]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/CodeGen/LiveIntervals.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / CodeGen / LiveIntervals.h
1 //===- LiveIntervals.h - Live Interval Analysis -----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This file implements the LiveInterval analysis pass.  Given some
11 /// numbering of each the machine instructions (in this implemention depth-first
12 /// order) an interval [i, j) is said to be a live interval for register v if
13 /// there is no instruction with number j' > j such that v is live at j' and
14 /// there is no instruction with number i' < i such that v is live at i'. In
15 /// this implementation intervals can have holes, i.e. an interval might look
16 /// like [1,20), [50,65), [1000,1001).
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_CODEGEN_LIVEINTERVALS_H
21 #define LLVM_CODEGEN_LIVEINTERVALS_H
22
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/LiveInterval.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/MC/LaneBitmask.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstdint>
38 #include <utility>
39
40 namespace llvm {
41
42 extern cl::opt<bool> UseSegmentSetForPhysRegs;
43
44 class BitVector;
45 class LiveRangeCalc;
46 class MachineBlockFrequencyInfo;
47 class MachineDominatorTree;
48 class MachineFunction;
49 class MachineInstr;
50 class MachineRegisterInfo;
51 class raw_ostream;
52 class TargetInstrInfo;
53 class VirtRegMap;
54
55   class LiveIntervals : public MachineFunctionPass {
56     MachineFunction* MF;
57     MachineRegisterInfo* MRI;
58     const TargetRegisterInfo* TRI;
59     const TargetInstrInfo* TII;
60     AliasAnalysis *AA;
61     SlotIndexes* Indexes;
62     MachineDominatorTree *DomTree = nullptr;
63     LiveRangeCalc *LRCalc = nullptr;
64
65     /// Special pool allocator for VNInfo's (LiveInterval val#).
66     VNInfo::Allocator VNInfoAllocator;
67
68     /// Live interval pointers for all the virtual registers.
69     IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
70
71     /// Sorted list of instructions with register mask operands. Always use the
72     /// 'r' slot, RegMasks are normal clobbers, not early clobbers.
73     SmallVector<SlotIndex, 8> RegMaskSlots;
74
75     /// This vector is parallel to RegMaskSlots, it holds a pointer to the
76     /// corresponding register mask.  This pointer can be recomputed as:
77     ///
78     ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
79     ///   unsigned OpNum = findRegMaskOperand(MI);
80     ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
81     ///
82     /// This is kept in a separate vector partly because some standard
83     /// libraries don't support lower_bound() with mixed objects, partly to
84     /// improve locality when searching in RegMaskSlots.
85     /// Also see the comment in LiveInterval::find().
86     SmallVector<const uint32_t*, 8> RegMaskBits;
87
88     /// For each basic block number, keep (begin, size) pairs indexing into the
89     /// RegMaskSlots and RegMaskBits arrays.
90     /// Note that basic block numbers may not be layout contiguous, that's why
91     /// we can't just keep track of the first register mask in each basic
92     /// block.
93     SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
94
95     /// Keeps a live range set for each register unit to track fixed physreg
96     /// interference.
97     SmallVector<LiveRange*, 0> RegUnitRanges;
98
99   public:
100     static char ID;
101
102     LiveIntervals();
103     ~LiveIntervals() override;
104
105     /// Calculate the spill weight to assign to a single instruction.
106     static float getSpillWeight(bool isDef, bool isUse,
107                                 const MachineBlockFrequencyInfo *MBFI,
108                                 const MachineInstr &MI);
109
110     /// Calculate the spill weight to assign to a single instruction.
111     static float getSpillWeight(bool isDef, bool isUse,
112                                 const MachineBlockFrequencyInfo *MBFI,
113                                 const MachineBasicBlock *MBB);
114
115     LiveInterval &getInterval(unsigned Reg) {
116       if (hasInterval(Reg))
117         return *VirtRegIntervals[Reg];
118       else
119         return createAndComputeVirtRegInterval(Reg);
120     }
121
122     const LiveInterval &getInterval(unsigned Reg) const {
123       return const_cast<LiveIntervals*>(this)->getInterval(Reg);
124     }
125
126     bool hasInterval(unsigned Reg) const {
127       return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
128     }
129
130     /// Interval creation.
