]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/CodeGen/FastISel.h
MFV r309299:
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / CodeGen / FastISel.h
1 //===-- FastISel.h - Definition of the FastISel class ---*- C++ -*---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file defines the FastISel class.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CODEGEN_FASTISEL_H
16 #define LLVM_CODEGEN_FASTISEL_H
17
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Target/TargetLowering.h"
23
24 namespace llvm {
25
26 class MachineConstantPool;
27
28 /// \brief This is a fast-path instruction selection class that generates poor
29 /// code and doesn't support illegal types or non-trivial lowering, but runs
30 /// quickly.
31 class FastISel {
32 public:
33   struct ArgListEntry {
34     Value *Val;
35     Type *Ty;
36     bool IsSExt : 1;
37     bool IsZExt : 1;
38     bool IsInReg : 1;
39     bool IsSRet : 1;
40     bool IsNest : 1;
41     bool IsByVal : 1;
42     bool IsInAlloca : 1;
43     bool IsReturned : 1;
44     bool IsSwiftSelf : 1;
45     bool IsSwiftError : 1;
46     uint16_t Alignment;
47
48     ArgListEntry()
49         : Val(nullptr), Ty(nullptr), IsSExt(false), IsZExt(false),
50           IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false),
51           IsInAlloca(false), IsReturned(false), IsSwiftSelf(false),
52           IsSwiftError(false), Alignment(0) {}
53
54     /// \brief Set CallLoweringInfo attribute flags based on a call instruction
55     /// and called function attributes.
56     void setAttributes(ImmutableCallSite *CS, unsigned AttrIdx);
57   };
58   typedef std::vector<ArgListEntry> ArgListTy;
59
60   struct CallLoweringInfo {
61     Type *RetTy;
62     bool RetSExt : 1;
63     bool RetZExt : 1;
64     bool IsVarArg : 1;
65     bool IsInReg : 1;
66     bool DoesNotReturn : 1;
67     bool IsReturnValueUsed : 1;
68
69     // \brief IsTailCall Should be modified by implementations of FastLowerCall
70     // that perform tail call conversions.
71     bool IsTailCall;
72
73     unsigned NumFixedArgs;
74     CallingConv::ID CallConv;
75     const Value *Callee;
76     MCSymbol *Symbol;
77     ArgListTy Args;
78     ImmutableCallSite *CS;
79     MachineInstr *Call;
80     unsigned ResultReg;
81     unsigned NumResultRegs;
82
83     bool IsPatchPoint;
84
85     SmallVector<Value *, 16> OutVals;
86     SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
87     SmallVector<unsigned, 16> OutRegs;
88     SmallVector<ISD::InputArg, 4> Ins;
89     SmallVector<unsigned, 4> InRegs;
90
91     CallLoweringInfo()
92         : RetTy(nullptr), RetSExt(false), RetZExt(false), IsVarArg(false),
93           IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true),
94           IsTailCall(false), NumFixedArgs(-1), CallConv(CallingConv::C),
95           Callee(nullptr), Symbol(nullptr), CS(nullptr), Call(nullptr),
96           ResultReg(0), NumResultRegs(0), IsPatchPoint(false) {}
97
98     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
99                                 const Value *Target, ArgListTy &&ArgsList,
100                                 ImmutableCallSite &Call) {
101       RetTy = ResultTy;
102       Callee = Target;
103
104       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
105       DoesNotReturn = Call.doesNotReturn();
106       IsVarArg = FuncTy->isVarArg();
107       IsReturnValueUsed = !Call.getInstruction()->use_empty();
108       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
109       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
110
111       CallConv = Call.getCallingConv();
112       Args = std::move(ArgsList);
113       NumFixedArgs = FuncTy->getNumParams();
114
115       CS = &Call;
116
117       return *this;
118     }
119
120     CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
121                                 MCSymbol *Target, ArgListTy &&ArgsList,
122                                 ImmutableCallSite &Call,
123                                 unsigned FixedArgs = ~0U) {
124       RetTy = ResultTy;
125       Callee = Call.getCalledValue();
126       Symbol = Target;
127
128       IsInReg = Call.paramHasAttr(0, Attribute::InReg);
129       DoesNotReturn = Call.doesNotReturn();
130       IsVarArg = FuncTy->isVarArg();
131       IsReturnValueUsed = !Call.getInstruction()->use_empty();
132       RetSExt = Call.paramHasAttr(0, Attribute::SExt);
133       RetZExt = Call.paramHasAttr(0, Attribute::ZExt);
134
135       CallConv = Call.getCallingConv();
136       Args = std::move(ArgsList);
