]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/Analysis/LoopInfo.h
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / Analysis / LoopInfo.h
1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG.  A natural loop
12 // has exactly one entry-point, which is called the header. Note that natural
13 // loops may actually be several loops that share the same header node.
14 //
15 // This analysis calculates the nesting structure of loops in a function.  For
16 // each natural loop identified, this analysis identifies natural loops
17 // contained entirely within the loop and the basic blocks the make up the loop.
18 //
19 // It can calculate on the fly various bits of information, for example:
20 //
21 //  * whether there is a preheader for the loop
22 //  * the number of back edges to the header
23 //  * whether or not a particular block branches out of the loop
24 //  * the successor blocks of the loop
25 //  * the loop depth
26 //  * etc...
27 //
28 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
29 // in the CFG.  There can be strongly connected components in the CFG which
30 // this analysis will not recognize and that will not be represented by a Loop
31 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
32 // non-loop SCC might contain a sub-SCC which is a Loop.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #ifndef LLVM_ANALYSIS_LOOPINFO_H
37 #define LLVM_ANALYSIS_LOOPINFO_H
38
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/DenseSet.h"
41 #include "llvm/ADT/GraphTraits.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/IR/CFG.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Allocator.h"
50 #include <algorithm>
51 #include <utility>
52
53 namespace llvm {
54
55 class DominatorTree;
56 class LoopInfo;
57 class Loop;
58 class MDNode;
59 class PHINode;
60 class raw_ostream;
61 template <class N, bool IsPostDom> class DominatorTreeBase;
62 template <class N, class M> class LoopInfoBase;
63 template <class N, class M> class LoopBase;
64
65 //===----------------------------------------------------------------------===//
66 /// Instances of this class are used to represent loops that are detected in the
67 /// flow graph.
68 ///
69 template <class BlockT, class LoopT> class LoopBase {
70   LoopT *ParentLoop;
71   // Loops contained entirely within this one.
72   std::vector<LoopT *> SubLoops;
73
74   // The list of blocks in this loop. First entry is the header node.
75   std::vector<BlockT *> Blocks;
76
77   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
78
79 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
80   /// Indicator that this loop is no longer a valid loop.
81   bool IsInvalid = false;
82 #endif
83
84   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
85   const LoopBase<BlockT, LoopT> &
86   operator=(const LoopBase<BlockT, LoopT> &) = delete;
87
88 public:
89   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
90   /// for consistency with loop depth values used for basic blocks, where depth
91   /// 0 is used for blocks not inside any loops.
92   unsigned getLoopDepth() const {
93     assert(!isInvalid() && "Loop not in a valid state!");
94     unsigned D = 1;
95     for (const LoopT *CurLoop = ParentLoop; CurLoop;
96          CurLoop = CurLoop->ParentLoop)
97       ++D;
98     return D;
99   }
100   BlockT *getHeader() const { return getBlocks().front(); }
101   LoopT *getParentLoop() const { return ParentLoop; }
102
103   /// This is a raw interface for bypassing addChildLoop.
104   void setParentLoop(LoopT *L) {
105     assert(!isInvalid() && "Loop not in a valid state!");
106     ParentLoop = L;
107   }
108
109   /// Return true if the specified loop is contained within in this loop.
110   bool contains(const LoopT *L) const {
111     assert(!isInvalid() && "Loop not in a valid state!");
112     if (L == this)
113       return true;
114     if (!L)
115       return false;
116     return contains(L->getParentLoop());
117   }
118
119   /// Return true if the specified basic block is in this loop.
120   bool contains(const BlockT *BB) const {
121     assert(!isInvalid() && "Loop not in a valid state!");
122     return DenseBlockSet.count(BB);
123   }
124
125   /// Return true if the specified instruction is in this loop.
126   template <class InstT> bool contains(const InstT *Inst) const {
127     return contains(Inst->getParent());
128   }
129
130   /// Return the loops contained entirely within this loop.
131   const std::vector<LoopT *> &getSubLoops() const {
132     assert(!isInvalid() && "Loop not in a valid state!");
133     return SubLoops;
134   }
135   std::vector<LoopT *> &getSubLoopsVector() {
136     assert(!isInvalid() && "Loop not in a valid state!");
137     return SubLoops;
138   }
139   typedef typename std::vector<LoopT *>::const_iterator iterator;
140   typedef
141       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
142   iterator begin() const { return getSubLoops().begin(); }
143   iterator end() const { return getSubLoops().end(); }
144   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
145   reverse_iterator rend() const { return getSubLoops().rend(); }
146   bool empty() const { return getSubLoops().empty(); }
147
148   /// Get a list of the basic blocks which make up this loop.
