]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/CodeGen/LiveInterval.h
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304149, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / CodeGen / LiveInterval.h
1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
22 #define LLVM_CODEGEN_LIVEINTERVAL_H
23
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/IntEqClasses.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/MC/LaneBitmask.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <functional>
37 #include <memory>
38 #include <set>
39 #include <tuple>
40 #include <utility>
41
42 namespace llvm {
43
44   class CoalescerPair;
45   class LiveIntervals;
46   class MachineRegisterInfo;
47   class raw_ostream;
48
49   /// VNInfo - Value Number Information.
50   /// This class holds information about a machine level values, including
51   /// definition and use points.
52   ///
53   class VNInfo {
54   public:
55     using Allocator = BumpPtrAllocator;
56
57     /// The ID number of this value.
58     unsigned id;
59
60     /// The index of the defining instruction.
61     SlotIndex def;
62
63     /// VNInfo constructor.
64     VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
65
66     /// VNInfo constructor, copies values from orig, except for the value number.
67     VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
68
69     /// Copy from the parameter into this VNInfo.
70     void copyFrom(VNInfo &src) {
71       def = src.def;
72     }
73
74     /// Returns true if this value is defined by a PHI instruction (or was,
75     /// PHI instructions may have been eliminated).
76     /// PHI-defs begin at a block boundary, all other defs begin at register or
77     /// EC slots.
78     bool isPHIDef() const { return def.isBlock(); }
79
80     /// Returns true if this value is unused.
81     bool isUnused() const { return !def.isValid(); }
82
83     /// Mark this value as unused.
84     void markUnused() { def = SlotIndex(); }
85   };
86
87   /// Result of a LiveRange query. This class hides the implementation details
88   /// of live ranges, and it should be used as the primary interface for
89   /// examining live ranges around instructions.
90   class LiveQueryResult {
91     VNInfo *const EarlyVal;
92     VNInfo *const LateVal;
93     const SlotIndex EndPoint;
94     const bool Kill;
95
96   public:
97     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
98                     bool Kill)
99       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
100     {}
101
102     /// Return the value that is live-in to the instruction. This is the value
103     /// that will be read by the instruction's use operands. Return NULL if no
104     /// value is live-in.
105     VNInfo *valueIn() const {
106       return EarlyVal;
107     }
108
109     /// Return true if the live-in value is killed by this instruction. This
110     /// means that either the live range ends at the instruction, or it changes
111     /// value.
112     bool isKill() const {
113       return Kill;
114     }
115
116     /// Return true if this instruction has a dead def.
117     bool isDeadDef() const {
118       return EndPoint.isDead();
119     }
120
121     /// Return the value leaving the instruction, if any. This can be a
122     /// live-through value, or a live def. A dead def returns NULL.
123     VNInfo *valueOut() const {
124       return isDeadDef() ? nullptr : LateVal;
125     }
126
127     /// Returns the value alive at the end of the instruction, if any. This can
128     /// be a live-through value, a live def or a dead def.
129     VNInfo *valueOutOrDead() const {
130       return LateVal;
131     }
132
133     /// Return the value defined by this instruction, if any. This includes
134     /// dead defs, it is the value created by the instruction's def operands.
135     VNInfo *valueDefined() const {
136       return EarlyVal == LateVal ? nullptr : LateVal;
137     }
138
139     /// Return the end point of the last live range segment to interact with
140     /// the instruction, if any.
141     ///
142     /// The end point is an invalid SlotIndex only if the live range doesn't
143     /// intersect the instruction at all.
144     ///
145     /// The end point may be at or past the end of the instruction's basic
146     /// block. That means the value was live out of the block.
147     SlotIndex endPoint() const {
148       return EndPoint;
149     }
150   };
151
152   /// This class represents the liveness of a register, stack slot, etc.
153   /// It manages an ordered list of Segment objects.
154   /// The Segments are organized in a static single assignment form: At places
155   /// where a new value is defined or different values reach a CFG join a new
156   /// segment with a new value number is used.
157   class LiveRange {
158   public:
159     /// This represents a simple continuous liveness interval for a value.
160     /// The start point is inclusive, the end point exclusive. These intervals
161     /// are rendered as [start,end).
162     struct Segment {
163       SlotIndex start;  // Start point of the interval (inclusive)
164       SlotIndex end;    // End point of the interval (exclusive)
165       VNInfo *valno = nullptr; // identifier for the value contained in this
166                                // segment.