137       NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
138
139       CS = &Call;
140
141       return *this;
142     }
143
144     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
145                                 const Value *Target, ArgListTy &&ArgsList,
146                                 unsigned FixedArgs = ~0U) {
147       RetTy = ResultTy;
148       Callee = Target;
149       CallConv = CC;
150       Args = std::move(ArgsList);
151       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
152       return *this;
153     }
154
155     CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
156                                 CallingConv::ID CC, Type *ResultTy,
157                                 const char *Target, ArgListTy &&ArgsList,
158                                 unsigned FixedArgs = ~0U);
159
160     CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
161                                 MCSymbol *Target, ArgListTy &&ArgsList,
162                                 unsigned FixedArgs = ~0U) {
163       RetTy = ResultTy;
164       Symbol = Target;
165       CallConv = CC;
166       Args = std::move(ArgsList);
167       NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
168       return *this;
169     }
170
171     CallLoweringInfo &setTailCall(bool Value = true) {
172       IsTailCall = Value;
173       return *this;
174     }
175
176     CallLoweringInfo &setIsPatchPoint(bool Value = true) {
177       IsPatchPoint = Value;
178       return *this;
179     }
180
181     ArgListTy &getArgs() { return Args; }
182
183     void clearOuts() {
184       OutVals.clear();
185       OutFlags.clear();
186       OutRegs.clear();
187     }
188
189     void clearIns() {
190       Ins.clear();
191       InRegs.clear();
192     }
193   };
194
195 protected:
196   DenseMap<const Value *, unsigned> LocalValueMap;
197   FunctionLoweringInfo &FuncInfo;
198   MachineFunction *MF;
199   MachineRegisterInfo &MRI;
200   MachineFrameInfo &MFI;
201   MachineConstantPool &MCP;
202   DebugLoc DbgLoc;
203   const TargetMachine &TM;
204   const DataLayout &DL;
205   const TargetInstrInfo &TII;
206   const TargetLowering &TLI;
207   const TargetRegisterInfo &TRI;
208   const TargetLibraryInfo *LibInfo;
209   bool SkipTargetIndependentISel;
210
211   /// \brief The position of the last instruction for materializing constants
212   /// for use in the current block. It resets to EmitStartPt when it makes sense
213   /// (for example, it's usually profitable to avoid function calls between the
214   /// definition and the use)
215   MachineInstr *LastLocalValue;
216
217   /// \brief The top most instruction in the current block that is allowed for
218   /// emitting local variables. LastLocalValue resets to EmitStartPt when it
219   /// makes sense (for example, on function calls)
220   MachineInstr *EmitStartPt;
221
222 public:
223   /// \brief Return the position of the last instruction emitted for
224   /// materializing constants for use in the current block.
225   MachineInstr *getLastLocalValue() { return LastLocalValue; }
226
227   /// \brief Update the position of the last instruction emitted for
228   /// materializing constants for use in the current block.
229   void setLastLocalValue(MachineInstr *I) {
230     EmitStartPt = I;
231     LastLocalValue = I;
232   }
233
234   /// \brief Set the current block to which generated machine instructions will
235   /// be appended, and clear the local CSE map.
236   void startNewBlock();
237
238   /// \brief Return current debug location information.
239   DebugLoc getCurDebugLoc() const { return DbgLoc; }
240
241   /// \brief Do "fast" instruction selection for function arguments and append
242   /// the machine instructions to the current block. Returns true when
243   /// successful.
244   bool lowerArguments();
245
246   /// \brief Do "fast" instruction selection for the given LLVM IR instruction
247   /// and append the generated machine instructions to the current block.
248   /// Returns true if selection was successful.
249   bool selectInstruction(const Instruction *I);
250
251   /// \brief Do "fast" instruction selection for the given LLVM IR operator
252   /// (Instruction or ConstantExpr), and append generated machine instructions
253   /// to the current block. Return true if selection was successful.
254   bool selectOperator(const User *I, unsigned Opcode);
255
256   /// \brief Create a virtual register and arrange for it to be assigned the
257   /// value for the given LLVM value.