149   ArrayRef<BlockT *> getBlocks() const {
150     assert(!isInvalid() && "Loop not in a valid state!");
151     return Blocks;
152   }
153   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
154   block_iterator block_begin() const { return getBlocks().begin(); }
155   block_iterator block_end() const { return getBlocks().end(); }
156   inline iterator_range<block_iterator> blocks() const {
157     assert(!isInvalid() && "Loop not in a valid state!");
158     return make_range(block_begin(), block_end());
159   }
160
161   /// Get the number of blocks in this loop in constant time.
162   /// Invalidate the loop, indicating that it is no longer a loop.
163   unsigned getNumBlocks() const {
164     assert(!isInvalid() && "Loop not in a valid state!");
165     return Blocks.size();
166   }
167
168   /// Return a direct, mutable handle to the blocks vector so that we can
169   /// mutate it efficiently with techniques like `std::remove`.
170   std::vector<BlockT *> &getBlocksVector() {
171     assert(!isInvalid() && "Loop not in a valid state!");
172     return Blocks;
173   }
174   /// Return a direct, mutable handle to the blocks set so that we can
175   /// mutate it efficiently.
176   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
177     assert(!isInvalid() && "Loop not in a valid state!");
178     return DenseBlockSet;
179   }
180
181   /// Return a direct, immutable handle to the blocks set.
182   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
183     assert(!isInvalid() && "Loop not in a valid state!");
184     return DenseBlockSet;
185   }
186
187   /// Return true if this loop is no longer valid.  The only valid use of this
188   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
189   /// true by the destructor.  In other words, if this accessor returns true,
190   /// the caller has already triggered UB by calling this accessor; and so it
191   /// can only be called in a context where a return value of true indicates a
192   /// programmer error.
193   bool isInvalid() const {
194 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
195     return IsInvalid;
196 #else
197     return false;
198 #endif
199   }
200
201   /// True if terminator in the block can branch to another block that is
202   /// outside of the current loop.
203   bool isLoopExiting(const BlockT *BB) const {
204     assert(!isInvalid() && "Loop not in a valid state!");
205     for (const auto &Succ : children<const BlockT *>(BB)) {
206       if (!contains(Succ))
207         return true;
208     }
209     return false;
210   }
211
212   /// Returns true if \p BB is a loop-latch.
213   /// A latch block is a block that contains a branch back to the header.
214   /// This function is useful when there are multiple latches in a loop
215   /// because \fn getLoopLatch will return nullptr in that case.
216   bool isLoopLatch(const BlockT *BB) const {
217     assert(!isInvalid() && "Loop not in a valid state!");
218     assert(contains(BB) && "block does not belong to the loop");
219
220     BlockT *Header = getHeader();
221     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
222     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
223     return std::find(PredBegin, PredEnd, BB) != PredEnd;
224   }
225
226   /// Calculate the number of back edges to the loop header.
227   unsigned getNumBackEdges() const {
228     assert(!isInvalid() && "Loop not in a valid state!");
229     unsigned NumBackEdges = 0;
230     BlockT *H = getHeader();
231
232     for (const auto Pred : children<Inverse<BlockT *>>(H))
233       if (contains(Pred))
234         ++NumBackEdges;
235
236     return NumBackEdges;
237   }
238
239   //===--------------------------------------------------------------------===//
240   // APIs for simple analysis of the loop.
241   //
242   // Note that all of these methods can fail on general loops (ie, there may not
243   // be a preheader, etc).  For best success, the loop simplification and
244   // induction variable canonicalization pass should be used to normalize loops
245   // for easy analysis.  These methods assume canonical loops.
246
247   /// Return all blocks inside the loop that have successors outside of the
248   /// loop. These are the blocks _inside of the current loop_ which branch out.
249   /// The returned list is always unique.
250   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
251
252   /// If getExitingBlocks would return exactly one block, return that block.
253   /// Otherwise return null.
