingSetImpl::Node FoldingSetNode;
372 template<class T> class FoldingSetIterator;
373 template<class T> class FoldingSetBucketIterator;
374
375 // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
376 // require the definition of FoldingSetNodeID.
377 template<typename T>
378 inline bool
379 DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
380                                   unsigned /*IDHash*/,
381                                   FoldingSetNodeID &TempID) {
382   FoldingSetTrait<T>::Profile(X, TempID);
383   return TempID == ID;
384 }
385 template<typename T>
386 inline unsigned
387 DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
388   FoldingSetTrait<T>::Profile(X, TempID);
389   return TempID.ComputeHash();
390 }
391 template<typename T, typename Ctx>
392 inline bool
393 DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
394                                                  const FoldingSetNodeID &ID,
395                                                  unsigned /*IDHash*/,
396                                                  FoldingSetNodeID &TempID,
397                                                  Ctx Context) {
398   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
399   return TempID == ID;
400 }
401 template<typename T, typename Ctx>
402 inline unsigned
403 DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
404                                                       FoldingSetNodeID &TempID,
405                                                       Ctx Context) {
406   ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
407   return TempID.ComputeHash();
408 }
409
410 //===----------------------------------------------------------------------===//
411 /// FoldingSet - This template class is used to instantiate a specialized
412 /// implementation of the folding set to the node class T.  T must be a
413 /// subclass of FoldingSetNode and implement a Profile function.
414 ///
415 /// Note that this set type is movable and move-assignable. However, its
416 /// moved-from state is not a valid state for anything other than
417 /// move-assigning and destroying. This is primarily to enable movable APIs
418 /// that incorporate these objects.
419 template <class T> class FoldingSet final : public FoldingSetImpl {
420 private:
421   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
422   /// way to convert nodes into a unique specifier.
423   void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
424     T *TN = static_cast<T *>(N);
425     FoldingSetTrait<T>::Profile(*TN, ID);
426   }
427
428   /// NodeEquals - Instantiations may optionally provide a way to compare a
429   /// node with a specified ID.
430   bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
431                   FoldingSetNodeID &TempID) const override {
432     T *TN = static_cast<T *>(N);
433     return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
434   }
435
436   /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
437   /// hash value directly from a node.
438   unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
439     T *TN = static_cast<T *>(N);
440     return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
441   }
442
443 public:
444   explicit FoldingSet(unsigned Log2InitSize = 6)
445       : FoldingSetImpl(Log2InitSize) {}
446
447   FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {}
448   FoldingSet &operator=(FoldingSet &&RHS) {
449     (void)FoldingSetImpl::operator=(std::move(RHS));
450     return *this;
451   }
452
453   typedef FoldingSetIterator<T> iterator;
454   iterator begin() { return iterator(Buckets); }
455   iterator end() { return iterator(Buckets+NumBuckets); }
456
457   typedef FoldingSetIterator<const T> const_iterator;
458   const_iterator begin() const { return const_iterator(Buckets); }
459   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
460
461   typedef FoldingSetBucketIterator<T> bucket_iterator;
462
463   bucket_iterator bucket_begin(unsigned hash) {
464     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
465   }
466
467   bucket_iterator bucket_end(unsigned hash) {
468     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
469   }
470
471   /// GetOrInsertNode - If there is an existing simple Node exactly
472   /// equal to the specified node, return it.  Otherwise, insert 'N' and
473   /// return it instead.
474   T *GetOrInsertNode(Node *N) {
475     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
476   }
477
478   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
479   /// return it.  If not, return the insertion token that will make insertion
480   /// faster.
481   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
482     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
483   }
484 };
485
486 //===----------------------------------------------------------------------===//
487 /// ContextualFoldingSet - This template class is a further refinement
488 /// of FoldingSet which provides a context argument when calling
489 /// Profile on its nodes.  Currently, that argument is fixed at
490 /// initialization time.
491 ///
492 /// T must be a subclass of FoldingSetNode and implement a Profile
493 /// function with signature
494 ///   void Profile(FoldingSetNodeID &, Ctx);
495 template <class T, class Ctx>
496 class ContextualFoldingSet final : public FoldingSetImpl {
497   // Unfortunately, this can't derive from FoldingSet<T> because the
498   // construction vtable for FoldingSet<T> requires
499   // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
500   // requires a single-argument T::Profile().