131     LiveInterval &createEmptyInterval(unsigned Reg) {
132       assert(!hasInterval(Reg) && "Interval already exists!");
133       VirtRegIntervals.grow(Reg);
134       VirtRegIntervals[Reg] = createInterval(Reg);
135       return *VirtRegIntervals[Reg];
136     }
137
138     LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
139       LiveInterval &LI = createEmptyInterval(Reg);
140       computeVirtRegInterval(LI);
141       return LI;
142     }
143
144     /// Interval removal.
145     void removeInterval(unsigned Reg) {
146       delete VirtRegIntervals[Reg];
147       VirtRegIntervals[Reg] = nullptr;
148     }
149
150     /// Given a register and an instruction, adds a live segment from that
151     /// instruction to the end of its MBB.
152     LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
153                                                  MachineInstr &startInst);
154
155     /// After removing some uses of a register, shrink its live range to just
156     /// the remaining uses. This method does not compute reaching defs for new
157     /// uses, and it doesn't remove dead defs.
158     /// Dead PHIDef values are marked as unused. New dead machine instructions
159     /// are added to the dead vector. Returns true if the interval may have been
160     /// separated into multiple connected components.
161     bool shrinkToUses(LiveInterval *li,
162                       SmallVectorImpl<MachineInstr*> *dead = nullptr);
163
164     /// Specialized version of
165     /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
166     /// that works on a subregister live range and only looks at uses matching
167     /// the lane mask of the subregister range.
168     /// This may leave the subrange empty which needs to be cleaned up with
169     /// LiveInterval::removeEmptySubranges() afterwards.
170     void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
171
172     /// Extend the live range \p LR to reach all points in \p Indices. The
173     /// points in the \p Indices array must be jointly dominated by the union
174     /// of the existing defs in \p LR and points in \p Undefs.
175     ///
176     /// PHI-defs are added as needed to maintain SSA form.
177     ///
178     /// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
179     /// will be extended to be live out of the basic block.
180     /// If a SlotIndex in \p Indices is jointy dominated only by points in
181     /// \p Undefs, the live range will not be extended to that point.
182     ///
183     /// See also LiveRangeCalc::extend().
184     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
185                          ArrayRef<SlotIndex> Undefs);
186
187     void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
188       extendToIndices(LR, Indices, /*Undefs=*/{});
189     }
190
191     /// If \p LR has a live value at \p Kill, prune its live range by removing
192     /// any liveness reachable from Kill. Add live range end points to
193     /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
194     /// value's live range.
195     ///
196     /// Calling pruneValue() and extendToIndices() can be used to reconstruct
197     /// SSA form after adding defs to a virtual register.
198     void pruneValue(LiveRange &LR, SlotIndex Kill,
199                     SmallVectorImpl<SlotIndex> *EndPoints);
200
201     /// This function should not be used. Its intent is to tell you that you are
202     /// doing something wrong if you call pruneValue directly on a
203     /// LiveInterval. Indeed, you are supposed to call pruneValue on the main
204     /// LiveRange and all the LiveRanges of the subranges if any.
205     LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
206                                           SmallVectorImpl<SlotIndex> *) {
207       llvm_unreachable(
208           "Use pruneValue on the main LiveRange and on each subrange");
209     }
210
211     SlotIndexes *getSlotIndexes() const {
212       return Indexes;
213     }
214
215     AliasAnalysis *getAliasAnalysis() const {
216       return AA;
217     }
218
219     /// Returns true if the specified machine instr has been removed or was
220     /// never entered in the map.
221     bool isNotInMIMap(const MachineInstr &Instr) const {
222       return !Indexes->hasIndex(Instr);
223     }
224
225     /// Returns the base index of the given instruction.
226     SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
227       return Indexes->getInstructionIndex(Instr);
228     }
229
230     /// Returns the instruction associated with the given index.
231     MachineInstr* getInstructionFromIndex(SlotIndex index) const {
232       return Indexes->getInstructionFromIndex(index);
233     }
234
235     /// Return the first index in the given basic block.
236     SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
237       return Indexes->getMBBStartIdx(mbb);
238     }
239
240     /// Return the last index in the given basic block.
