]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/Analysis/ScalarEvolutionExpressions.h
Merge ACPICA 20180105.
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / Analysis / ScalarEvolutionExpressions.h
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to represent and build scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/Analysis/ScalarEvolution.h"
20 #include "llvm/Support/ErrorHandling.h"
21
22 namespace llvm {
23   class ConstantInt;
24   class ConstantRange;
25   class DominatorTree;
26
27   enum SCEVTypes {
28     // These should be ordered in terms of increasing complexity to make the
29     // folders simpler.
30     scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
31     scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
32     scUnknown, scCouldNotCompute
33   };
34
35   /// This class represents a constant integer value.
36   class SCEVConstant : public SCEV {
37     friend class ScalarEvolution;
38
39     ConstantInt *V;
40     SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
41       SCEV(ID, scConstant), V(v) {}
42   public:
43     ConstantInt *getValue() const { return V; }
44     const APInt &getAPInt() const { return getValue()->getValue(); }
45
46     Type *getType() const { return V->getType(); }
47
48     /// Methods for support type inquiry through isa, cast, and dyn_cast:
49     static bool classof(const SCEV *S) {
50       return S->getSCEVType() == scConstant;
51     }
52   };
53
54   /// This is the base class for unary cast operator classes.
55   class SCEVCastExpr : public SCEV {
56   protected:
57     const SCEV *Op;
58     Type *Ty;
59
60     SCEVCastExpr(const FoldingSetNodeIDRef ID,
61                  unsigned SCEVTy, const SCEV *op, Type *ty);
62
63   public:
64     const SCEV *getOperand() const { return Op; }
65     Type *getType() const { return Ty; }
66
67     /// Methods for support type inquiry through isa, cast, and dyn_cast:
68     static bool classof(const SCEV *S) {
69       return S->getSCEVType() == scTruncate ||
70              S->getSCEVType() == scZeroExtend ||
71              S->getSCEVType() == scSignExtend;
72     }
73   };
74
75   /// This class represents a truncation of an integer value to a
76   /// smaller integer value.
77   class SCEVTruncateExpr : public SCEVCastExpr {
78     friend class ScalarEvolution;
79
80     SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
81                      const SCEV *op, Type *ty);
82
83   public:
84     /// Methods for support type inquiry through isa, cast, and dyn_cast:
85     static bool classof(const SCEV *S) {
86       return S->getSCEVType() == scTruncate;
87     }
88   };
89
90   /// This class represents a zero extension of a small integer value
91   /// to a larger integer value.
92   class SCEVZeroExtendExpr : public SCEVCastExpr {
93     friend class ScalarEvolution;
94
95     SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
96                        const SCEV *op, Type *ty);
97
98   public:
99     /// Methods for support type inquiry through isa, cast, and dyn_cast:
100     static bool classof(const SCEV *S) {
101       return S->getSCEVType() == scZeroExtend;
102     }
103   };
104
105   /// This class represents a sign extension of a small integer value
106   /// to a larger integer value.
107   class SCEVSignExtendExpr : public SCEVCastExpr {
108     friend class ScalarEvolution;
109
110     SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
111                        const SCEV *op, Type *ty);
112
113   public:
114     /// Methods for support type inquiry through isa, cast, and dyn_cast:
115     static bool classof(const SCEV *S) {
116       return S->getSCEVType() == scSignExtend;
117     }
118   };
119
120
121   /// This node is a base class providing common functionality for
122   /// n'ary operators.
123   class SCEVNAryExpr : public SCEV {
124   protected:
125     // Since SCEVs are immutable, ScalarEvolution allocates operand
126     // arrays with its SCEVAllocator, so this class just needs a simple
127     // pointer rather than a more elaborate vector-like data structure.
128     // This also avoids the need for a non-trivial destructor.
