]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/CodeGen/MachineRegisterInfo.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / CodeGen / MachineRegisterInfo.h
1 //===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/IndexedMap.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
26 #include "llvm/CodeGen/LowLevelType.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/LaneBitmask.h"
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <memory>
39 #include <utility>
40 #include <vector>
41
42 namespace llvm {
43
44 class PSetIterator;
45
46 /// Convenient type to represent either a register class or a register bank.
47 using RegClassOrRegBank =
48     PointerUnion<const TargetRegisterClass *, const RegisterBank *>;
49
50 /// MachineRegisterInfo - Keep track of information for virtual and physical
51 /// registers, including vreg register classes, use/def chains for registers,
52 /// etc.
53 class MachineRegisterInfo {
54 public:
55   class Delegate {
56     virtual void anchor();
57
58   public:
59     virtual ~Delegate() = default;
60
61     virtual void MRI_NoteNewVirtualRegister(unsigned Reg) = 0;
62   };
63
64 private:
65   MachineFunction *MF;
66   Delegate *TheDelegate = nullptr;
67
68   /// True if subregister liveness is tracked.
69   const bool TracksSubRegLiveness;
70
71   /// VRegInfo - Information we keep for each virtual register.
72   ///
73   /// Each element in this list contains the register class of the vreg and the
74   /// start of the use/def list for the register.
75   IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>,
76              VirtReg2IndexFunctor>
77       VRegInfo;
78
79   /// Map for recovering vreg name from vreg number.
80   /// This map is used by the MIR Printer.
81   IndexedMap<std::string, VirtReg2IndexFunctor> VReg2Name;
82
83   /// StringSet that is used to unique vreg names.
84   StringSet<> VRegNames;
85
86   /// The flag is true upon \p UpdatedCSRs initialization
87   /// and false otherwise.
88   bool IsUpdatedCSRsInitialized;
89
90   /// Contains the updated callee saved register list.
91   /// As opposed to the static list defined in register info,
92   /// all registers that were disabled are removed from the list.
93   SmallVector<MCPhysReg, 16> UpdatedCSRs;
94
95   /// RegAllocHints - This vector records register allocation hints for
96   /// virtual registers. For each virtual register, it keeps a pair of hint
97   /// type and hints vector making up the allocation hints. Only the first
98   /// hint may be target specific, and in that case this is reflected by the
99   /// first member of the pair being non-zero. If the hinted register is
100   /// virtual, it means the allocator should prefer the physical register
101   /// allocated to it if any.
102   IndexedMap<std::pair<unsigned, SmallVector<unsigned, 4>>,
103              VirtReg2IndexFunctor> RegAllocHints;
104
105   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
106   /// physical registers.
107   std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists;
108
109   /// getRegUseDefListHead - Return the head pointer for the register use/def
110   /// list for the specified virtual or physical register.
111   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
112     if (TargetRegisterInfo::isVirtualRegister(RegNo))
113       return VRegInfo[RegNo].second;
114     return PhysRegUseDefLists[RegNo];
115   }
116
117   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
118     if (TargetRegisterInfo::isVirtualRegister(RegNo))
119       return VRegInfo[RegNo].second;
120     return PhysRegUseDefLists[RegNo];
121   }
122
123   /// Get the next element in the use-def chain.
124   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
125     assert(MO && MO->isReg() && "This is not a register operand!");
126     return MO->Contents.Reg.Next;
127   }
128
129   /// UsedPhysRegMask - Additional used physregs including aliases.
130   /// This bit vector represents all the registers clobbered by function calls.
131   BitVector UsedPhysRegMask;
132
133   /// ReservedRegs - This is a bit vector of reserved registers.  The target
134   /// may change its mind about which registers should be reserved.  This
135   /// vector is the frozen set of reserved registers when register allocation
136   /// started.
137   BitVector ReservedRegs;
138
139   using VRegToTypeMap = IndexedMap<LLT, VirtReg2IndexFunctor>;
140   /// Map generic virtual registers to their low-level type.