254   BlockT *getExitingBlock() const;
255
256   /// Return all of the successor blocks of this loop. These are the blocks
257   /// _outside of the current loop_ which are branched to.
258   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
259
260   /// If getExitBlocks would return exactly one block, return that block.
261   /// Otherwise return null.
262   BlockT *getExitBlock() const;
263
264   /// Return true if no exit block for the loop has a predecessor that is
265   /// outside the loop.
266   bool hasDedicatedExits() const;
267
268   /// Return all unique successor blocks of this loop.
269   /// These are the blocks _outside of the current loop_ which are branched to.
270   /// This assumes that loop exits are in canonical form, i.e. all exits are
271   /// dedicated exits.
272   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
273
274   /// If getUniqueExitBlocks would return exactly one block, return that block.
275   /// Otherwise return null.
276   BlockT *getUniqueExitBlock() const;
277
278   /// Edge type.
279   typedef std::pair<const BlockT *, const BlockT *> Edge;
280
281   /// Return all pairs of (_inside_block_,_outside_block_).
282   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
283
284   /// If there is a preheader for this loop, return it. A loop has a preheader
285   /// if there is only one edge to the header of the loop from outside of the
286   /// loop. If this is the case, the block branching to the header of the loop
287   /// is the preheader node.
288   ///
289   /// This method returns null if there is no preheader for the loop.
290   BlockT *getLoopPreheader() const;
291
292   /// If the given loop's header has exactly one unique predecessor outside the
293   /// loop, return it. Otherwise return null.
294   ///  This is less strict that the loop "preheader" concept, which requires
295   /// the predecessor to have exactly one successor.
296   BlockT *getLoopPredecessor() const;
297
298   /// If there is a single latch block for this loop, return it.
299   /// A latch block is a block that contains a branch back to the header.
300   BlockT *getLoopLatch() const;
301
302   /// Return all loop latch blocks of this loop. A latch block is a block that
303   /// contains a branch back to the header.
304   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
305     assert(!isInvalid() && "Loop not in a valid state!");
306     BlockT *H = getHeader();
307     for (const auto Pred : children<Inverse<BlockT *>>(H))
308       if (contains(Pred))
309         LoopLatches.push_back(Pred);
310   }
311
312   //===--------------------------------------------------------------------===//
313   // APIs for updating loop information after changing the CFG
314   //
315
316   /// This method is used by other analyses to update loop information.
317   /// NewBB is set to be a new member of the current loop.
318   /// Because of this, it is added as a member of all parent loops, and is added
319   /// to the specified LoopInfo object as being in the current basic block.  It
320   /// is not valid to replace the loop header with this method.
321   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
322
323   /// This is used when splitting loops up. It replaces the OldChild entry in
324   /// our children list with NewChild, and updates the parent pointer of
325   /// OldChild to be null and the NewChild to be this loop.
326   /// This updates the loop depth of the new child.
327   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
328
329   /// Add the specified loop to be a child of this loop.
330   /// This updates the loop depth of the new child.
331   void addChildLoop(LoopT *NewChild) {
332     assert(!isInvalid() && "Loop not in a valid state!");
333     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
334     NewChild->ParentLoop = static_cast<LoopT *>(this);
335     SubLoops.push_back(NewChild);
336   }
337
338   /// This removes the specified child from being a subloop of this loop. The
339   /// loop is not deleted, as it will presumably be inserted into another loop.
340   LoopT *removeChildLoop(iterator I) {
341     assert(!isInvalid() && "Loop not in a valid state!");
342     assert(I != SubLoops.end() && "Cannot remove end iterator!");
343     LoopT *Child = *I;
344     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
345     SubLoops.erase(SubLoops.begin() + (I - begin()));
346     Child->ParentLoop = nullptr;
347     return Child;
348   }
349
350   /// This removes the specified child from being a subloop of this loop. The
351   /// loop is not deleted, as it will presumably be inserted into another loop.
352   LoopT *removeChildLoop(LoopT *Child) {
353     return removeChildLoop(llvm::find(*this, Child));
354   }
355
356   /// This adds a basic block directly to the basic block list.
357   /// This should only be used by transformations that create new loops.  Other
358   /// transformations should use addBasicBlockToLoop.