129     const SCEV *const *Operands;
130     size_t NumOperands;
131
132     SCEVNAryExpr(const FoldingSetNodeIDRef ID,
133                  enum SCEVTypes T, const SCEV *const *O, size_t N)
134       : SCEV(ID, T), Operands(O), NumOperands(N) {}
135
136   public:
137     size_t getNumOperands() const { return NumOperands; }
138     const SCEV *getOperand(unsigned i) const {
139       assert(i < NumOperands && "Operand index out of range!");
140       return Operands[i];
141     }
142
143     typedef const SCEV *const *op_iterator;
144     typedef iterator_range<op_iterator> op_range;
145     op_iterator op_begin() const { return Operands; }
146     op_iterator op_end() const { return Operands + NumOperands; }
147     op_range operands() const {
148       return make_range(op_begin(), op_end());
149     }
150
151     Type *getType() const { return getOperand(0)->getType(); }
152
153     NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
154       return (NoWrapFlags)(SubclassData & Mask);
155     }
156
157     bool hasNoUnsignedWrap() const {
158       return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
159     }
160
161     bool hasNoSignedWrap() const {
162       return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
163     }
164
165     bool hasNoSelfWrap() const {
166       return getNoWrapFlags(FlagNW) != FlagAnyWrap;
167     }
168
169     /// Methods for support type inquiry through isa, cast, and dyn_cast:
170     static bool classof(const SCEV *S) {
171       return S->getSCEVType() == scAddExpr ||
172              S->getSCEVType() == scMulExpr ||
173              S->getSCEVType() == scSMaxExpr ||
174              S->getSCEVType() == scUMaxExpr ||
175              S->getSCEVType() == scAddRecExpr;
176     }
177   };
178
179   /// This node is the base class for n'ary commutative operators.
180   class SCEVCommutativeExpr : public SCEVNAryExpr {
181   protected:
182     SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
183                         enum SCEVTypes T, const SCEV *const *O, size_t N)
184       : SCEVNAryExpr(ID, T, O, N) {}
185
186   public:
187     /// Methods for support type inquiry through isa, cast, and dyn_cast:
188     static bool classof(const SCEV *S) {
189       return S->getSCEVType() == scAddExpr ||
190              S->getSCEVType() == scMulExpr ||
191              S->getSCEVType() == scSMaxExpr ||
192              S->getSCEVType() == scUMaxExpr;
193     }
194
195     /// Set flags for a non-recurrence without clearing previously set flags.
196     void setNoWrapFlags(NoWrapFlags Flags) {
197       SubclassData |= Flags;
198     }
199   };
200
201
202   /// This node represents an addition of some number of SCEVs.
203   class SCEVAddExpr : public SCEVCommutativeExpr {
204     friend class ScalarEvolution;
205
206     SCEVAddExpr(const FoldingSetNodeIDRef ID,
207                 const SCEV *const *O, size_t N)
208       : SCEVCommutativeExpr(ID, scAddExpr, O, N) {
209     }
210
211   public:
212     Type *getType() const {
213       // Use the type of the last operand, which is likely to be a pointer
214       // type, if there is one. This doesn't usually matter, but it can help
215       // reduce casts when the expressions are expanded.
216       return getOperand(getNumOperands() - 1)->getType();
217     }
218
219     /// Methods for support type inquiry through isa, cast, and dyn_cast:
220     static bool classof(const SCEV *S) {
221       return S->getSCEVType() == scAddExpr;
222     }
223   };
224
225
226   /// This node represents multiplication of some number of SCEVs.
227   class SCEVMulExpr : public SCEVCommutativeExpr {
228     friend class ScalarEvolution;
229
230     SCEVMulExpr(const FoldingSetNodeIDRef ID,
231                 const SCEV *const *O, size_t N)
232       : SCEVCommutativeExpr(ID, scMulExpr, O, N) {
233     }
234
235   public:
236     /// Methods for support type inquiry through isa, cast, and dyn_cast:
237     static bool classof(const SCEV *S) {
238       return S->getSCEVType() == scMulExpr;
239     }
240   };
241
242
243   /// This class represents a binary unsigned division operation.