141   VRegToTypeMap VRegToType;
142
143   /// Keep track of the physical registers that are live in to the function.
144   /// Live in values are typically arguments in registers.  LiveIn values are
145   /// allowed to have virtual registers associated with them, stored in the
146   /// second element.
147   std::vector<std::pair<unsigned, unsigned>> LiveIns;
148
149 public:
150   explicit MachineRegisterInfo(MachineFunction *MF);
151   MachineRegisterInfo(const MachineRegisterInfo &) = delete;
152   MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete;
153
154   const TargetRegisterInfo *getTargetRegisterInfo() const {
155     return MF->getSubtarget().getRegisterInfo();
156   }
157
158   void resetDelegate(Delegate *delegate) {
159     // Ensure another delegate does not take over unless the current
160     // delegate first unattaches itself. If we ever need to multicast
161     // notifications, we will need to change to using a list.
162     assert(TheDelegate == delegate &&
163            "Only the current delegate can perform reset!");
164     TheDelegate = nullptr;
165   }
166
167   void setDelegate(Delegate *delegate) {
168     assert(delegate && !TheDelegate &&
169            "Attempted to set delegate to null, or to change it without "
170            "first resetting it!");
171
172     TheDelegate = delegate;
173   }
174
175   //===--------------------------------------------------------------------===//
176   // Function State
177   //===--------------------------------------------------------------------===//
178
179   // isSSA - Returns true when the machine function is in SSA form. Early
180   // passes require the machine function to be in SSA form where every virtual
181   // register has a single defining instruction.
182   //
183   // The TwoAddressInstructionPass and PHIElimination passes take the machine
184   // function out of SSA form when they introduce multiple defs per virtual
185   // register.
186   bool isSSA() const {
187     return MF->getProperties().hasProperty(
188         MachineFunctionProperties::Property::IsSSA);
189   }
190
191   // leaveSSA - Indicates that the machine function is no longer in SSA form.
192   void leaveSSA() {
193     MF->getProperties().reset(MachineFunctionProperties::Property::IsSSA);
194   }
195
196   /// tracksLiveness - Returns true when tracking register liveness accurately.
197   /// (see MachineFUnctionProperties::Property description for details)
198   bool tracksLiveness() const {
199     return MF->getProperties().hasProperty(
200         MachineFunctionProperties::Property::TracksLiveness);
201   }
202
203   /// invalidateLiveness - Indicates that register liveness is no longer being
204   /// tracked accurately.
205   ///
206   /// This should be called by late passes that invalidate the liveness
207   /// information.
208   void invalidateLiveness() {
209     MF->getProperties().reset(
210         MachineFunctionProperties::Property::TracksLiveness);
211   }
212
213   /// Returns true if liveness for register class @p RC should be tracked at
214   /// the subregister level.
215   bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const {
216     return subRegLivenessEnabled() && RC.HasDisjunctSubRegs;
217   }
218   bool shouldTrackSubRegLiveness(unsigned VReg) const {
219     assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Must pass a VReg");
220     return shouldTrackSubRegLiveness(*getRegClass(VReg));
221   }
222   bool subRegLivenessEnabled() const {
223     return TracksSubRegLiveness;
224   }
225
226   //===--------------------------------------------------------------------===//
227   // Register Info
228   //===--------------------------------------------------------------------===//
229
230   /// Returns true if the updated CSR list was initialized and false otherwise.
231   bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; }
232
233   /// Disables the register from the list of CSRs.
234   /// I.e. the register will not appear as part of the CSR mask.
235   /// \see UpdatedCalleeSavedRegs.
236   void disableCalleeSavedRegister(unsigned Reg);
237
238   /// Returns list of callee saved registers.
239   /// The function returns the updated CSR list (after taking into account
240   /// registers that are disabled from the CSR list).
241   const MCPhysReg *getCalleeSavedRegs() const;
242
243   /// Sets the updated Callee Saved Registers list.
244   /// Notice that it will override ant previously disabled/saved CSRs.