167
168       Segment() = default;
169
170       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
171         : start(S), end(E), valno(V) {
172         assert(S < E && "Cannot create empty or backwards segment");
173       }
174
175       /// Return true if the index is covered by this segment.
176       bool contains(SlotIndex I) const {
177         return start <= I && I < end;
178       }
179
180       /// Return true if the given interval, [S, E), is covered by this segment.
181       bool containsInterval(SlotIndex S, SlotIndex E) const {
182         assert((S < E) && "Backwards interval?");
183         return (start <= S && S < end) && (start < E && E <= end);
184       }
185
186       bool operator<(const Segment &Other) const {
187         return std::tie(start, end) < std::tie(Other.start, Other.end);
188       }
189       bool operator==(const Segment &Other) const {
190         return start == Other.start && end == Other.end;
191       }
192
193       void dump() const;
194     };
195
196     using Segments = SmallVector<Segment, 2>;
197     using VNInfoList = SmallVector<VNInfo *, 2>;
198
199     Segments segments;   // the liveness segments
200     VNInfoList valnos;   // value#'s
201
202     // The segment set is used temporarily to accelerate initial computation
203     // of live ranges of physical registers in computeRegUnitRange.
204     // After that the set is flushed to the segment vector and deleted.
205     using SegmentSet = std::set<Segment>;
206     std::unique_ptr<SegmentSet> segmentSet;
207
208     using iterator = Segments::iterator;
209     using const_iterator = Segments::const_iterator;
210
211     iterator begin() { return segments.begin(); }
212     iterator end()   { return segments.end(); }
213
214     const_iterator begin() const { return segments.begin(); }
215     const_iterator end() const  { return segments.end(); }
216
217     using vni_iterator = VNInfoList::iterator;
218     using const_vni_iterator = VNInfoList::const_iterator;
219
220     vni_iterator vni_begin() { return valnos.begin(); }
221     vni_iterator vni_end()   { return valnos.end(); }
222
223     const_vni_iterator vni_begin() const { return valnos.begin(); }
224     const_vni_iterator vni_end() const   { return valnos.end(); }
225
226     /// Constructs a new LiveRange object.
227     LiveRange(bool UseSegmentSet = false)
228         : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>()
229                                    : nullptr) {}
230
231     /// Constructs a new LiveRange object by copying segments and valnos from
232     /// another LiveRange.
233     LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
234       assert(Other.segmentSet == nullptr &&
235              "Copying of LiveRanges with active SegmentSets is not supported");
236       assign(Other, Allocator);
237     }
238
239     /// Copies values numbers and live segments from \p Other into this range.
240     void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
241       if (this == &Other)
242         return;
243
244       assert(Other.segmentSet == nullptr &&
245              "Copying of LiveRanges with active SegmentSets is not supported");
246       // Duplicate valnos.
247       for (const VNInfo *VNI : Other.valnos)
248         createValueCopy(VNI, Allocator);
249       // Now we can copy segments and remap their valnos.
250       for (const Segment &S : Other.segments)
251         segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
252     }
253
254     /// advanceTo - Advance the specified iterator to point to the Segment
255     /// containing the specified position, or end() if the position is past the
256     /// end of the range.  If no Segment contains this position, but the
257     /// position is in a hole, this method returns an iterator pointing to the
258     /// Segment immediately after the hole.
259     iterator advanceTo(iterator I, SlotIndex Pos) {
260       assert(I != end());
261       if (Pos >= endIndex())
262         return end();
263       while (I->end <= Pos) ++I;
264       return I;
265     }
266
267     const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
268       assert(I != end());
269       if (Pos >= endIndex())
270         return end();
271       while (I->end <= Pos) ++I;
272       return I;
273     }
274
275     /// find - Return an iterator pointing to the first segment that ends after
276     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
277     /// when searching large ranges.
278     ///
279     /// If Pos is contained in a Segment, that segment is returned.
280     /// If Pos is in a hole, the following Segment is returned.
281     /// If Pos is beyond endIndex, end() is returned.