244   class SCEVUDivExpr : public SCEV {
245     friend class ScalarEvolution;
246
247     const SCEV *LHS;
248     const SCEV *RHS;
249     SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
250       : SCEV(ID, scUDivExpr), LHS(lhs), RHS(rhs) {}
251
252   public:
253     const SCEV *getLHS() const { return LHS; }
254     const SCEV *getRHS() const { return RHS; }
255
256     Type *getType() const {
257       // In most cases the types of LHS and RHS will be the same, but in some
258       // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
259       // depend on the type for correctness, but handling types carefully can
260       // avoid extra casts in the SCEVExpander. The LHS is more likely to be
261       // a pointer type than the RHS, so use the RHS' type here.
262       return getRHS()->getType();
263     }
264
265     /// Methods for support type inquiry through isa, cast, and dyn_cast:
266     static bool classof(const SCEV *S) {
267       return S->getSCEVType() == scUDivExpr;
268     }
269   };
270
271
272   /// This node represents a polynomial recurrence on the trip count
273   /// of the specified loop.  This is the primary focus of the
274   /// ScalarEvolution framework; all the other SCEV subclasses are
275   /// mostly just supporting infrastructure to allow SCEVAddRecExpr
276   /// expressions to be created and analyzed.
277   ///
278   /// All operands of an AddRec are required to be loop invariant.
279   ///
280   class SCEVAddRecExpr : public SCEVNAryExpr {
281     friend class ScalarEvolution;
282
283     const Loop *L;
284
285     SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
286                    const SCEV *const *O, size_t N, const Loop *l)
287       : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
288
289   public:
290     const SCEV *getStart() const { return Operands[0]; }
291     const Loop *getLoop() const { return L; }
292
293     /// Constructs and returns the recurrence indicating how much this
294     /// expression steps by.  If this is a polynomial of degree N, it
295     /// returns a chrec of degree N-1.  We cannot determine whether
296     /// the step recurrence has self-wraparound.
297     const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
298       if (isAffine()) return getOperand(1);
299       return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
300                                                            op_end()),
301                               getLoop(), FlagAnyWrap);
302     }
303
304     /// Return true if this represents an expression A + B*x where A
305     /// and B are loop invariant values.
306     bool isAffine() const {
307       // We know that the start value is invariant.  This expression is thus
308       // affine iff the step is also invariant.
309       return getNumOperands() == 2;
310     }
311
312     /// Return true if this represents an expression A + B*x + C*x^2
313     /// where A, B and C are loop invariant values.  This corresponds
314     /// to an addrec of the form {L,+,M,+,N}
315     bool isQuadratic() const {
316       return getNumOperands() == 3;
317     }
318
319     /// Set flags for a recurrence without clearing any previously set flags.
320     /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
321     /// to make it easier to propagate flags.
322     void setNoWrapFlags(NoWrapFlags Flags) {
323       if (Flags & (FlagNUW | FlagNSW))
324         Flags = ScalarEvolution::setFlags(Flags, FlagNW);
325       SubclassData |= Flags;
326     }
327
328     /// Return the value of this chain of recurrences at the specified
329     /// iteration number.
330     const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
331
332     /// Return the number of iterations of this loop that produce
333     /// values in the specified constant range.  Another way of
334     /// looking at this is that it returns the first iteration number
335     /// where the value is not in the condition, thus computing the
336     /// exit count.  If the iteration count can't be computed, an
337     /// instance of SCEVCouldNotCompute is returned.
338     const SCEV *getNumIterationsInRange(const ConstantRange &Range,
339                                         ScalarEvolution &SE) const;
340
341     /// Return an expression representing the value of this expression
342     /// one iteration of the loop ahead.
343     const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const {
344       return cast<SCEVAddRecExpr>(SE.getAddExpr(this, getStepRecurrence(SE)));
345     }
346
347     /// Methods for support type inquiry through isa, cast, and dyn_cast:
348     static bool classof(const SCEV *S) {
349       return S->getSCEVType() == scAddRecExpr;
350     }
351   };
352
353   /// This class represents a signed maximum selection.