245   void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs);
246
247   // Strictly for use by MachineInstr.cpp.
248   void addRegOperandToUseList(MachineOperand *MO);
249
250   // Strictly for use by MachineInstr.cpp.
251   void removeRegOperandFromUseList(MachineOperand *MO);
252
253   // Strictly for use by MachineInstr.cpp.
254   void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps);
255
256   /// Verify the sanity of the use list for Reg.
257   void verifyUseList(unsigned Reg) const;
258
259   /// Verify the use list of all registers.
260   void verifyUseLists() const;
261
262   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
263   /// and uses of a register within the MachineFunction that corresponds to this
264   /// MachineRegisterInfo object.
265   template<bool Uses, bool Defs, bool SkipDebug,
266            bool ByOperand, bool ByInstr, bool ByBundle>
267   class defusechain_iterator;
268   template<bool Uses, bool Defs, bool SkipDebug,
269            bool ByOperand, bool ByInstr, bool ByBundle>
270   class defusechain_instr_iterator;
271
272   // Make it a friend so it can access getNextOperandForReg().
273   template<bool, bool, bool, bool, bool, bool>
274     friend class defusechain_iterator;
275   template<bool, bool, bool, bool, bool, bool>
276     friend class defusechain_instr_iterator;
277
278   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
279   /// register.
280   using reg_iterator =
281       defusechain_iterator<true, true, false, true, false, false>;
282   reg_iterator reg_begin(unsigned RegNo) const {
283     return reg_iterator(getRegUseDefListHead(RegNo));
284   }
285   static reg_iterator reg_end() { return reg_iterator(nullptr); }
286
287   inline iterator_range<reg_iterator>  reg_operands(unsigned Reg) const {
288     return make_range(reg_begin(Reg), reg_end());
289   }
290
291   /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses
292   /// of the specified register, stepping by MachineInstr.
293   using reg_instr_iterator =
294       defusechain_instr_iterator<true, true, false, false, true, false>;
295   reg_instr_iterator reg_instr_begin(unsigned RegNo) const {
296     return reg_instr_iterator(getRegUseDefListHead(RegNo));
297   }
298   static reg_instr_iterator reg_instr_end() {
299     return reg_instr_iterator(nullptr);
300   }
301
302   inline iterator_range<reg_instr_iterator>
303   reg_instructions(unsigned Reg) const {
304     return make_range(reg_instr_begin(Reg), reg_instr_end());
305   }
306
307   /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses
308   /// of the specified register, stepping by bundle.
309   using reg_bundle_iterator =
310       defusechain_instr_iterator<true, true, false, false, false, true>;
311   reg_bundle_iterator reg_bundle_begin(unsigned RegNo) const {
312     return reg_bundle_iterator(getRegUseDefListHead(RegNo));
313   }
314   static reg_bundle_iterator reg_bundle_end() {
315     return reg_bundle_iterator(nullptr);
316   }
317
318   inline iterator_range<reg_bundle_iterator> reg_bundles(unsigned Reg) const {
319     return make_range(reg_bundle_begin(Reg), reg_bundle_end());
320   }
321
322   /// reg_empty - Return true if there are no instructions using or defining the
323   /// specified register (it may be live-in).
324   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
325
326   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
327   /// of the specified register, skipping those marked as Debug.
328   using reg_nodbg_iterator =
329       defusechain_iterator<true, true, true, true, false, false>;
330   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
331     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
332   }
333   static reg_nodbg_iterator reg_nodbg_end() {
334     return reg_nodbg_iterator(nullptr);
335   }
336
337   inline iterator_range<reg_nodbg_iterator>
338   reg_nodbg_operands(unsigned Reg) const {
339     return make_range(reg_nodbg_begin(Reg), reg_nodbg_end());
340   }
341
342   /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk
343   /// all defs and uses of the specified register, stepping by MachineInstr,
344   /// skipping those marked as Debug.