282     iterator find(SlotIndex Pos);
283
284     const_iterator find(SlotIndex Pos) const {
285       return const_cast<LiveRange*>(this)->find(Pos);
286     }
287
288     void clear() {
289       valnos.clear();
290       segments.clear();
291     }
292
293     size_t size() const {
294       return segments.size();
295     }
296
297     bool hasAtLeastOneValue() const { return !valnos.empty(); }
298
299     bool containsOneValue() const { return valnos.size() == 1; }
300
301     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
302
303     /// getValNumInfo - Returns pointer to the specified val#.
304     ///
305     inline VNInfo *getValNumInfo(unsigned ValNo) {
306       return valnos[ValNo];
307     }
308     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
309       return valnos[ValNo];
310     }
311
312     /// containsValue - Returns true if VNI belongs to this range.
313     bool containsValue(const VNInfo *VNI) const {
314       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
315     }
316
317     /// getNextValue - Create a new value number and return it.  MIIdx specifies
318     /// the instruction that defines the value number.
319     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
320       VNInfo *VNI =
321         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
322       valnos.push_back(VNI);
323       return VNI;
324     }
325
326     /// createDeadDef - Make sure the range has a value defined at Def.
327     /// If one already exists, return it. Otherwise allocate a new value and
328     /// add liveness for a dead def.
329     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator);
330
331     /// Create a def of value @p VNI. Return @p VNI. If there already exists
332     /// a definition at VNI->def, the value defined there must be @p VNI.
333     VNInfo *createDeadDef(VNInfo *VNI);
334
335     /// Create a copy of the given value. The new value will be identical except
336     /// for the Value number.
337     VNInfo *createValueCopy(const VNInfo *orig,
338                             VNInfo::Allocator &VNInfoAllocator) {
339       VNInfo *VNI =
340         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
341       valnos.push_back(VNI);
342       return VNI;
343     }
344
345     /// RenumberValues - Renumber all values in order of appearance and remove
346     /// unused values.
347     void RenumberValues();
348
349     /// MergeValueNumberInto - This method is called when two value numbers
350     /// are found to be equivalent.  This eliminates V1, replacing all
351     /// segments with the V1 value number with the V2 value number.  This can
352     /// cause merging of V1/V2 values numbers and compaction of the value space.
353     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
354
355     /// Merge all of the live segments of a specific val# in RHS into this live
356     /// range as the specified value number. The segments in RHS are allowed
357     /// to overlap with segments in the current range, it will replace the
358     /// value numbers of the overlaped live segments with the specified value
359     /// number.
360     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
361
362     /// MergeValueInAsValue - Merge all of the segments of a specific val#
363     /// in RHS into this live range as the specified value number.
364     /// The segments in RHS are allowed to overlap with segments in the
365     /// current range, but only if the overlapping segments have the
366     /// specified value number.
367     void MergeValueInAsValue(const LiveRange &RHS,
368                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
369
370     bool empty() const { return segments.empty(); }
371
372     /// beginIndex - Return the lowest numbered slot covered.
373     SlotIndex beginIndex() const {
374       assert(!empty() && "Call to beginIndex() on empty range.");
375       return segments.front().start;
376     }
377
378     /// endNumber - return the maximum point of the range of the whole,
379     /// exclusive.
380     SlotIndex endIndex() const {
381       assert(!empty() && "Call to endIndex() on empty range.");
382       return segments.back().end;
383     }
384
385     bool expiredAt(SlotIndex index) const {
386       return index >= endIndex();
387     }
388
389     bool liveAt(SlotIndex index) const {
390       const_iterator r = find(index);
391       return r != end() && r->start <= index;
392     }
393
394     /// Return the segment that contains the specified index, or null if there
395     /// is none.
396     const Segment *getSegmentContaining(SlotIndex Idx) const {
397       const_iterator I = FindSegmentContaining(Idx);
398       return I == end() ? nullptr : &*I;
399     }
400
401     /// Return the live segment that contains the specified index, or null if
402     /// there is none.
403     Segment *getSegmentContaining(SlotIndex Idx) {
404       iterator I = FindSegmentContaining(Idx);
405       return I == end() ? nullptr : &*I;
406     }
407
408     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
409     VNInfo *getVNInfoAt(SlotIndex Idx) const {
410       const_iterator I = FindSegmentContaining(Idx);
411       return I == end() ? nullptr : I->valno;
412     }
413
414     /// getVNInfoBefore - Return the VNInfo that is live up to but not
415     /// necessarilly including Idx, or NULL. Use this to find the reaching def
416     /// used by an instruction at this SlotIndex position.