354   class SCEVSMaxExpr : public SCEVCommutativeExpr {
355     friend class ScalarEvolution;
356
357     SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
358                  const SCEV *const *O, size_t N)
359       : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
360       // Max never overflows.
361       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
362     }
363
364   public:
365     /// Methods for support type inquiry through isa, cast, and dyn_cast:
366     static bool classof(const SCEV *S) {
367       return S->getSCEVType() == scSMaxExpr;
368     }
369   };
370
371
372   /// This class represents an unsigned maximum selection.
373   class SCEVUMaxExpr : public SCEVCommutativeExpr {
374     friend class ScalarEvolution;
375
376     SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
377                  const SCEV *const *O, size_t N)
378       : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
379       // Max never overflows.
380       setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
381     }
382
383   public:
384     /// Methods for support type inquiry through isa, cast, and dyn_cast:
385     static bool classof(const SCEV *S) {
386       return S->getSCEVType() == scUMaxExpr;
387     }
388   };
389
390   /// This means that we are dealing with an entirely unknown SCEV
391   /// value, and only represent it as its LLVM Value.  This is the
392   /// "bottom" value for the analysis.
393   class SCEVUnknown final : public SCEV, private CallbackVH {
394     friend class ScalarEvolution;
395
396     // Implement CallbackVH.
397     void deleted() override;
398     void allUsesReplacedWith(Value *New) override;
399
400     /// The parent ScalarEvolution value. This is used to update the
401     /// parent's maps when the value associated with a SCEVUnknown is
402     /// deleted or RAUW'd.
403     ScalarEvolution *SE;
404
405     /// The next pointer in the linked list of all SCEVUnknown
406     /// instances owned by a ScalarEvolution.
407     SCEVUnknown *Next;
408
409     SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
410                 ScalarEvolution *se, SCEVUnknown *next) :
411       SCEV(ID, scUnknown), CallbackVH(V), SE(se), Next(next) {}
412
413   public:
414     Value *getValue() const { return getValPtr(); }
415
416     /// @{
417     /// Test whether this is a special constant representing a type
418     /// size, alignment, or field offset in a target-independent
419     /// manner, and hasn't happened to have been folded with other
420     /// operations into something unrecognizable. This is mainly only
421     /// useful for pretty-printing and other situations where it isn't
422     /// absolutely required for these to succeed.
423     bool isSizeOf(Type *&AllocTy) const;
424     bool isAlignOf(Type *&AllocTy) const;
425     bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
426     /// @}
427
428     Type *getType() const { return getValPtr()->getType(); }
429
430     /// Methods for support type inquiry through isa, cast, and dyn_cast:
431     static bool classof(const SCEV *S) {
432       return S->getSCEVType() == scUnknown;
433     }
434   };
435
436   /// This class defines a simple visitor class that may be used for
437   /// various SCEV analysis purposes.
438   template<typename SC, typename RetVal=void>
439   struct SCEVVisitor {
440     RetVal visit(const SCEV *S) {
441       switch (S->getSCEVType()) {
442       case scConstant:
443         return ((SC*)this)->visitConstant((const SCEVConstant*)S);
444       case scTruncate:
445         return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
446       case scZeroExtend:
447         return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
448       case scSignExtend:
449         return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
450       case scAddExpr:
451         return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
452       case scMulExpr:
453         return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
454       case scUDivExpr:
455         return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
456       case scAddRecExpr:
457         return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
458       case scSMaxExpr:
459         return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
460       case scUMaxExpr:
461         return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
462       case scUnknown:
463         return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
464       case scCouldNotCompute:
465         return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
466       default:
467         llvm_unreachable("Unknown SCEV type!");
468       }
469     }
470
471     RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
472       llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
473     }
474   };
475
476   /// Visit all nodes in the expression tree using worklist traversal.
477   ///
478   /// Visitor implements:
479   ///   // return true to follow this node.
480   ///   bool follow(const SCEV *S);
481   ///   // return true to terminate the search.