258   unsigned getRegForValue(const Value *V);
259
260   /// \brief Look up the value to see if its value is already cached in a
261   /// register. It may be defined by instructions across blocks or defined
262   /// locally.
263   unsigned lookUpRegForValue(const Value *V);
264
265   /// \brief This is a wrapper around getRegForValue that also takes care of
266   /// truncating or sign-extending the given getelementptr index value.
267   std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
268
269   /// \brief We're checking to see if we can fold \p LI into \p FoldInst. Note
270   /// that we could have a sequence where multiple LLVM IR instructions are
271   /// folded into the same machineinstr.  For example we could have:
272   ///
273   ///   A: x = load i32 *P
274   ///   B: y = icmp A, 42
275   ///   C: br y, ...
276   ///
277   /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
278   /// (and any other folded instructions) because it is between A and C.
279   ///
280   /// If we succeed folding, return true.
281   bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
282
283   /// \brief The specified machine instr operand is a vreg, and that vreg is
284   /// being provided by the specified load instruction.  If possible, try to
285   /// fold the load as an operand to the instruction, returning true if
286   /// possible.
287   ///
288   /// This method should be implemented by targets.
289   virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
290                                    const LoadInst * /*LI*/) {
291     return false;
292   }
293
294   /// \brief Reset InsertPt to prepare for inserting instructions into the
295   /// current block.
296   void recomputeInsertPt();
297
298   /// \brief Remove all dead instructions between the I and E.
299   void removeDeadCode(MachineBasicBlock::iterator I,
300                       MachineBasicBlock::iterator E);
301
302   struct SavePoint {
303     MachineBasicBlock::iterator InsertPt;
304     DebugLoc DL;
305   };
306
307   /// \brief Prepare InsertPt to begin inserting instructions into the local
308   /// value area and return the old insert position.
309   SavePoint enterLocalValueArea();
310
311   /// \brief Reset InsertPt to the given old insert position.
312   void leaveLocalValueArea(SavePoint Old);
313
314   virtual ~FastISel();
315
316 protected:
317   explicit FastISel(FunctionLoweringInfo &FuncInfo,
318                     const TargetLibraryInfo *LibInfo,
319                     bool SkipTargetIndependentISel = false);
320
321   /// \brief This method is called by target-independent code when the normal
322   /// FastISel process fails to select an instruction. This gives targets a
323   /// chance to emit code for anything that doesn't fit into FastISel's
324   /// framework. It returns true if it was successful.
325   virtual bool fastSelectInstruction(const Instruction *I) = 0;
326
327   /// \brief This method is called by target-independent code to do target-
328   /// specific argument lowering. It returns true if it was successful.
329   virtual bool fastLowerArguments();
330
331   /// \brief This method is called by target-independent code to do target-
332   /// specific call lowering. It returns true if it was successful.
333   virtual bool fastLowerCall(CallLoweringInfo &CLI);
334
335   /// \brief This method is called by target-independent code to do target-
336   /// specific intrinsic lowering. It returns true if it was successful.
337   virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
338
339   /// \brief This method is called by target-independent code to request that an
340   /// instruction with the given type and opcode be emitted.
341   virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
342
343   /// \brief This method is called by target-independent code to request that an
344   /// instruction with the given type, opcode, and register operand be emitted.
345   virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
346                               bool Op0IsKill);
347
348   /// \brief This method is called by target-independent code to request that an
349   /// instruction with the given type, opcode, and register operands be emitted.
350   virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
351                                bool Op0IsKill, unsigned Op1, bool Op1IsKill);
352
353   /// \brief This method is called by target-independent code to request that an
354   /// instruction with the given type, opcode, and register and immediate
355   // operands be emitted.
356   virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
357                                bool Op0IsKill, uint64_t Imm);
358
359   /// \brief This method is called by target-independent code to request that an
360   /// instruction with the given type, opcode, and register and floating-point
361   /// immediate operands be emitted.
362   virtual unsigned fastEmit_rf(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
363                                bool Op0IsKill, const ConstantFP *FPImm);
364
365   /// \brief This method is called by target-independent code to request that an
366   /// instruction with the given type, opcode, and register and immediate
367   /// operands be emitted.
368   virtual unsigned fastEmit_rri(MVT VT, MVT RetVT, unsigned Opcode,
369                                 unsigned Op0, bool Op0IsKill, unsigned Op1,
370                                 bool Op1IsKill, uint64_t Imm);
371
372   /// \brief This method is a wrapper of fastEmit_ri.