417     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
418       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
419       return I == end() ? nullptr : I->valno;
420     }
421
422     /// Return an iterator to the segment that contains the specified index, or
423     /// end() if there is none.
424     iterator FindSegmentContaining(SlotIndex Idx) {
425       iterator I = find(Idx);
426       return I != end() && I->start <= Idx ? I : end();
427     }
428
429     const_iterator FindSegmentContaining(SlotIndex Idx) const {
430       const_iterator I = find(Idx);
431       return I != end() && I->start <= Idx ? I : end();
432     }
433
434     /// overlaps - Return true if the intersection of the two live ranges is
435     /// not empty.
436     bool overlaps(const LiveRange &other) const {
437       if (other.empty())
438         return false;
439       return overlapsFrom(other, other.begin());
440     }
441
442     /// overlaps - Return true if the two ranges have overlapping segments
443     /// that are not coalescable according to CP.
444     ///
445     /// Overlapping segments where one range is defined by a coalescable
446     /// copy are allowed.
447     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
448                   const SlotIndexes&) const;
449
450     /// overlaps - Return true if the live range overlaps an interval specified
451     /// by [Start, End).
452     bool overlaps(SlotIndex Start, SlotIndex End) const;
453
454     /// overlapsFrom - Return true if the intersection of the two live ranges
455     /// is not empty.  The specified iterator is a hint that we can begin
456     /// scanning the Other range starting at I.
457     bool overlapsFrom(const LiveRange &Other, const_iterator I) const;
458
459     /// Returns true if all segments of the @p Other live range are completely
460     /// covered by this live range.
461     /// Adjacent live ranges do not affect the covering:the liverange
462     /// [1,5](5,10] covers (3,7].
463     bool covers(const LiveRange &Other) const;
464
465     /// Add the specified Segment to this range, merging segments as
466     /// appropriate.  This returns an iterator to the inserted segment (which
467     /// may have grown since it was inserted).
468     iterator addSegment(Segment S);
469
470     /// Attempt to extend a value defined after @p StartIdx to include @p Use.
471     /// Both @p StartIdx and @p Use should be in the same basic block. In case
472     /// of subranges, an extension could be prevented by an explicit "undef"
473     /// caused by a <def,read-undef> on a non-overlapping lane. The list of
474     /// location of such "undefs" should be provided in @p Undefs.
475     /// The return value is a pair: the first element is VNInfo of the value
476     /// that was extended (possibly nullptr), the second is a boolean value
477     /// indicating whether an "undef" was encountered.
478     /// If this range is live before @p Use in the basic block that starts at
479     /// @p StartIdx, and there is no intervening "undef", extend it to be live
480     /// up to @p Use, and return the pair {value, false}. If there is no
481     /// segment before @p Use and there is no "undef" between @p StartIdx and
482     /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
483     /// return {nullptr, true}.
484     std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
485         SlotIndex StartIdx, SlotIndex Use);
486
487     /// Simplified version of the above "extendInBlock", which assumes that
488     /// no register lanes are undefined by <def,read-undef> operands.
489     /// If this range is live before @p Use in the basic block that starts
490     /// at @p StartIdx, extend it to be live up to @p Use, and return the
491     /// value. If there is no segment before @p Use, return nullptr.
492     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
493
494     /// join - Join two live ranges (this, and other) together.  This applies
495     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
496     /// the ranges are not joinable, this aborts.
497     void join(LiveRange &Other,
498               const int *ValNoAssignments,
499               const int *RHSValNoAssignments,
500               SmallVectorImpl<VNInfo *> &NewVNInfo);
501
502     /// True iff this segment is a single segment that lies between the
503     /// specified boundaries, exclusively. Vregs live across a backedge are not
504     /// considered local. The boundaries are expected to lie within an extended
505     /// basic block, so vregs that are not live out should contain no holes.
506     bool isLocal(SlotIndex Start, SlotIndex End) const {
507       return beginIndex() > Start.getBaseIndex() &&
508         endIndex() < End.getBoundaryIndex();
509     }
510
511     /// Remove the specified segment from this range.  Note that the segment
512     /// must be a single Segment in its entirety.
513     void removeSegment(SlotIndex Start, SlotIndex End,
514                        bool RemoveDeadValNo = false);
515
516     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
517       removeSegment(S.start, S.end, RemoveDeadValNo);
518     }
519
520     /// Remove segment pointed to by iterator @p I from this range.  This does
521     /// not remove dead value numbers.