482   ///   bool isDone();
483   template<typename SV>
484   class SCEVTraversal {
485     SV &Visitor;
486     SmallVector<const SCEV *, 8> Worklist;
487     SmallPtrSet<const SCEV *, 8> Visited;
488
489     void push(const SCEV *S) {
490       if (Visited.insert(S).second && Visitor.follow(S))
491         Worklist.push_back(S);
492     }
493   public:
494     SCEVTraversal(SV& V): Visitor(V) {}
495
496     void visitAll(const SCEV *Root) {
497       push(Root);
498       while (!Worklist.empty() && !Visitor.isDone()) {
499         const SCEV *S = Worklist.pop_back_val();
500
501         switch (S->getSCEVType()) {
502         case scConstant:
503         case scUnknown:
504           break;
505         case scTruncate:
506         case scZeroExtend:
507         case scSignExtend:
508           push(cast<SCEVCastExpr>(S)->getOperand());
509           break;
510         case scAddExpr:
511         case scMulExpr:
512         case scSMaxExpr:
513         case scUMaxExpr:
514         case scAddRecExpr:
515           for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
516             push(Op);
517           break;
518         case scUDivExpr: {
519           const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
520           push(UDiv->getLHS());
521           push(UDiv->getRHS());
522           break;
523         }
524         case scCouldNotCompute:
525           llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
526         default:
527           llvm_unreachable("Unknown SCEV kind!");
528         }
529       }
530     }
531   };
532
533   /// Use SCEVTraversal to visit all nodes in the given expression tree.
534   template<typename SV>
535   void visitAll(const SCEV *Root, SV& Visitor) {
536     SCEVTraversal<SV> T(Visitor);
537     T.visitAll(Root);
538   }
539
540   /// Return true if any node in \p Root satisfies the predicate \p Pred.
541   template <typename PredTy>
542   bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
543     struct FindClosure {
544       bool Found = false;
545       PredTy Pred;
546
547       FindClosure(PredTy Pred) : Pred(Pred) {}
548
549       bool follow(const SCEV *S) {
550         if (!Pred(S))
551           return true;
552
553         Found = true;
554         return false;
555       }
556
557       bool isDone() const { return Found; }
558     };
559
560     FindClosure FC(Pred);
561     visitAll(Root, FC);
562     return FC.Found;
563   }
564
565   /// This visitor recursively visits a SCEV expression and re-writes it.
566   /// The result from each visit is cached, so it will return the same
567   /// SCEV for the same input.
568   template<typename SC>
569   class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
570   protected:
571     ScalarEvolution &SE;
572     // Memoize the result of each visit so that we only compute once for
573     // the same input SCEV. This is to avoid redundant computations when
574     // a SCEV is referenced by multiple SCEVs. Without memoization, this
575     // visit algorithm would have exponential time complexity in the worst
576     // case, causing the compiler to hang on certain tests.
