]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/Analysis/IntervalIterator.h
MFV r338797:
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / Analysis / IntervalIterator.h
1 //===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an iterator that enumerates the intervals in a control flow
11 // graph of some sort.  This iterator is parametric, allowing iterator over the
12 // following types of graphs:
13 //
14 //  1. A Function* object, composed of BasicBlock nodes.
15 //  2. An IntervalPartition& object, composed of Interval nodes.
16 //
17 // This iterator is defined to walk the control flow graph, returning intervals
18 // in depth first order.  These intervals are completely filled in except for
19 // the predecessor fields (the successor information is filled in however).
20 //
21 // By default, the intervals created by this iterator are deleted after they
22 // are no longer any use to the iterator.  This behavior can be changed by
23 // passing a false value into the intervals_begin() function. This causes the
24 // IOwnMem member to be set, and the intervals to not be deleted.
25 //
26 // It is only safe to use this if all of the intervals are deleted by the caller
27 // and all of the intervals are processed.  However, the user of the iterator is
28 // not allowed to modify or delete the intervals until after the iterator has
29 // been used completely.  The IntervalPartition class uses this functionality.
30 //
31 //===----------------------------------------------------------------------===//
32
33 #ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
34 #define LLVM_ANALYSIS_INTERVALITERATOR_H
35
36 #include "llvm/ADT/GraphTraits.h"
37 #include "llvm/Analysis/Interval.h"
38 #include "llvm/Analysis/IntervalPartition.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <iterator>
45 #include <set>
46 #include <utility>
47 #include <vector>
48
49 namespace llvm {
50
51 class BasicBlock;
52
53 // getNodeHeader - Given a source graph node and the source graph, return the
54 // BasicBlock that is the header node.  This is the opposite of
55 // getSourceGraphNode.
56 inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
57 inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
58
59 // getSourceGraphNode - Given a BasicBlock and the source graph, return the
60 // source graph node that corresponds to the BasicBlock.  This is the opposite
61 // of getNodeHeader.
62 inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
63   return BB;
64 }
65 inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
66   return IP->getBlockInterval(BB);
67 }
68
69 // addNodeToInterval - This method exists to assist the generic ProcessNode
70 // with the task of adding a node to the new interval, depending on the
71 // type of the source node.  In the case of a CFG source graph (BasicBlock
72 // case), the BasicBlock itself is added to the interval.
73 inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
74   Int->Nodes.push_back(BB);
75 }
76
77 // addNodeToInterval - This method exists to assist the generic ProcessNode
78 // with the task of adding a node to the new interval, depending on the
79 // type of the source node.  In the case of a CFG source graph (BasicBlock
80 // case), the BasicBlock itself is added to the interval.  In the case of
81 // an IntervalPartition source graph (Interval case), all of the member
82 // BasicBlocks are added to the interval.
83 inline void addNodeToInterval(Interval *Int, Interval *I) {
84   // Add all of the nodes in I as new nodes in Int.
85   Int->Nodes.insert(Int->Nodes.end(), I->Nodes.begin(), I->Nodes.end());
86 }
87
88 template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
89          class IGT = GraphTraits<Inverse<NodeTy *>>>
90 class IntervalIterator {
91   std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
92   std::set<BasicBlock *> Visited;
93   OrigContainer_t *OrigContainer;
94   bool IOwnMem;     // If True, delete intervals when done with them
95                     // See file header for conditions of use
96
97 public:
98   using iterator_category = std::forward_iterator_tag;
99
100   IntervalIterator() = default; // End iterator, empty stack
101
102   IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
103     OrigContainer = M;
104     if (!ProcessInterval(&M->front())) {
105       llvm_unreachable("ProcessInterval should never fail for first interval!");
106     }
107   }
108
109   IntervalIterator(IntervalIterator &&x)
110       : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
111         OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
112     x.IOwnMem = false;
113   }
114
115   IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
116     OrigContainer = &IP;
117     if (!ProcessInterval(IP.getRootInterval())) {
118       llvm_unreachable("ProcessInterval should never fail for first interval!");
119     }
120   }
121
122   ~IntervalIterator() {
123     if (IOwnMem)
124       while (!IntStack.empty()) {
125         delete operator*();
126         IntStack.pop_back();
127       }
128   }
129
130   bool operator==(const IntervalIterator &x) const {
131     return IntStack == x.IntStack;
132   }
133   bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
134
135   const Interval *operator*() const { return IntStack.back().first; }
136   Interval *operator*() { return IntStack.back().first; }
137   const Interval *operator->() const { return operator*(); }
138   Interval *operator->() { return operator*(); }
139
140   IntervalIterator &operator++() { // Preincrement
141     assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
142     do {
143       // All of the intervals on the stack have been visited.  Try visiting
144       // their successors now.