373   ///
374   /// It first tries to emit an instruction with an immediate operand using
375   /// fastEmit_ri.  If that fails, it materializes the immediate into a register
376   /// and try fastEmit_rr instead.
377   unsigned fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, bool Op0IsKill,
378                         uint64_t Imm, MVT ImmType);
379
380   /// \brief This method is called by target-independent code to request that an
381   /// instruction with the given type, opcode, and immediate operand be emitted.
382   virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
383
384   /// \brief This method is called by target-independent code to request that an
385   /// instruction with the given type, opcode, and floating-point immediate
386   /// operand be emitted.
387   virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
388                               const ConstantFP *FPImm);
389
390   /// \brief Emit a MachineInstr with no operands and a result register in the
391   /// given register class.
392   unsigned fastEmitInst_(unsigned MachineInstOpcode,
393                          const TargetRegisterClass *RC);
394
395   /// \brief Emit a MachineInstr with one register operand and a result register
396   /// in the given register class.
397   unsigned fastEmitInst_r(unsigned MachineInstOpcode,
398                           const TargetRegisterClass *RC, unsigned Op0,
399                           bool Op0IsKill);
400
401   /// \brief Emit a MachineInstr with two register operands and a result
402   /// register in the given register class.
403   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
404                            const TargetRegisterClass *RC, unsigned Op0,
405                            bool Op0IsKill, unsigned Op1, bool Op1IsKill);
406
407   /// \brief Emit a MachineInstr with three register operands and a result
408   /// register in the given register class.
409   unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
410                             const TargetRegisterClass *RC, unsigned Op0,
411                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
412                             unsigned Op2, bool Op2IsKill);
413
414   /// \brief Emit a MachineInstr with a register operand, an immediate, and a
415   /// result register in the given register class.
416   unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
417                            const TargetRegisterClass *RC, unsigned Op0,
418                            bool Op0IsKill, uint64_t Imm);
419
420   /// \brief Emit a MachineInstr with one register operand and two immediate
421   /// operands.
422   unsigned fastEmitInst_rii(unsigned MachineInstOpcode,
423                             const TargetRegisterClass *RC, unsigned Op0,
424                             bool Op0IsKill, uint64_t Imm1, uint64_t Imm2);
425
426   /// \brief Emit a MachineInstr with a floating point immediate, and a result
427   /// register in the given register class.
428   unsigned fastEmitInst_f(unsigned MachineInstOpcode,
429                           const TargetRegisterClass *RC,
430                           const ConstantFP *FPImm);
431
432   /// \brief Emit a MachineInstr with two register operands, an immediate, and a
433   /// result register in the given register class.
434   unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
435                             const TargetRegisterClass *RC, unsigned Op0,
436                             bool Op0IsKill, unsigned Op1, bool Op1IsKill,
437                             uint64_t Imm);
438
439   /// \brief Emit a MachineInstr with a single immediate operand, and a result
440   /// register in the given register class.
441   unsigned fastEmitInst_i(unsigned MachineInstrOpcode,
442                           const TargetRegisterClass *RC, uint64_t Imm);
443
444   /// \brief Emit a MachineInstr for an extract_subreg from a specified index of
445   /// a superregister to a specified type.
446   unsigned fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, bool Op0IsKill,
447                                       uint32_t Idx);
448
449   /// \brief Emit MachineInstrs to compute the value of Op with all but the
450   /// least significant bit set to zero.
451   unsigned fastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill);
452
453   /// \brief Emit an unconditional branch to the given block, unless it is the
454   /// immediate (fall-through) successor, and update the CFG.
455   void fastEmitBranch(MachineBasicBlock *MBB, const DebugLoc &DL);
456
457   /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
458   /// and adds TrueMBB and FalseMBB to the successor list.
459   void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
460                         MachineBasicBlock *FalseMBB);
461
462   /// \brief Update the value map to include the new mapping for this
463   /// instruction, or insert an extra copy to get the result in a previous
464   /// determined register.
465   ///
466   /// NOTE: This is only necessary because we might select a block that uses a
467   /// value before we select the block that defines the value. It might be
468   /// possible to fix this by selecting blocks in reverse postorder.