359   void addBlockEntry(BlockT *BB) {
360     assert(!isInvalid() && "Loop not in a valid state!");
361     Blocks.push_back(BB);
362     DenseBlockSet.insert(BB);
363   }
364
365   /// interface to reverse Blocks[from, end of loop] in this loop
366   void reverseBlock(unsigned from) {
367     assert(!isInvalid() && "Loop not in a valid state!");
368     std::reverse(Blocks.begin() + from, Blocks.end());
369   }
370
371   /// interface to do reserve() for Blocks
372   void reserveBlocks(unsigned size) {
373     assert(!isInvalid() && "Loop not in a valid state!");
374     Blocks.reserve(size);
375   }
376
377   /// This method is used to move BB (which must be part of this loop) to be the
378   /// loop header of the loop (the block that dominates all others).
379   void moveToHeader(BlockT *BB) {
380     assert(!isInvalid() && "Loop not in a valid state!");
381     if (Blocks[0] == BB)
382       return;
383     for (unsigned i = 0;; ++i) {
384       assert(i != Blocks.size() && "Loop does not contain BB!");
385       if (Blocks[i] == BB) {
386         Blocks[i] = Blocks[0];
387         Blocks[0] = BB;
388         return;
389       }
390     }
391   }
392
393   /// This removes the specified basic block from the current loop, updating the
394   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
395   /// class.
396   void removeBlockFromLoop(BlockT *BB) {
397     assert(!isInvalid() && "Loop not in a valid state!");
398     auto I = find(Blocks, BB);
399     assert(I != Blocks.end() && "N is not in this list!");
400     Blocks.erase(I);
401
402     DenseBlockSet.erase(BB);
403   }
404
405   /// Verify loop structure
406   void verifyLoop() const;
407
408   /// Verify loop structure of this loop and all nested loops.
409   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
410
411   /// Print loop with all the BBs inside it.
412   void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
413
414 protected:
415   friend class LoopInfoBase<BlockT, LoopT>;
416
417   /// This creates an empty loop.
418   LoopBase() : ParentLoop(nullptr) {}
419
420   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
421     Blocks.push_back(BB);
422     DenseBlockSet.insert(BB);
423   }
424
425   // Since loop passes like SCEV are allowed to key analysis results off of
426   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
427   // This means loop passes should not be `delete` ing `Loop` objects directly
428   // (and risk a later `Loop` allocation re-using the address of a previous one)
429   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
430   // pointer till the end of the lifetime of the `LoopInfo` object.
431   //
432   // To make it easier to follow this rule, we mark the destructor as
433   // non-public.
434   ~LoopBase() {
435     for (auto *SubLoop : SubLoops)
436       SubLoop->~LoopT();
437
438 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
439     IsInvalid = true;
440 #endif
441     SubLoops.clear();
442     Blocks.clear();
443     DenseBlockSet.clear();
444     ParentLoop = nullptr;
445   }
446 };
447
448 template <class BlockT, class LoopT>
449 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
450   Loop.print(OS);
451   return OS;
452 }
453
454 // Implementation in LoopInfoImpl.h
455 extern template class LoopBase<BasicBlock, Loop>;
456
457 /// Represents a single loop in the control flow graph.  Note that not all SCCs
458 /// in the CFG are necessarily loops.
459 class Loop : public LoopBase<BasicBlock, Loop> {
460 public:
461   /// A range representing the start and end location of a loop.
462   class LocRange {
463     DebugLoc Start;
464     DebugLoc End;
465
466   public:
467     LocRange() {}
468     LocRange(DebugLoc Start) : Start(std::move(Start)), End(std::move(Start)) {}
469     LocRange(DebugLoc Start, DebugLoc End)
470         : Start(std::move(Start)), End(std::move(End)) {}
471
472     const DebugLoc &getStart() const { return Start; }
473     const DebugLoc &getEnd() const { return End; }
474
475     /// Check for null.
476     ///
477     explicit operator bool() const { return Start && End; }
478   };
479
480   /// Return true if the specified value is loop invariant.
481   bool isLoopInvariant(const Value *V) const;
482
483   /// Return true if all the operands of the specified instruction are loop
484   /// invariant.
485   bool hasLoopInvariantOperands(const Instruction *I) const;
486
487   /// If the given value is an instruction inside of the loop and it can be
488   /// hoisted, do so to make it trivially loop-invariant.