522     iterator removeSegment(iterator I) {
523       return segments.erase(I);
524     }
525
526     /// Query Liveness at Idx.
527     /// The sub-instruction slot of Idx doesn't matter, only the instruction
528     /// it refers to is considered.
529     LiveQueryResult Query(SlotIndex Idx) const {
530       // Find the segment that enters the instruction.
531       const_iterator I = find(Idx.getBaseIndex());
532       const_iterator E = end();
533       if (I == E)
534         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
535
536       // Is this an instruction live-in segment?
537       // If Idx is the start index of a basic block, include live-in segments
538       // that start at Idx.getBaseIndex().
539       VNInfo *EarlyVal = nullptr;
540       VNInfo *LateVal  = nullptr;
541       SlotIndex EndPoint;
542       bool Kill = false;
543       if (I->start <= Idx.getBaseIndex()) {
544         EarlyVal = I->valno;
545         EndPoint = I->end;
546         // Move to the potentially live-out segment.
547         if (SlotIndex::isSameInstr(Idx, I->end)) {
548           Kill = true;
549           if (++I == E)
550             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
551         }
552         // Special case: A PHIDef value can have its def in the middle of a
553         // segment if the value happens to be live out of the layout
554         // predecessor.
555         // Such a value is not live-in.
556         if (EarlyVal->def == Idx.getBaseIndex())
557           EarlyVal = nullptr;
558       }
559       // I now points to the segment that may be live-through, or defined by
560       // this instr. Ignore segments starting after the current instr.
561       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
562         LateVal = I->valno;
563         EndPoint = I->end;
564       }
565       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
566     }
567
568     /// removeValNo - Remove all the segments defined by the specified value#.
569     /// Also remove the value# from value# list.
570     void removeValNo(VNInfo *ValNo);
571
572     /// Returns true if the live range is zero length, i.e. no live segments
573     /// span instructions. It doesn't pay to spill such a range.
574     bool isZeroLength(SlotIndexes *Indexes) const {
575       for (const Segment &S : segments)
576         if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
577             S.end.getBaseIndex())
578           return false;
579       return true;
580     }
581
582     // Returns true if any segment in the live range contains any of the
583     // provided slot indexes.  Slots which occur in holes between
584     // segments will not cause the function to return true.
585     bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
586
587     bool operator<(const LiveRange& other) const {
588       const SlotIndex &thisIndex = beginIndex();
589       const SlotIndex &otherIndex = other.beginIndex();
590       return thisIndex < otherIndex;
591     }
592
593     /// Returns true if there is an explicit "undef" between @p Begin
594     /// @p End.
595     bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
596                    SlotIndex End) const {
597       return std::any_of(Undefs.begin(), Undefs.end(),
598                 [Begin,End] (SlotIndex Idx) -> bool {
599                   return Begin <= Idx && Idx < End;
600                 });
601     }
602
603     /// Flush segment set into the regular segment vector.
604     /// The method is to be called after the live range
605     /// has been created, if use of the segment set was
606     /// activated in the constructor of the live range.
607     void flushSegmentSet();
608
609     void print(raw_ostream &OS) const;
610     void dump() const;
611
612     /// \brief Walk the range and assert if any invariants fail to hold.
613     ///
614     /// Note that this is a no-op when asserts are disabled.
615 #ifdef NDEBUG
616     void verify() const {}
617 #else
618     void verify() const;
619 #endif
620
621   protected:
622     /// Append a segment to the list of segments.
623     void append(const LiveRange::Segment S);
624
625   private:
626     friend class LiveRangeUpdater;
627     void addSegmentToSet(Segment S);
628     void markValNoForDeletion(VNInfo *V);
629   };
630
631   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
632     LR.print(OS);
633     return OS;
634   }
635
636   /// LiveInterval - This class represents the liveness of a register,
637   /// or stack slot.
638   class LiveInterval : public LiveRange {
639   public:
640     using super = LiveRange;
641
642     /// A live range for subregisters. The LaneMask specifies which parts of the
643     /// super register are covered by the interval.
644     /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
645     class SubRange : public LiveRange {
646     public:
647       SubRange *Next = nullptr;
648       LaneBitmask LaneMask;
649
650       /// Constructs a new SubRange object.
651       SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
652
653       /// Constructs a new SubRange object by copying liveness from @p Other.