345   using reg_instr_nodbg_iterator =
346       defusechain_instr_iterator<true, true, true, false, true, false>;
347   reg_instr_nodbg_iterator reg_instr_nodbg_begin(unsigned RegNo) const {
348     return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
349   }
350   static reg_instr_nodbg_iterator reg_instr_nodbg_end() {
351     return reg_instr_nodbg_iterator(nullptr);
352   }
353
354   inline iterator_range<reg_instr_nodbg_iterator>
355   reg_nodbg_instructions(unsigned Reg) const {
356     return make_range(reg_instr_nodbg_begin(Reg), reg_instr_nodbg_end());
357   }
358
359   /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk
360   /// all defs and uses of the specified register, stepping by bundle,
361   /// skipping those marked as Debug.
362   using reg_bundle_nodbg_iterator =
363       defusechain_instr_iterator<true, true, true, false, false, true>;
364   reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(unsigned RegNo) const {
365     return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
366   }
367   static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() {
368     return reg_bundle_nodbg_iterator(nullptr);
369   }
370
371   inline iterator_range<reg_bundle_nodbg_iterator>
372   reg_nodbg_bundles(unsigned Reg) const {
373     return make_range(reg_bundle_nodbg_begin(Reg), reg_bundle_nodbg_end());
374   }
375
376   /// reg_nodbg_empty - Return true if the only instructions using or defining
377   /// Reg are Debug instructions.
378   bool reg_nodbg_empty(unsigned RegNo) const {
379     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
380   }
381
382   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
383   using def_iterator =
384       defusechain_iterator<false, true, false, true, false, false>;
385   def_iterator def_begin(unsigned RegNo) const {
386     return def_iterator(getRegUseDefListHead(RegNo));
387   }
388   static def_iterator def_end() { return def_iterator(nullptr); }
389
390   inline iterator_range<def_iterator> def_operands(unsigned Reg) const {
391     return make_range(def_begin(Reg), def_end());
392   }
393
394   /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the
395   /// specified register, stepping by MachineInst.
396   using def_instr_iterator =
397       defusechain_instr_iterator<false, true, false, false, true, false>;
398   def_instr_iterator def_instr_begin(unsigned RegNo) const {
399     return def_instr_iterator(getRegUseDefListHead(RegNo));
400   }
401   static def_instr_iterator def_instr_end() {
402     return def_instr_iterator(nullptr);
403   }
404
405   inline iterator_range<def_instr_iterator>
406   def_instructions(unsigned Reg) const {
407     return make_range(def_instr_begin(Reg), def_instr_end());
408   }
409
410   /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the
411   /// specified register, stepping by bundle.
412   using def_bundle_iterator =
413       defusechain_instr_iterator<false, true, false, false, false, true>;
414   def_bundle_iterator def_bundle_begin(unsigned RegNo) const {
415     return def_bundle_iterator(getRegUseDefListHead(RegNo));
416   }
417   static def_bundle_iterator def_bundle_end() {
418     return def_bundle_iterator(nullptr);
419   }
420
421   inline iterator_range<def_bundle_iterator> def_bundles(unsigned Reg) const {
422     return make_range(def_bundle_begin(Reg), def_bundle_end());
423   }
424
425   /// def_empty - Return true if there are no instructions defining the
426   /// specified register (it may be live-in).
427   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
428
429   StringRef getVRegName(unsigned Reg) const {
430     return VReg2Name.inBounds(Reg) ? StringRef(VReg2Name[Reg]) : "";
431   }
432
433   void insertVRegByName(StringRef Name, unsigned Reg) {
434     assert((Name.empty() || VRegNames.find(Name) == VRegNames.end()) &&
435            "Named VRegs Must be Unique.");
436     if (!Name.empty()) {
437       VRegNames.insert(Name);
438       VReg2Name.grow(Reg);
439       VReg2Name[Reg] = Name.str();
440     }
441   }
442
443   /// Return true if there is exactly one operand defining the specified
444   /// register.