489   /// Return true if the value after any hoisting is loop invariant. This
490   /// function can be used as a slightly more aggressive replacement for
491   /// isLoopInvariant.
492   ///
493   /// If InsertPt is specified, it is the point to hoist instructions to.
494   /// If null, the terminator of the loop preheader is used.
495   bool makeLoopInvariant(Value *V, bool &Changed,
496                          Instruction *InsertPt = nullptr) const;
497
498   /// If the given instruction is inside of the loop and it can be hoisted, do
499   /// so to make it trivially loop-invariant.
500   /// Return true if the instruction after any hoisting is loop invariant. This
501   /// function can be used as a slightly more aggressive replacement for
502   /// isLoopInvariant.
503   ///
504   /// If InsertPt is specified, it is the point to hoist instructions to.
505   /// If null, the terminator of the loop preheader is used.
506   ///
507   bool makeLoopInvariant(Instruction *I, bool &Changed,
508                          Instruction *InsertPt = nullptr) const;
509
510   /// Check to see if the loop has a canonical induction variable: an integer
511   /// recurrence that starts at 0 and increments by one each time through the
512   /// loop. If so, return the phi node that corresponds to it.
513   ///
514   /// The IndVarSimplify pass transforms loops to have a canonical induction
515   /// variable.
516   ///
517   PHINode *getCanonicalInductionVariable() const;
518
519   /// Return true if the Loop is in LCSSA form.
520   bool isLCSSAForm(DominatorTree &DT) const;
521
522   /// Return true if this Loop and all inner subloops are in LCSSA form.
523   bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const;
524
525   /// Return true if the Loop is in the form that the LoopSimplify form
526   /// transforms loops to, which is sometimes called normal form.
527   bool isLoopSimplifyForm() const;
528
529   /// Return true if the loop body is safe to clone in practice.
530   bool isSafeToClone() const;
531
532   /// Returns true if the loop is annotated parallel.
533   ///
534   /// A parallel loop can be assumed to not contain any dependencies between
535   /// iterations by the compiler. That is, any loop-carried dependency checking
536   /// can be skipped completely when parallelizing the loop on the target
537   /// machine. Thus, if the parallel loop information originates from the
538   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
539   /// programmer's responsibility to ensure there are no loop-carried
540   /// dependencies. The final execution order of the instructions across
541   /// iterations is not guaranteed, thus, the end result might or might not
542   /// implement actual concurrent execution of instructions across multiple
543   /// iterations.
544   bool isAnnotatedParallel() const;
545
546   /// Return the llvm.loop loop id metadata node for this loop if it is present.
547   ///
548   /// If this loop contains the same llvm.loop metadata on each branch to the
549   /// header then the node is returned. If any latch instruction does not
550   /// contain llvm.loop or if multiple latches contain different nodes then
551   /// 0 is returned.
552   MDNode *getLoopID() const;
553   /// Set the llvm.loop loop id metadata for this loop.
554   ///
555   /// The LoopID metadata node will be added to each terminator instruction in
556   /// the loop that branches to the loop header.
557   ///
558   /// The LoopID metadata node should have one or more operands and the first
559   /// operand should be the node itself.
560   void setLoopID(MDNode *LoopID) const;
561
562   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
563   ///
564   /// Remove existing unroll metadata and add unroll disable metadata to
565   /// indicate the loop has already been unrolled.  This prevents a loop
566   /// from being unrolled more than is directed by a pragma if the loop
567   /// unrolling pass is run more than once (which it generally is).
568   void setLoopAlreadyUnrolled();
569
570   void dump() const;
571   void dumpVerbose() const;
572
573   /// Return the debug location of the start of this loop.
574   /// This looks for a BB terminating instruction with a known debug
575   /// location by looking at the preheader and header blocks. If it
576   /// cannot find a terminating instruction with location information,
577   /// it returns an unknown location.
578   DebugLoc getStartLoc() const;
579
580   /// Return the source code span of the loop.
581   LocRange getLocRange() const;
582
583   StringRef getName() const {
584     if (BasicBlock *Header = getHeader())
585       if (Header->hasName())
586         return Header->getName();
587     return "<unnamed loop>";
588   }
589
590 private:
591   Loop() = default;
592
593   friend class LoopInfoBase<BasicBlock, Loop>;
594   friend class LoopBase<BasicBlock, Loop>;
595   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
596   ~Loop() = default;
597 };
598
599 //===----------------------------------------------------------------------===//
600 /// This class builds and contains all of the top-level loop
601 /// structures in the specified function.