145       Interval::succ_iterator &SuccIt = IntStack.back().second,
146                                 EndIt = succ_end(IntStack.back().first);
147       while (SuccIt != EndIt) {                 // Loop over all interval succs
148         bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
149         ++SuccIt;                               // Increment iterator
150         if (Done) return *this;                 // Found a new interval! Use it!
151       }
152
153       // Free interval memory... if necessary
154       if (IOwnMem) delete IntStack.back().first;
155
156       // We ran out of successors for this interval... pop off the stack
157       IntStack.pop_back();
158     } while (!IntStack.empty());
159
160     return *this;
161   }
162
163   IntervalIterator operator++(int) { // Postincrement
164     IntervalIterator tmp = *this;
165     ++*this;
166     return tmp;
167   }
168
169 private:
170   // ProcessInterval - This method is used during the construction of the
171   // interval graph.  It walks through the source graph, recursively creating
172   // an interval per invocation until the entire graph is covered.  This uses
173   // the ProcessNode method to add all of the nodes to the interval.
174   //
175   // This method is templated because it may operate on two different source
176   // graphs: a basic block graph, or a preexisting interval graph.
177   bool ProcessInterval(NodeTy *Node) {
178     BasicBlock *Header = getNodeHeader(Node);
179     if (!Visited.insert(Header).second)
180       return false;
181
182     Interval *Int = new Interval(Header);
183
184     // Check all of our successors to see if they are in the interval...
185     for (typename GT::ChildIteratorType I = GT::child_begin(Node),
186            E = GT::child_end(Node); I != E; ++I)
187       ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
188
189     IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
190     return true;
191   }
192
193   // ProcessNode - This method is called by ProcessInterval to add nodes to the
194   // interval being constructed, and it is also called recursively as it walks
195   // the source graph.  A node is added to the current interval only if all of
196   // its predecessors are already in the graph.  This also takes care of keeping
197   // the successor set of an interval up to date.
198   //
199   // This method is templated because it may operate on two different source
200   // graphs: a basic block graph, or a preexisting interval graph.
201   void ProcessNode(Interval *Int, NodeTy *Node) {
202     assert(Int && "Null interval == bad!");
203     assert(Node && "Null Node == bad!");
204
205     BasicBlock *NodeHeader = getNodeHeader(Node);
206
207     if (Visited.count(NodeHeader)) {     // Node already been visited?
208       if (Int->contains(NodeHeader)) {   // Already in this interval...
209         return;
210       } else {                           // In other interval, add as successor
211         if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
212           Int->Successors.push_back(NodeHeader);
213       }
214     } else {                             // Otherwise, not in interval yet
215       for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
216              E = IGT::child_end(Node); I != E; ++I) {
217         if (!Int->contains(*I)) {        // If pred not in interval, we can't be
218           if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
219             Int->Successors.push_back(NodeHeader);
220           return;                        // See you later
221         }
222       }
223
224       // If we get here, then all of the predecessors of BB are in the interval
225       // already.  In this case, we must add BB to the interval!
226       addNodeToInterval(Int, Node);
227       Visited.insert(NodeHeader);     // The node has now been visited!
228
229       if (Int->isSuccessor(NodeHeader)) {
230         // If we were in the successor list from before... remove from succ list
231         Int->Successors.erase(std::remove(Int->Successors.begin(),
232                                           Int->Successors.end(), NodeHeader),
233                               Int->Successors.end());
234       }
235
236       // Now that we have discovered that Node is in the interval, perhaps some
237       // of its successors are as well?
238       for (typename GT::ChildIteratorType It = GT::child_begin(Node),
239              End = GT::child_end(Node); It != End; ++It)
240         ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
241     }
242   }
243 };
244
245 using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
246 using interval_part_interval_iterator =
247     IntervalIterator<Interval, IntervalPartition>;
248
249 inline function_interval_iterator intervals_begin(Function *F,
250                                                   bool DeleteInts = true) {
251   return function_interval_iterator(F, DeleteInts);
252 }
253 inline function_interval_iterator intervals_end(Function *) {
254   return function_interval_iterator();
255 }
256
257 inline interval_part_interval_iterator
258    intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
259   return interval_part_interval_iterator(IP, DeleteIntervals);
260 }
261
262 inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
263   return interval_part_interval_iterator();
264 }
265
266 } // end namespace llvm
267
268 #endif // LLVM_ANALYSIS_INTERVALITERATOR_H