501
502 private:
503   Ctx Context;
504
505   /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
506   /// way to convert nodes into a unique specifier.
507   void GetNodeProfile(FoldingSetImpl::Node *N,
508                       FoldingSetNodeID &ID) const override {
509     T *TN = static_cast<T *>(N);
510     ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
511   }
512
513   bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID,
514                   unsigned IDHash, FoldingSetNodeID &TempID) const override {
515     T *TN = static_cast<T *>(N);
516     return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
517                                                      Context);
518   }
519
520   unsigned ComputeNodeHash(FoldingSetImpl::Node *N,
521                            FoldingSetNodeID &TempID) const override {
522     T *TN = static_cast<T *>(N);
523     return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
524   }
525
526 public:
527   explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
528   : FoldingSetImpl(Log2InitSize), Context(Context)
529   {}
530
531   Ctx getContext() const { return Context; }
532
533   typedef FoldingSetIterator<T> iterator;
534   iterator begin() { return iterator(Buckets); }
535   iterator end() { return iterator(Buckets+NumBuckets); }
536
537   typedef FoldingSetIterator<const T> const_iterator;
538   const_iterator begin() const { return const_iterator(Buckets); }
539   const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
540
541   typedef FoldingSetBucketIterator<T> bucket_iterator;
542
543   bucket_iterator bucket_begin(unsigned hash) {
544     return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
545   }
546
547   bucket_iterator bucket_end(unsigned hash) {
548     return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
549   }
550
551   /// GetOrInsertNode - If there is an existing simple Node exactly
552   /// equal to the specified node, return it.  Otherwise, insert 'N'
553   /// and return it instead.
554   T *GetOrInsertNode(Node *N) {
555     return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N));
556   }
557
558   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it
559   /// exists, return it.  If not, return the insertion token that will
560   /// make insertion faster.
561   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
562     return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos));
563   }
564 };
565
566 //===----------------------------------------------------------------------===//
567 /// FoldingSetVector - This template class combines a FoldingSet and a vector
568 /// to provide the interface of FoldingSet but with deterministic iteration
569 /// order based on the insertion order. T must be a subclass of FoldingSetNode
570 /// and implement a Profile function.
571 template <class T, class VectorT = SmallVector<T*, 8>>
572 class FoldingSetVector {
573   FoldingSet<T> Set;
574   VectorT Vector;
575
576 public:
577   explicit FoldingSetVector(unsigned Log2InitSize = 6)
578       : Set(Log2InitSize) {
579   }
580
581   typedef pointee_iterator<typename VectorT::iterator> iterator;
582   iterator begin() { return Vector.begin(); }
583   iterator end()   { return Vector.end(); }
584
585   typedef pointee_iterator<typename VectorT::const_iterator> const_iterator;
586   const_iterator begin() const { return Vector.begin(); }
587   const_iterator end()   const { return Vector.end(); }
588
589   /// clear - Remove all nodes from the folding set.
590   void clear() { Set.clear(); Vector.clear(); }
591
592   /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
593   /// return it.  If not, return the insertion token that will make insertion
594   /// faster.
595   T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
596     return Set.FindNodeOrInsertPos(ID, InsertPos);
597   }
598
599   /// GetOrInsertNode - If there is an existing simple Node exactly
600   /// equal to the specified node, return it.  Otherwise, insert 'N' and
601   /// return it instead.
602   T *GetOrInsertNode(T *N) {
603     T *Result = Set.GetOrInsertNode(N);
604     if (Result == N) Vector.push_back(N);
605     return Result;
606   }
607
608   /// InsertNode - Insert the specified node into the folding set, knowing that
609   /// it is not already in the folding set.  InsertPos must be obtained from
610   /// FindNodeOrInsertPos.
611   void InsertNode(T *N, void *InsertPos) {
612     Set.InsertNode(N, InsertPos);
613     Vector.push_back(N);
614   }
615
616   /// InsertNode - Insert the specified node into the folding set, knowing that
617   /// it is not already in the folding set.
618   void InsertNode(T *N) {
619     Set.InsertNode(N);
620     Vector.push_back(N);
621   }
622
623   /// size - Returns the number of nodes in the folding set.
624   unsigned size() const { return Set.size(); }
625
626   /// empty - Returns true if there are no nodes in the folding set.
627   bool empty() const { return Set.empty(); }
628 };
629
630 //===----------------------------------------------------------------------===//
631 /// FoldingSetIteratorImpl - This is the common iterator support shared by all
632 /// folding sets, which knows how to walk the folding set hash table.