469   void updateValueMap(const Value *I, unsigned Reg, unsigned NumRegs = 1);
470
471   unsigned createResultReg(const TargetRegisterClass *RC);
472
473   /// \brief Try to constrain Op so that it is usable by argument OpNum of the
474   /// provided MCInstrDesc. If this fails, create a new virtual register in the
475   /// correct class and COPY the value there.
476   unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned Op,
477                                     unsigned OpNum);
478
479   /// \brief Emit a constant in a register using target-specific logic, such as
480   /// constant pool loads.
481   virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
482
483   /// \brief Emit an alloca address in a register using target-specific logic.
484   virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
485
486   /// \brief Emit the floating-point constant +0.0 in a register using target-
487   /// specific logic.
488   virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
489     return 0;
490   }
491
492   /// \brief Check if \c Add is an add that can be safely folded into \c GEP.
493   ///
494   /// \c Add can be folded into \c GEP if:
495   /// - \c Add is an add,
496   /// - \c Add's size matches \c GEP's,
497   /// - \c Add is in the same basic block as \c GEP, and
498   /// - \c Add has a constant operand.
499   bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
500
501   /// \brief Test whether the given value has exactly one use.
502   bool hasTrivialKill(const Value *V);
503
504   /// \brief Create a machine mem operand from the given instruction.
505   MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
506
507   CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
508
509   bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
510   bool lowerCallTo(const CallInst *CI, const char *SymbolName,
511                    unsigned NumArgs);
512   bool lowerCallTo(CallLoweringInfo &CLI);
513
514   bool isCommutativeIntrinsic(IntrinsicInst const *II) {
515     switch (II->getIntrinsicID()) {
516     case Intrinsic::sadd_with_overflow:
517     case Intrinsic::uadd_with_overflow:
518     case Intrinsic::smul_with_overflow:
519     case Intrinsic::umul_with_overflow:
520       return true;
521     default:
522       return false;
523     }
524   }
525
526
527   bool lowerCall(const CallInst *I);
528   /// \brief Select and emit code for a binary operator instruction, which has
529   /// an opcode which directly corresponds to the given ISD opcode.
530   bool selectBinaryOp(const User *I, unsigned ISDOpcode);
531   bool selectFNeg(const User *I);
532   bool selectGetElementPtr(const User *I);
533   bool selectStackmap(const CallInst *I);
534   bool selectPatchpoint(const CallInst *I);
535   bool selectCall(const User *Call);
536   bool selectIntrinsicCall(const IntrinsicInst *II);
537   bool selectBitCast(const User *I);
538   bool selectCast(const User *I, unsigned Opcode);
539   bool selectExtractValue(const User *I);
540   bool selectInsertValue(const User *I);
541
542 private:
543   /// \brief Handle PHI nodes in successor blocks.
544   ///
545   /// Emit code to ensure constants are copied into registers when needed.
546   /// Remember the virtual registers that need to be added to the Machine PHI
547   /// nodes as input.  We cannot just directly add them, because expansion might
548   /// result in multiple MBB's for one BB.  As such, the start of the BB might
549   /// correspond to a different MBB than the end.
550   bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
551
552   /// \brief Helper for materializeRegForValue to materialize a constant in a
553   /// target-independent way.
554   unsigned materializeConstant(const Value *V, MVT VT);
555
556   /// \brief Helper for getRegForVale. This function is called when the value
557   /// isn't already available in a register and must be materialized with new
558   /// instructions.
559   unsigned materializeRegForValue(const Value *V, MVT VT);
560
561   /// \brief Clears LocalValueMap and moves the area for the new local variables
562   /// to the beginning of the block. It helps to avoid spilling cached variables
563   /// across heavy instructions like calls.
564   void flushLocalValueMap();
565
566   /// \brief Removes dead local value instructions after SavedLastLocalvalue.
567   void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
568
569   /// \brief Insertion point before trying to select the current instruction.
570   MachineBasicBlock::iterator SavedInsertPt;
571
572   /// \brief Add a stackmap or patchpoint intrinsic call's live variable
573   /// operands to a stackmap or patchpoint machine instruction.
574   bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
575                            const CallInst *CI, unsigned StartIdx);
576   bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
577                          const Value *Callee, bool ForceRetVoidTy,
578                          CallLoweringInfo &CLI);
579 };
580
581 } // end namespace llvm
582
583 #endif