445   bool hasOneDef(unsigned RegNo) const {
446     def_iterator DI = def_begin(RegNo);
447     if (DI == def_end())
448       return false;
449     return ++DI == def_end();
450   }
451
452   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
453   using use_iterator =
454       defusechain_iterator<true, false, false, true, false, false>;
455   use_iterator use_begin(unsigned RegNo) const {
456     return use_iterator(getRegUseDefListHead(RegNo));
457   }
458   static use_iterator use_end() { return use_iterator(nullptr); }
459
460   inline iterator_range<use_iterator> use_operands(unsigned Reg) const {
461     return make_range(use_begin(Reg), use_end());
462   }
463
464   /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the
465   /// specified register, stepping by MachineInstr.
466   using use_instr_iterator =
467       defusechain_instr_iterator<true, false, false, false, true, false>;
468   use_instr_iterator use_instr_begin(unsigned RegNo) const {
469     return use_instr_iterator(getRegUseDefListHead(RegNo));
470   }
471   static use_instr_iterator use_instr_end() {
472     return use_instr_iterator(nullptr);
473   }
474
475   inline iterator_range<use_instr_iterator>
476   use_instructions(unsigned Reg) const {
477     return make_range(use_instr_begin(Reg), use_instr_end());
478   }
479
480   /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the
481   /// specified register, stepping by bundle.
482   using use_bundle_iterator =
483       defusechain_instr_iterator<true, false, false, false, false, true>;
484   use_bundle_iterator use_bundle_begin(unsigned RegNo) const {
485     return use_bundle_iterator(getRegUseDefListHead(RegNo));
486   }
487   static use_bundle_iterator use_bundle_end() {
488     return use_bundle_iterator(nullptr);
489   }
490
491   inline iterator_range<use_bundle_iterator> use_bundles(unsigned Reg) const {
492     return make_range(use_bundle_begin(Reg), use_bundle_end());
493   }
494
495   /// use_empty - Return true if there are no instructions using the specified
496   /// register.
497   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
498
499   /// hasOneUse - Return true if there is exactly one instruction using the
500   /// specified register.
501   bool hasOneUse(unsigned RegNo) const {
502     use_iterator UI = use_begin(RegNo);
503     if (UI == use_end())
504       return false;
505     return ++UI == use_end();
506   }
507
508   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
509   /// specified register, skipping those marked as Debug.
510   using use_nodbg_iterator =
511       defusechain_iterator<true, false, true, true, false, false>;
512   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
513     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
514   }
515   static use_nodbg_iterator use_nodbg_end() {
516     return use_nodbg_iterator(nullptr);
517   }
518
519   inline iterator_range<use_nodbg_iterator>
520   use_nodbg_operands(unsigned Reg) const {
521     return make_range(use_nodbg_begin(Reg), use_nodbg_end());
522   }
523
524   /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk
525   /// all uses of the specified register, stepping by MachineInstr, skipping
526   /// those marked as Debug.
527   using use_instr_nodbg_iterator =
528       defusechain_instr_iterator<true, false, true, false, true, false>;
529   use_instr_nodbg_iterator use_instr_nodbg_begin(unsigned RegNo) const {
530     return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo));
531   }
532   static use_instr_nodbg_iterator use_instr_nodbg_end() {
533     return use_instr_nodbg_iterator(nullptr);
534   }
535
536   inline iterator_range<use_instr_nodbg_iterator>
537   use_nodbg_instructions(unsigned Reg) const {
538     return make_range(use_instr_nodbg_begin(Reg), use_instr_nodbg_end());
539   }
540
541   /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk
542   /// all uses of the specified register, stepping by bundle, skipping
543   /// those marked as Debug.
544   using use_bundle_nodbg_iterator =
545       defusechain_instr_iterator<true, false, true, false, false, true>;
546   use_bundle_nodbg_iterator use_bundle_nodbg_begin(unsigned RegNo) const {
547     return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo));
548   }
549   static use_bundle_nodbg_iterator use_bundle_nodbg_end() {
550     return use_bundle_nodbg_iterator(nullptr);
551   }
552
553   inline iterator_range<use_bundle_nodbg_iterator>
554   use_nodbg_bundles(unsigned Reg) const {
555     return make_range(use_bundle_nodbg_begin(Reg), use_bundle_nodbg_end());
556   }
557
558   /// use_nodbg_empty - Return true if there are no non-Debug instructions
559   /// using the specified register.