602 ///
603
604 template <class BlockT, class LoopT> class LoopInfoBase {
605   // BBMap - Mapping of basic blocks to the inner most loop they occur in
606   DenseMap<const BlockT *, LoopT *> BBMap;
607   std::vector<LoopT *> TopLevelLoops;
608   BumpPtrAllocator LoopAllocator;
609
610   friend class LoopBase<BlockT, LoopT>;
611   friend class LoopInfo;
612
613   void operator=(const LoopInfoBase &) = delete;
614   LoopInfoBase(const LoopInfoBase &) = delete;
615
616 public:
617   LoopInfoBase() {}
618   ~LoopInfoBase() { releaseMemory(); }
619
620   LoopInfoBase(LoopInfoBase &&Arg)
621       : BBMap(std::move(Arg.BBMap)),
622         TopLevelLoops(std::move(Arg.TopLevelLoops)),
623         LoopAllocator(std::move(Arg.LoopAllocator)) {
624     // We have to clear the arguments top level loops as we've taken ownership.
625     Arg.TopLevelLoops.clear();
626   }
627   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
628     BBMap = std::move(RHS.BBMap);
629
630     for (auto *L : TopLevelLoops)
631       L->~LoopT();
632
633     TopLevelLoops = std::move(RHS.TopLevelLoops);
634     LoopAllocator = std::move(RHS.LoopAllocator);
635     RHS.TopLevelLoops.clear();
636     return *this;
637   }
638
639   void releaseMemory() {
640     BBMap.clear();
641
642     for (auto *L : TopLevelLoops)
643       L->~LoopT();
644     TopLevelLoops.clear();
645     LoopAllocator.Reset();
646   }
647
648   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
649     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
650     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
651   }
652
653   /// iterator/begin/end - The interface to the top-level loops in the current
654   /// function.
655   ///
656   typedef typename std::vector<LoopT *>::const_iterator iterator;
657   typedef
658       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
659   iterator begin() const { return TopLevelLoops.begin(); }
660   iterator end() const { return TopLevelLoops.end(); }
661   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
662   reverse_iterator rend() const { return TopLevelLoops.rend(); }
663   bool empty() const { return TopLevelLoops.empty(); }
664
665   /// Return all of the loops in the function in preorder across the loop
666   /// nests, with siblings in forward program order.
667   ///
668   /// Note that because loops form a forest of trees, preorder is equivalent to
669   /// reverse postorder.
670   SmallVector<LoopT *, 4> getLoopsInPreorder();
671
672   /// Return all of the loops in the function in preorder across the loop
673   /// nests, with siblings in *reverse* program order.
674   ///
675   /// Note that because loops form a forest of trees, preorder is equivalent to
676   /// reverse postorder.
677   ///
678   /// Also note that this is *not* a reverse preorder. Only the siblings are in
679   /// reverse program order.
680   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
681
682   /// Return the inner most loop that BB lives in. If a basic block is in no
683   /// loop (for example the entry node), null is returned.
684   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
685
686   /// Same as getLoopFor.
687   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
688
689   /// Return the loop nesting level of the specified block. A depth of 0 means
690   /// the block is not inside any loop.
691   unsigned getLoopDepth(const BlockT *BB) const {
692     const LoopT *L = getLoopFor(BB);
693     return L ? L->getLoopDepth() : 0;
694   }
695
696   // True if the block is a loop header node
697   bool isLoopHeader(const BlockT *BB) const {
698     const LoopT *L = getLoopFor(BB);
699     return L && L->getHeader() == BB;
700   }
701
702   /// This removes the specified top-level loop from this loop info object.
703   /// The loop is not deleted, as it will presumably be inserted into
704   /// another loop.
705   LoopT *removeLoop(iterator I) {
706     assert(I != end() && "Cannot remove end iterator!");
707     LoopT *L = *I;
708     assert(!L->getParentLoop() && "Not a top-level loop!");
709     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
710     return L;
711   }
712
713   /// Change the top-level loop that contains BB to the specified loop.
714   /// This should be used by transformations that restructure the loop hierarchy
715   /// tree.