241     SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
242       return Indexes->getMBBEndIdx(mbb);
243     }
244
245     bool isLiveInToMBB(const LiveRange &LR,
246                        const MachineBasicBlock *mbb) const {
247       return LR.liveAt(getMBBStartIdx(mbb));
248     }
249
250     bool isLiveOutOfMBB(const LiveRange &LR,
251                         const MachineBasicBlock *mbb) const {
252       return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
253     }
254
255     MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
256       return Indexes->getMBBFromIndex(index);
257     }
258
259     void insertMBBInMaps(MachineBasicBlock *MBB) {
260       Indexes->insertMBBInMaps(MBB);
261       assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
262              "Blocks must be added in order.");
263       RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
264     }
265
266     SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
267       return Indexes->insertMachineInstrInMaps(MI);
268     }
269
270     void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
271                                        MachineBasicBlock::iterator E) {
272       for (MachineBasicBlock::iterator I = B; I != E; ++I)
273         Indexes->insertMachineInstrInMaps(*I);
274     }
275
276     void RemoveMachineInstrFromMaps(MachineInstr &MI) {
277       Indexes->removeMachineInstrFromMaps(MI);
278     }
279
280     SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
281       return Indexes->replaceMachineInstrInMaps(MI, NewMI);
282     }
283
284     VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
285
286     void getAnalysisUsage(AnalysisUsage &AU) const override;
287     void releaseMemory() override;
288
289     /// Pass entry point; Calculates LiveIntervals.
290     bool runOnMachineFunction(MachineFunction&) override;
291
292     /// Implement the dump method.
293     void print(raw_ostream &O, const Module* = nullptr) const override;
294
295     /// If LI is confined to a single basic block, return a pointer to that
296     /// block.  If LI is live in to or out of any block, return NULL.
297     MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
298
299     /// Returns true if VNI is killed by any PHI-def values in LI.
300     /// This may conservatively return true to avoid expensive computations.
301     bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
302
303     /// Add kill flags to any instruction that kills a virtual register.
304     void addKillFlags(const VirtRegMap*);
305
306     /// Call this method to notify LiveIntervals that instruction \p MI has been
307     /// moved within a basic block. This will update the live intervals for all
308     /// operands of \p MI. Moves between basic blocks are not supported.
309     ///
310     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
311     void handleMove(MachineInstr &MI, bool UpdateFlags = false);
312
313     /// Update intervals for operands of \p MI so that they begin/end on the
314     /// SlotIndex for \p BundleStart.
315     ///
316     /// \param UpdateFlags Update live intervals for nonallocatable physregs.
317     ///
318     /// Requires MI and BundleStart to have SlotIndexes, and assumes
319     /// existing liveness is accurate. BundleStart should be the first
320     /// instruction in the Bundle.
321     void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
322                               bool UpdateFlags = false);
323
324     /// Update live intervals for instructions in a range of iterators. It is
325     /// intended for use after target hooks that may insert or remove
326     /// instructions, and is only efficient for a small number of instructions.
327     ///
328     /// OrigRegs is a vector of registers that were originally used by the
329     /// instructions in the range between the two iterators.
330     ///
331     /// Currently, the only only changes that are supported are simple removal
332     /// and addition of uses.
333     void repairIntervalsInRange(MachineBasicBlock *MBB,
334                                 MachineBasicBlock::iterator Begin,
335                                 MachineBasicBlock::iterator End,
336                                 ArrayRef<unsigned> OrigRegs);
337
338     // Register mask functions.
339     //
340     // Machine instructions may use a register mask operand to indicate that a
341     // large number of registers are clobbered by the instruction.  This is
342     // typically used for calls.
343     //
344     // For compile time performance reasons, these clobbers are not recorded in
345     // the live intervals for individual physical registers.  Instead,
346     // LiveIntervalAnalysis maintains a sorted list of instructions with
347     // register mask operands.
348
349     /// Returns a sorted array of slot indices of all instructions with
350     /// register mask operands.
351     ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
352
353     /// Returns a sorted array of slot indices of all instructions with register
354     /// mask operands in the basic block numbered \p MBBNum.
355     ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
356       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
357       return getRegMaskSlots().slice(P.first, P.second);
358     }
359
360     /// Returns an array of register mask pointers corresponding to
361     /// getRegMaskSlots().
362     ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
363
364     /// Returns an array of mask pointers corresponding to
365     /// getRegMaskSlotsInBlock(MBBNum).
366     ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
367       std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
368       return getRegMaskBits().slice(P.first, P.second);
369     }
370
371     /// Test if \p LI is live across any register mask instructions, and
372     /// compute a bit mask of physical registers that are not clobbered by any
373     /// of them.