560   bool use_nodbg_empty(unsigned RegNo) const {
561     return use_nodbg_begin(RegNo) == use_nodbg_end();
562   }
563
564   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
565   /// instruction using the specified register.
566   bool hasOneNonDBGUse(unsigned RegNo) const;
567
568   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
569   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
570   /// except that it also changes any definitions of the register as well.
571   ///
572   /// Note that it is usually necessary to first constrain ToReg's register
573   /// class and register bank to match the FromReg constraints using one of the
574   /// methods:
575   ///
576   ///   constrainRegClass(ToReg, getRegClass(FromReg))
577   ///   constrainRegAttrs(ToReg, FromReg)
578   ///   RegisterBankInfo::constrainGenericRegister(ToReg,
579   ///       *MRI.getRegClass(FromReg), MRI)
580   ///
581   /// These functions will return a falsy result if the virtual registers have
582   /// incompatible constraints.
583   ///
584   /// Note that if ToReg is a physical register the function will replace and
585   /// apply sub registers to ToReg in order to obtain a final/proper physical
586   /// register.
587   void replaceRegWith(unsigned FromReg, unsigned ToReg);
588
589   /// getVRegDef - Return the machine instr that defines the specified virtual
590   /// register or null if none is found.  This assumes that the code is in SSA
591   /// form, so there should only be one definition.
592   MachineInstr *getVRegDef(unsigned Reg) const;
593
594   /// getUniqueVRegDef - Return the unique machine instr that defines the
595   /// specified virtual register or null if none is found.  If there are
596   /// multiple definitions or no definition, return null.
597   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
598
599   /// clearKillFlags - Iterate over all the uses of the given register and
600   /// clear the kill flag from the MachineOperand. This function is used by
601   /// optimization passes which extend register lifetimes and need only
602   /// preserve conservative kill flag information.
603   void clearKillFlags(unsigned Reg) const;
604
605   void dumpUses(unsigned RegNo) const;
606
607   /// Returns true if PhysReg is unallocatable and constant throughout the
608   /// function. Writing to a constant register has no effect.
609   bool isConstantPhysReg(unsigned PhysReg) const;
610
611   /// Returns true if either isConstantPhysReg or TRI->isCallerPreservedPhysReg
612   /// returns true. This is a utility member function.
613   bool isCallerPreservedOrConstPhysReg(unsigned PhysReg) const;
614
615   /// Get an iterator over the pressure sets affected by the given physical or
616   /// virtual register. If RegUnit is physical, it must be a register unit (from
617   /// MCRegUnitIterator).
618   PSetIterator getPressureSets(unsigned RegUnit) const;
619
620   //===--------------------------------------------------------------------===//
621   // Virtual Register Info
622   //===--------------------------------------------------------------------===//
623
624   /// Return the register class of the specified virtual register.
625   /// This shouldn't be used directly unless \p Reg has a register class.
626   /// \see getRegClassOrNull when this might happen.
627   const TargetRegisterClass *getRegClass(unsigned Reg) const {
628     assert(VRegInfo[Reg].first.is<const TargetRegisterClass *>() &&
629            "Register class not set, wrong accessor");
630     return VRegInfo[Reg].first.get<const TargetRegisterClass *>();
631   }
632
633   /// Return the register class of \p Reg, or null if Reg has not been assigned
634   /// a register class yet.
635   ///
636   /// \note A null register class can only happen when these two
637   /// conditions are met:
638   /// 1. Generic virtual registers are created.
639   /// 2. The machine function has not completely been through the
640   ///    instruction selection process.
641   /// None of this condition is possible without GlobalISel for now.
642   /// In other words, if GlobalISel is not used or if the query happens after
643   /// the select pass, using getRegClass is safe.