716   void changeLoopFor(BlockT *BB, LoopT *L) {
717     if (!L) {
718       BBMap.erase(BB);
719       return;
720     }
721     BBMap[BB] = L;
722   }
723
724   /// Replace the specified loop in the top-level loops list with the indicated
725   /// loop.
726   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
727     auto I = find(TopLevelLoops, OldLoop);
728     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
729     *I = NewLoop;
730     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
731            "Loops already embedded into a subloop!");
732   }
733
734   /// This adds the specified loop to the collection of top-level loops.
735   void addTopLevelLoop(LoopT *New) {
736     assert(!New->getParentLoop() && "Loop already in subloop!");
737     TopLevelLoops.push_back(New);
738   }
739
740   /// This method completely removes BB from all data structures,
741   /// including all of the Loop objects it is nested in and our mapping from
742   /// BasicBlocks to loops.
743   void removeBlock(BlockT *BB) {
744     auto I = BBMap.find(BB);
745     if (I != BBMap.end()) {
746       for (LoopT *L = I->second; L; L = L->getParentLoop())
747         L->removeBlockFromLoop(BB);
748
749       BBMap.erase(I);
750     }
751   }
752
753   // Internals
754
755   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
756                                       const LoopT *ParentLoop) {
757     if (!SubLoop)
758       return true;
759     if (SubLoop == ParentLoop)
760       return false;
761     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
762   }
763
764   /// Create the loop forest using a stable algorithm.
765   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
766
767   // Debugging
768   void print(raw_ostream &OS) const;
769
770   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
771
772   /// Destroy a loop that has been removed from the `LoopInfo` nest.
773   ///
774   /// This runs the destructor of the loop object making it invalid to
775   /// reference afterward. The memory is retained so that the *pointer* to the
776   /// loop remains valid.
777   ///
778   /// The caller is responsible for removing this loop from the loop nest and
779   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
780   /// Callers that don't naturally handle this themselves should probably call
781   /// `erase' instead.
782   void destroy(LoopT *L) {
783     L->~LoopT();
784
785     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
786     // \c L, but the pointer remains valid for non-dereferencing uses.
787     LoopAllocator.Deallocate(L);
788   }
789 };
790
791 // Implementation in LoopInfoImpl.h
792 extern template class LoopInfoBase<BasicBlock, Loop>;
793
794 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
795   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
796
797   friend class LoopBase<BasicBlock, Loop>;
798
799   void operator=(const LoopInfo &) = delete;
800   LoopInfo(const LoopInfo &) = delete;
801
802 public:
803   LoopInfo() {}
804   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
805
806   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
807   LoopInfo &operator=(LoopInfo &&RHS) {
808     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
809     return *this;
810   }
811
812   /// Handle invalidation explicitly.
813   bool invalidate(Function &F, const PreservedAnalyses &PA,
814                   FunctionAnalysisManager::Invalidator &);
815
816   // Most of the public interface is provided via LoopInfoBase.
817
818   /// Update LoopInfo after removing the last backedge from a loop. This updates
819   /// the loop forest and parent loops for each block so that \c L is no longer
820   /// referenced, but does not actually delete \c L immediately. The pointer
821   /// will remain valid until this LoopInfo's memory is released.
822   void erase(Loop *L);
823
824   /// Returns true if replacing From with To everywhere is guaranteed to
825   /// preserve LCSSA form.
826   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
827     // Preserving LCSSA form is only problematic if the replacing value is an
828     // instruction.
829     Instruction *I = dyn_cast<Instruction>(To);
830     if (!I)
831       return true;
832     // If both instructions are defined in the same basic block then replacement
833     // cannot break LCSSA form.
834     if (I->getParent() == From->getParent())
835       return true;
836     // If the instruction is not defined in a loop then it can safely replace
837     // anything.
838     Loop *ToLoop = getLoopFor(I->getParent());
839     if (!ToLoop)
840       return true;
841     // If the replacing instruction is defined in the same loop as the original
842     // instruction, or in a loop that contains it as an inner loop, then using
843     // it as a replacement will not break LCSSA form.
844     return ToLoop->contains(getLoopFor(From->getParent()));
845   }
846
847   /// Checks if moving a specific instruction can break LCSSA in any loop.
848   ///
849   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
850   /// assuming that the function containing \p Inst and \p NewLoc is currently
851   /// in LCSSA form.