374     ///
375     /// Returns false if \p LI doesn't cross any register mask instructions. In
376     /// that case, the bit vector is not filled in.
377     bool checkRegMaskInterference(LiveInterval &LI,
378                                   BitVector &UsableRegs);
379
380     // Register unit functions.
381     //
382     // Fixed interference occurs when MachineInstrs use physregs directly
383     // instead of virtual registers. This typically happens when passing
384     // arguments to a function call, or when instructions require operands in
385     // fixed registers.
386     //
387     // Each physreg has one or more register units, see MCRegisterInfo. We
388     // track liveness per register unit to handle aliasing registers more
389     // efficiently.
390
391     /// Return the live range for register unit \p Unit. It will be computed if
392     /// it doesn't exist.
393     LiveRange &getRegUnit(unsigned Unit) {
394       LiveRange *LR = RegUnitRanges[Unit];
395       if (!LR) {
396         // Compute missing ranges on demand.
397         // Use segment set to speed-up initial computation of the live range.
398         RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
399         computeRegUnitRange(*LR, Unit);
400       }
401       return *LR;
402     }
403
404     /// Return the live range for register unit \p Unit if it has already been
405     /// computed, or nullptr if it hasn't been computed yet.
406     LiveRange *getCachedRegUnit(unsigned Unit) {
407       return RegUnitRanges[Unit];
408     }
409
410     const LiveRange *getCachedRegUnit(unsigned Unit) const {
411       return RegUnitRanges[Unit];
412     }
413
414     /// Remove computed live range for register unit \p Unit. Subsequent uses
415     /// should rely on on-demand recomputation.
416     void removeRegUnit(unsigned Unit) {
417       delete RegUnitRanges[Unit];
418       RegUnitRanges[Unit] = nullptr;
419     }
420
421     /// Remove value numbers and related live segments starting at position
422     /// \p Pos that are part of any liverange of physical register \p Reg or one
423     /// of its subregisters.
424     void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
425
426     /// Remove value number and related live segments of \p LI and its subranges
427     /// that start at position \p Pos.
428     void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
429
430     /// Split separate components in LiveInterval \p LI into separate intervals.
431     void splitSeparateComponents(LiveInterval &LI,
432                                  SmallVectorImpl<LiveInterval*> &SplitLIs);
433
434     /// For live interval \p LI with correct SubRanges construct matching
435     /// information for the main live range. Expects the main live range to not
436     /// have any segments or value numbers.
437     void constructMainRangeFromSubranges(LiveInterval &LI);
438
439   private:
440     /// Compute live intervals for all virtual registers.
441     void computeVirtRegs();
442
443     /// Compute RegMaskSlots and RegMaskBits.
444     void computeRegMasks();
445
446     /// Walk the values in \p LI and check for dead values:
447     /// - Dead PHIDef values are marked as unused.
448     /// - Dead operands are marked as such.
449     /// - Completely dead machine instructions are added to the \p dead vector
450     ///   if it is not nullptr.
451     /// Returns true if any PHI value numbers have been removed which may
452     /// have separated the interval into multiple connected components.
453     bool computeDeadValues(LiveInterval &LI,
454                            SmallVectorImpl<MachineInstr*> *dead);
455
456     static LiveInterval* createInterval(unsigned Reg);
457
458     void printInstrs(raw_ostream &O) const;
459     void dumpInstrs() const;
460
461     void computeLiveInRegUnits();
462     void computeRegUnitRange(LiveRange&, unsigned Unit);
463     void computeVirtRegInterval(LiveInterval&);
464
465     using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>;
466     void extendSegmentsToUses(LiveRange &Segments,
467                               ShrinkToUsesWorkList &WorkList, unsigned Reg,
468                               LaneBitmask LaneMask);
469
470     /// Helper function for repairIntervalsInRange(), walks backwards and
471     /// creates/modifies live segments in \p LR to match the operands found.
472     /// Only full operands or operands with subregisters matching \p LaneMask
473     /// are considered.
474     void repairOldRegInRange(MachineBasicBlock::iterator Begin,
475                              MachineBasicBlock::iterator End,
476                              const SlotIndex endIdx, LiveRange &LR,
477                              unsigned Reg,
478                              LaneBitmask LaneMask = LaneBitmask::getAll());
479
480     class HMEditor;
481   };
482
483 } // end namespace llvm
484
485 #endif