644   const TargetRegisterClass *getRegClassOrNull(unsigned Reg) const {
645     const RegClassOrRegBank &Val = VRegInfo[Reg].first;
646     return Val.dyn_cast<const TargetRegisterClass *>();
647   }
648
649   /// Return the register bank of \p Reg, or null if Reg has not been assigned
650   /// a register bank or has been assigned a register class.
651   /// \note It is possible to get the register bank from the register class via
652   /// RegisterBankInfo::getRegBankFromRegClass.
653   const RegisterBank *getRegBankOrNull(unsigned Reg) const {
654     const RegClassOrRegBank &Val = VRegInfo[Reg].first;
655     return Val.dyn_cast<const RegisterBank *>();
656   }
657
658   /// Return the register bank or register class of \p Reg.
659   /// \note Before the register bank gets assigned (i.e., before the
660   /// RegBankSelect pass) \p Reg may not have either.
661   const RegClassOrRegBank &getRegClassOrRegBank(unsigned Reg) const {
662     return VRegInfo[Reg].first;
663   }
664
665   /// setRegClass - Set the register class of the specified virtual register.
666   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
667
668   /// Set the register bank to \p RegBank for \p Reg.
669   void setRegBank(unsigned Reg, const RegisterBank &RegBank);
670
671   void setRegClassOrRegBank(unsigned Reg,
672                             const RegClassOrRegBank &RCOrRB){
673     VRegInfo[Reg].first = RCOrRB;
674   }
675
676   /// constrainRegClass - Constrain the register class of the specified virtual
677   /// register to be a common subclass of RC and the current register class,
678   /// but only if the new class has at least MinNumRegs registers.  Return the
679   /// new register class, or NULL if no such class exists.
680   /// This should only be used when the constraint is known to be trivial, like
681   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
682   ///
683   /// \note Assumes that the register has a register class assigned.
684   /// Use RegisterBankInfo::constrainGenericRegister in GlobalISel's
685   /// InstructionSelect pass and constrainRegAttrs in every other pass,
686   /// including non-select passes of GlobalISel, instead.
687   const TargetRegisterClass *constrainRegClass(unsigned Reg,
688                                                const TargetRegisterClass *RC,
689                                                unsigned MinNumRegs = 0);
690
691   /// Constrain the register class or the register bank of the virtual register
692   /// \p Reg (and low-level type) to be a common subclass or a common bank of
693   /// both registers provided respectively (and a common low-level type). Do
694   /// nothing if any of the attributes (classes, banks, or low-level types) of
695   /// the registers are deemed incompatible, or if the resulting register will
696   /// have a class smaller than before and of size less than \p MinNumRegs.
697   /// Return true if such register attributes exist, false otherwise.
698   ///
699   /// \note Use this method instead of constrainRegClass and
700   /// RegisterBankInfo::constrainGenericRegister everywhere but SelectionDAG
701   /// ISel / FastISel and GlobalISel's InstructionSelect pass respectively.
702   bool constrainRegAttrs(unsigned Reg, unsigned ConstrainingReg,
703                          unsigned MinNumRegs = 0);
704
705   /// recomputeRegClass - Try to find a legal super-class of Reg's register
706   /// class that still satisfies the constraints from the instructions using
707   /// Reg.  Returns true if Reg was upgraded.
708   ///
709   /// This method can be used after constraints have been removed from a
710   /// virtual register, for example after removing instructions or splitting
711   /// the live range.
712   bool recomputeRegClass(unsigned Reg);
713
714   /// createVirtualRegister - Create and return a new virtual register in the
715   /// function with the specified register class.
716   unsigned createVirtualRegister(const TargetRegisterClass *RegClass,
717                                  StringRef Name = "");
718
719   /// Create and return a new virtual register in the function with the same
720   /// attributes as the given register.
721   unsigned cloneVirtualRegister(unsigned VReg, StringRef Name = "");
722
723   /// Get the low-level type of \p Reg or LLT{} if Reg is not a generic
724   /// (target independent) virtual register.