852   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
853     assert(Inst->getFunction() == NewLoc->getFunction() &&
854            "Can't reason about IPO!");
855
856     auto *OldBB = Inst->getParent();
857     auto *NewBB = NewLoc->getParent();
858
859     // Movement within the same loop does not break LCSSA (the equality check is
860     // to avoid doing a hashtable lookup in case of intra-block movement).
861     if (OldBB == NewBB)
862       return true;
863
864     auto *OldLoop = getLoopFor(OldBB);
865     auto *NewLoop = getLoopFor(NewBB);
866
867     if (OldLoop == NewLoop)
868       return true;
869
870     // Check if Outer contains Inner; with the null loop counting as the
871     // "outermost" loop.
872     auto Contains = [](const Loop *Outer, const Loop *Inner) {
873       return !Outer || Outer->contains(Inner);
874     };
875
876     // To check that the movement of Inst to before NewLoc does not break LCSSA,
877     // we need to check two sets of uses for possible LCSSA violations at
878     // NewLoc: the users of NewInst, and the operands of NewInst.
879
880     // If we know we're hoisting Inst out of an inner loop to an outer loop,
881     // then the uses *of* Inst don't need to be checked.
882
883     if (!Contains(NewLoop, OldLoop)) {
884       for (Use &U : Inst->uses()) {
885         auto *UI = cast<Instruction>(U.getUser());
886         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
887                                      : UI->getParent();
888         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
889           return false;
890       }
891     }
892
893     // If we know we're sinking Inst from an outer loop into an inner loop, then
894     // the *operands* of Inst don't need to be checked.
895
896     if (!Contains(OldLoop, NewLoop)) {
897       // See below on why we can't handle phi nodes here.
898       if (isa<PHINode>(Inst))
899         return false;
900
901       for (Use &U : Inst->operands()) {
902         auto *DefI = dyn_cast<Instruction>(U.get());
903         if (!DefI)
904           return false;
905
906         // This would need adjustment if we allow Inst to be a phi node -- the
907         // new use block won't simply be NewBB.
908
909         auto *DefBlock = DefI->getParent();
910         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
911           return false;
912       }
913     }
914
915     return true;
916   }
917 };
918
919 // Allow clients to walk the list of nested loops...
920 template <> struct GraphTraits<const Loop *> {
921   typedef const Loop *NodeRef;
922   typedef LoopInfo::iterator ChildIteratorType;
923
924   static NodeRef getEntryNode(const Loop *L) { return L; }
925   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
926   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
927 };
928
929 template <> struct GraphTraits<Loop *> {
930   typedef Loop *NodeRef;
931   typedef LoopInfo::iterator ChildIteratorType;
932
933   static NodeRef getEntryNode(Loop *L) { return L; }
934   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
935   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
936 };
937
938 /// Analysis pass that exposes the \c LoopInfo for a function.
939 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
940   friend AnalysisInfoMixin<LoopAnalysis>;
941   static AnalysisKey Key;
942
943 public:
944   typedef LoopInfo Result;
945
946   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
947 };
948
949 /// Printer pass for the \c LoopAnalysis results.
950 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
951   raw_ostream &OS;
952
953 public:
954   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
955   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
956 };
957
958 /// Verifier pass for the \c LoopAnalysis results.
959 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
960   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
961 };
962
963 /// The legacy pass manager's analysis pass to compute loop information.
964 class LoopInfoWrapperPass : public FunctionPass {
965   LoopInfo LI;
966
967 public:
968   static char ID; // Pass identification, replacement for typeid
969
970   LoopInfoWrapperPass() : FunctionPass(ID) {
971     initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
972   }
973
974   LoopInfo &getLoopInfo() { return LI; }
975   const LoopInfo &getLoopInfo() const { return LI; }
976
977   /// Calculate the natural loop information for a given function.
978   bool runOnFunction(Function &F) override;
979
980   void verifyAnalysis() const override;
981
982   void releaseMemory() override { LI.releaseMemory(); }
983
984   void print(raw_ostream &O, const Module *M = nullptr) const override;
985
986   void getAnalysisUsage(AnalysisUsage &AU) const override;
987 };
988
989 /// Function to print a loop's contents as LLVM's text IR assembly.
990 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
991
992 } // End llvm namespace
993
994 #endif