654       SubRange(LaneBitmask LaneMask, const LiveRange &Other,
655                BumpPtrAllocator &Allocator)
656         : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
657
658       void print(raw_ostream &OS) const;
659       void dump() const;
660     };
661
662   private:
663     SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
664                                    /// ranges.
665
666   public:
667     const unsigned reg;  // the register or stack slot of this interval.
668     float weight;        // weight of this interval
669
670     LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {}
671
672     ~LiveInterval() {
673       clearSubRanges();
674     }
675
676     template<typename T>
677     class SingleLinkedListIterator {
678       T *P;
679
680     public:
681       SingleLinkedListIterator<T>(T *P) : P(P) {}
682
683       SingleLinkedListIterator<T> &operator++() {
684         P = P->Next;
685         return *this;
686       }
687       SingleLinkedListIterator<T> operator++(int) {
688         SingleLinkedListIterator res = *this;
689         ++*this;
690         return res;
691       }
692       bool operator!=(const SingleLinkedListIterator<T> &Other) {
693         return P != Other.operator->();
694       }
695       bool operator==(const SingleLinkedListIterator<T> &Other) {
696         return P == Other.operator->();
697       }
698       T &operator*() const {
699         return *P;
700       }
701       T *operator->() const {
702         return P;
703       }
704     };
705
706     using subrange_iterator = SingleLinkedListIterator<SubRange>;
707     using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
708
709     subrange_iterator subrange_begin() {
710       return subrange_iterator(SubRanges);
711     }
712     subrange_iterator subrange_end() {
713       return subrange_iterator(nullptr);
714     }
715
716     const_subrange_iterator subrange_begin() const {
717       return const_subrange_iterator(SubRanges);
718     }
719     const_subrange_iterator subrange_end() const {
720       return const_subrange_iterator(nullptr);
721     }
722
723     iterator_range<subrange_iterator> subranges() {
724       return make_range(subrange_begin(), subrange_end());
725     }
726
727     iterator_range<const_subrange_iterator> subranges() const {
728       return make_range(subrange_begin(), subrange_end());
729     }
730
731     /// Creates a new empty subregister live range. The range is added at the
732     /// beginning of the subrange list; subrange iterators stay valid.
733     SubRange *createSubRange(BumpPtrAllocator &Allocator,
734                              LaneBitmask LaneMask) {
735       SubRange *Range = new (Allocator) SubRange(LaneMask);
736       appendSubRange(Range);
737       return Range;
738     }
739
740     /// Like createSubRange() but the new range is filled with a copy of the
741     /// liveness information in @p CopyFrom.
742     SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
743                                  LaneBitmask LaneMask,
744                                  const LiveRange &CopyFrom) {
745       SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
746       appendSubRange(Range);
747       return Range;
748     }
749
750     /// Returns true if subregister liveness information is available.
751     bool hasSubRanges() const {
752       return SubRanges != nullptr;
753     }
754
755     /// Removes all subregister liveness information.
756     void clearSubRanges();
757
758     /// Removes all subranges without any segments (subranges without segments
759     /// are not considered valid and should only exist temporarily).
760     void removeEmptySubRanges();
761
762     /// getSize - Returns the sum of sizes of all the LiveRange's.
763     ///
764     unsigned getSize() const;
765
766     /// isSpillable - Can this interval be spilled?
767     bool isSpillable() const {
768       return weight != huge_valf;
769     }
770
771     /// markNotSpillable - Mark interval as not spillable
772     void markNotSpillable() {
773       weight = huge_valf;
774     }
775
776     /// For a given lane mask @p LaneMask, compute indexes at which the
777     /// lane is marked undefined by subregister <def,read-undef> definitions.
778     void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
779                                LaneBitmask LaneMask,
780                                const MachineRegisterInfo &MRI,
781                                const SlotIndexes &Indexes) const;
782
783     /// Refines the subranges to support \p LaneMask. This may only be called
784     /// for LI.hasSubrange()==true. Subregister ranges are split or created
785     /// until \p LaneMask can be matched exactly. \p Mod is executed on the
786     /// matching subranges.
787     ///
788     /// Example:
789     ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
790     ///    L000F, refining for mask L0018. Will split the L00F0 lane into
791     ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
792     ///    function will be applied to the L0010 and L0008 subranges.