577     DenseMap<const SCEV *, const SCEV *> RewriteResults;
578
579   public:
580     SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
581
582     const SCEV *visit(const SCEV *S) {
583       auto It = RewriteResults.find(S);
584       if (It != RewriteResults.end())
585         return It->second;
586       auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
587       auto Result = RewriteResults.try_emplace(S, Visited);
588       assert(Result.second && "Should insert a new entry");
589       return Result.first->second;
590     }
591
592     const SCEV *visitConstant(const SCEVConstant *Constant) {
593       return Constant;
594     }
595
596     const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
597       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
598       return Operand == Expr->getOperand()
599                  ? Expr
600                  : SE.getTruncateExpr(Operand, Expr->getType());
601     }
602
603     const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
604       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
605       return Operand == Expr->getOperand()
606                  ? Expr
607                  : SE.getZeroExtendExpr(Operand, Expr->getType());
608     }
609
610     const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
611       const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
612       return Operand == Expr->getOperand()
613                  ? Expr
614                  : SE.getSignExtendExpr(Operand, Expr->getType());
615     }
616
617     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
618       SmallVector<const SCEV *, 2> Operands;
619       bool Changed = false;
620       for (auto *Op : Expr->operands()) {
621         Operands.push_back(((SC*)this)->visit(Op));
622         Changed |= Op != Operands.back();
623       }
624       return !Changed ? Expr : SE.getAddExpr(Operands);
625     }
626
627     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
628       SmallVector<const SCEV *, 2> Operands;
629       bool Changed = false;
630       for (auto *Op : Expr->operands()) {
631         Operands.push_back(((SC*)this)->visit(Op));
632         Changed |= Op != Operands.back();
633       }
634       return !Changed ? Expr : SE.getMulExpr(Operands);
635     }
636
637     const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
638       auto *LHS = ((SC *)this)->visit(Expr->getLHS());
639       auto *RHS = ((SC *)this)->visit(Expr->getRHS());
640       bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
641       return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
642     }
643
644     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
645       SmallVector<const SCEV *, 2> Operands;
646       bool Changed = false;
647       for (auto *Op : Expr->operands()) {
648         Operands.push_back(((SC*)this)->visit(Op));
649         Changed |= Op != Operands.back();
650       }
651       return !Changed ? Expr
652                       : SE.getAddRecExpr(Operands, Expr->getLoop(),
653                                          Expr->getNoWrapFlags());
654     }
655
656     const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
657       SmallVector<const SCEV *, 2> Operands;
658       bool Changed = false;
659       for (auto *Op : Expr->operands()) {
660         Operands.push_back(((SC *)this)->visit(Op));
661         Changed |= Op != Operands.back();
662       }
663       return !Changed ? Expr : SE.getSMaxExpr(Operands);
664     }
665
666     const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
667       SmallVector<const SCEV *, 2> Operands;
668       bool Changed = false;
669       for (auto *Op : Expr->operands()) {
670         Operands.push_back(((SC*)this)->visit(Op));
671         Changed |= Op != Operands.back();
672       }
673       return !Changed ? Expr : SE.getUMaxExpr(Operands);
674     }
675
676     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
677       return Expr;
678     }
679
680     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
681       return Expr;
682     }
683   };
684
685   typedef DenseMap<const Value*, Value*> ValueToValueMap;
686
687   /// The SCEVParameterRewriter takes a scalar evolution expression and updates
688   /// the SCEVUnknown components following the Map (Value -> Value).
689   class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
690   public:
691     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
692                                ValueToValueMap &Map,
693                                bool InterpretConsts = false) {
694       SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
695       return Rewriter.visit(Scev);
696     }
697
698     SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
699       : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
700
701     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
702       Value *V = Expr->getValue();
703       if (Map.count(V)) {
704         Value *NV = Map[V];
705         if (InterpretConsts && isa<ConstantInt>(NV))
706           return SE.getConstant(cast<ConstantInt>(NV));
707         return SE.getUnknown(NV);
708       }
709       return Expr;
710     }
711
712   private:
713     ValueToValueMap &Map;
714     bool InterpretConsts;
715   };
716
717   typedef DenseMap<const Loop*, const SCEV*> LoopToScevMapT;
718
719   /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
720   /// the Map (Loop -> SCEV) to all AddRecExprs.
721   class SCEVLoopAddRecRewriter
722       : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
723   public:
724     static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
725                                ScalarEvolution &SE) {
726       SCEVLoopAddRecRewriter Rewriter(SE, Map);
727       return Rewriter.visit(Scev);
728     }
729
730     SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
731         : SCEVRewriteVisitor(SE), Map(M) {}
732
733     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
734       SmallVector<const SCEV *, 2> Operands;
735       for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
736         Operands.push_back(visit(Expr->getOperand(i)));
737
738       const Loop *L = Expr->getLoop();
739       const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
740
741       if (0 == Map.count(L))
742         return Res;
743
744       const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
745       return Rec->evaluateAtIteration(Map[L], SE);
746     }
747
748   private:
749     LoopToScevMapT &Map;
750   };
751 }
752
753 #endif