633 class FoldingSetIteratorImpl {
634 protected:
635   FoldingSetNode *NodePtr;
636
637   FoldingSetIteratorImpl(void **Bucket);
638
639   void advance();
640
641 public:
642   bool operator==(const FoldingSetIteratorImpl &RHS) const {
643     return NodePtr == RHS.NodePtr;
644   }
645   bool operator!=(const FoldingSetIteratorImpl &RHS) const {
646     return NodePtr != RHS.NodePtr;
647   }
648 };
649
650 template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
651 public:
652   explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
653
654   T &operator*() const {
655     return *static_cast<T*>(NodePtr);
656   }
657
658   T *operator->() const {
659     return static_cast<T*>(NodePtr);
660   }
661
662   inline FoldingSetIterator &operator++() {          // Preincrement
663     advance();
664     return *this;
665   }
666   FoldingSetIterator operator++(int) {        // Postincrement
667     FoldingSetIterator tmp = *this; ++*this; return tmp;
668   }
669 };
670
671 //===----------------------------------------------------------------------===//
672 /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
673 /// shared by all folding sets, which knows how to walk a particular bucket
674 /// of a folding set hash table.
675
676 class FoldingSetBucketIteratorImpl {
677 protected:
678   void *Ptr;
679
680   explicit FoldingSetBucketIteratorImpl(void **Bucket);
681
682   FoldingSetBucketIteratorImpl(void **Bucket, bool)
683     : Ptr(Bucket) {}
684
685   void advance() {
686     void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
687     uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
688     Ptr = reinterpret_cast<void*>(x);
689   }
690
691 public:
692   bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
693     return Ptr == RHS.Ptr;
694   }
695   bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
696     return Ptr != RHS.Ptr;
697   }
698 };
699
700 template <class T>
701 class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
702 public:
703   explicit FoldingSetBucketIterator(void **Bucket) :
704     FoldingSetBucketIteratorImpl(Bucket) {}
705
706   FoldingSetBucketIterator(void **Bucket, bool) :
707     FoldingSetBucketIteratorImpl(Bucket, true) {}
708
709   T &operator*() const { return *static_cast<T*>(Ptr); }
710   T *operator->() const { return static_cast<T*>(Ptr); }
711
712   inline FoldingSetBucketIterator &operator++() { // Preincrement
713     advance();
714     return *this;
715   }
716   FoldingSetBucketIterator operator++(int) {      // Postincrement
717     FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
718   }
719 };
720
721 //===----------------------------------------------------------------------===//
722 /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
723 /// types in an enclosing object so that they can be inserted into FoldingSets.
724 template <typename T>
725 class FoldingSetNodeWrapper : public FoldingSetNode {
726   T data;
727
728 public:
729   template <typename... Ts>
730   explicit FoldingSetNodeWrapper(Ts &&... Args)
731       : data(std::forward<Ts>(Args)...) {}
732
733   void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
734
735   T &getValue() { return data; }
736   const T &getValue() const { return data; }
737
738   operator T&() { return data; }
739   operator const T&() const { return data; }
740 };
741
742 //===----------------------------------------------------------------------===//
743 /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
744 /// a FoldingSetNodeID value rather than requiring the node to recompute it
745 /// each time it is needed. This trades space for speed (which can be
746 /// significant if the ID is long), and it also permits nodes to drop
747 /// information that would otherwise only be required for recomputing an ID.
748 class FastFoldingSetNode : public FoldingSetNode {
749   FoldingSetNodeID FastID;
750
751 protected:
752   explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
753
754 public:
755   void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
756 };
757
758 //===----------------------------------------------------------------------===//
759 // Partial specializations of FoldingSetTrait.
760
761 template<typename T> struct FoldingSetTrait<T*> {
762   static inline void Profile(T *X, FoldingSetNodeID &ID) {
763     ID.AddPointer(X);
764   }
765 };
766 template <typename T1, typename T2>
767 struct FoldingSetTrait<std::pair<T1, T2>> {
768   static inline void Profile(const std::pair<T1, T2> &P,
769                              FoldingSetNodeID &ID) {
770     ID.Add(P.first);
771     ID.Add(P.second);
772   }
773 };
774
775 } // end namespace llvm
776
777 #endif // LLVM_ADT_FOLDINGSET_H