793     void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
794                          std::function<void(LiveInterval::SubRange&)> Mod);
795
796     bool operator<(const LiveInterval& other) const {
797       const SlotIndex &thisIndex = beginIndex();
798       const SlotIndex &otherIndex = other.beginIndex();
799       return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg);
800     }
801
802     void print(raw_ostream &OS) const;
803     void dump() const;
804
805     /// \brief Walks the interval and assert if any invariants fail to hold.
806     ///
807     /// Note that this is a no-op when asserts are disabled.
808 #ifdef NDEBUG
809     void verify(const MachineRegisterInfo *MRI = nullptr) const {}
810 #else
811     void verify(const MachineRegisterInfo *MRI = nullptr) const;
812 #endif
813
814   private:
815     /// Appends @p Range to SubRanges list.
816     void appendSubRange(SubRange *Range) {
817       Range->Next = SubRanges;
818       SubRanges = Range;
819     }
820
821     /// Free memory held by SubRange.
822     void freeSubRange(SubRange *S);
823   };
824
825   inline raw_ostream &operator<<(raw_ostream &OS,
826                                  const LiveInterval::SubRange &SR) {
827     SR.print(OS);
828     return OS;
829   }
830
831   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
832     LI.print(OS);
833     return OS;
834   }
835
836   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
837
838   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
839     return V < S.start;
840   }
841
842   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
843     return S.start < V;
844   }
845
846   /// Helper class for performant LiveRange bulk updates.
847   ///
848   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
849   /// live ranges because segments after the insertion point may need to be
850   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
851   /// many segments in order.
852   ///
853   /// The LiveRange will be in an invalid state until flush() is called.
854   class LiveRangeUpdater {
855     LiveRange *LR;
856     SlotIndex LastStart;
857     LiveRange::iterator WriteI;
858     LiveRange::iterator ReadI;
859     SmallVector<LiveRange::Segment, 16> Spills;
860     void mergeSpills();
861
862   public:
863     /// Create a LiveRangeUpdater for adding segments to LR.
864     /// LR will temporarily be in an invalid state until flush() is called.
865     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
866
867     ~LiveRangeUpdater() { flush(); }
868
869     /// Add a segment to LR and coalesce when possible, just like
870     /// LR.addSegment(). Segments should be added in increasing start order for
871     /// best performance.
872     void add(LiveRange::Segment);
873
874     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
875       add(LiveRange::Segment(Start, End, VNI));
876     }
877
878     /// Return true if the LR is currently in an invalid state, and flush()
879     /// needs to be called.
880     bool isDirty() const { return LastStart.isValid(); }
881
882     /// Flush the updater state to LR so it is valid and contains all added
883     /// segments.
884     void flush();
885
886     /// Select a different destination live range.
887     void setDest(LiveRange *lr) {
888       if (LR != lr && isDirty())
889         flush();
890       LR = lr;
891     }
892
893     /// Get the current destination live range.
894     LiveRange *getDest() const { return LR; }
895
896     void dump() const;
897     void print(raw_ostream&) const;
898   };
899
900   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
901     X.print(OS);
902     return OS;
903   }
904
905   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
906   /// LiveInterval into equivalence clases of connected components. A
907   /// LiveInterval that has multiple connected components can be broken into
908   /// multiple LiveIntervals.
909   ///
910   /// Given a LiveInterval that may have multiple connected components, run:
911   ///
912   ///   unsigned numComps = ConEQ.Classify(LI);
913   ///   if (numComps > 1) {
914   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
915   ///     ConEQ.Distribute(LIS);
916   /// }
917
918   class ConnectedVNInfoEqClasses {
919     LiveIntervals &LIS;
920     IntEqClasses EqClass;
921
922   public:
923     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
924
925     /// Classify the values in \p LR into connected components.
926     /// Returns the number of connected components.
927     unsigned Classify(const LiveRange &LR);
928
929     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
930     /// the equivalence class assigned the VNI.
931     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
932
933     /// Distribute values in \p LI into a separate LiveIntervals
934     /// for each connected component. LIV must have an empty LiveInterval for
935     /// each additional connected component. The first connected component is
936     /// left in \p LI.
937     void Distribute(LiveInterval &LI, LiveInterval *LIV[],
938                     MachineRegisterInfo &MRI);
939   };
940
941 } // end namespace llvm
942
943 #endif // LLVM_CODEGEN_LIVEINTERVAL_H