725   LLT getType(unsigned Reg) const {
726     if (TargetRegisterInfo::isVirtualRegister(Reg) && VRegToType.inBounds(Reg))
727       return VRegToType[Reg];
728     return LLT{};
729   }
730
731   /// Set the low-level type of \p VReg to \p Ty.
732   void setType(unsigned VReg, LLT Ty);
733
734   /// Create and return a new generic virtual register with low-level
735   /// type \p Ty.
736   unsigned createGenericVirtualRegister(LLT Ty, StringRef Name = "");
737
738   /// Remove all types associated to virtual registers (after instruction
739   /// selection and constraining of all generic virtual registers).
740   void clearVirtRegTypes();
741
742   /// Creates a new virtual register that has no register class, register bank
743   /// or size assigned yet. This is only allowed to be used
744   /// temporarily while constructing machine instructions. Most operations are
745   /// undefined on an incomplete register until one of setRegClass(),
746   /// setRegBank() or setSize() has been called on it.
747   unsigned createIncompleteVirtualRegister(StringRef Name = "");
748
749   /// getNumVirtRegs - Return the number of virtual registers created.
750   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
751
752   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
753   void clearVirtRegs();
754
755   /// setRegAllocationHint - Specify a register allocation hint for the
756   /// specified virtual register. This is typically used by target, and in case
757   /// of an earlier hint it will be overwritten.
758   void setRegAllocationHint(unsigned VReg, unsigned Type, unsigned PrefReg) {
759     assert(TargetRegisterInfo::isVirtualRegister(VReg));
760     RegAllocHints[VReg].first  = Type;
761     RegAllocHints[VReg].second.clear();
762     RegAllocHints[VReg].second.push_back(PrefReg);
763   }
764
765   /// addRegAllocationHint - Add a register allocation hint to the hints
766   /// vector for VReg.
767   void addRegAllocationHint(unsigned VReg, unsigned PrefReg) {
768     assert(TargetRegisterInfo::isVirtualRegister(VReg));
769     RegAllocHints[VReg].second.push_back(PrefReg);
770   }
771
772   /// Specify the preferred (target independent) register allocation hint for
773   /// the specified virtual register.
774   void setSimpleHint(unsigned VReg, unsigned PrefReg) {
775     setRegAllocationHint(VReg, /*Type=*/0, PrefReg);
776   }
777
778   void clearSimpleHint(unsigned VReg) {
779     assert (RegAllocHints[VReg].first == 0 &&
780             "Expected to clear a non-target hint!");
781     RegAllocHints[VReg].second.clear();
782   }
783
784   /// getRegAllocationHint - Return the register allocation hint for the
785   /// specified virtual register. If there are many hints, this returns the
786   /// one with the greatest weight.
787   std::pair<unsigned, unsigned>
788   getRegAllocationHint(unsigned VReg) const {
789     assert(TargetRegisterInfo::isVirtualRegister(VReg));
790     unsigned BestHint = (RegAllocHints[VReg].second.size() ?
791                          RegAllocHints[VReg].second[0] : 0);
792     return std::pair<unsigned, unsigned>(RegAllocHints[VReg].first, BestHint);
793   }
794
795   /// getSimpleHint - same as getRegAllocationHint except it will only return
796   /// a target independent hint.
797   unsigned getSimpleHint(unsigned VReg) const {
798     assert(TargetRegisterInfo::isVirtualRegister(VReg));
799     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(VReg);
800     return Hint.first ? 0 : Hint.second;
801   }
802
803   /// getRegAllocationHints - Return a reference to the vector of all
804   /// register allocation hints for VReg.
805   const std::pair<unsigned, SmallVector<unsigned, 4>>
806   &getRegAllocationHints(unsigned VReg) const {
807     assert(TargetRegisterInfo::isVirtualRegister(VReg));
808     return RegAllocHints[VReg];
809   }
810
811   /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the
812   /// specified register as undefined which causes the DBG_VALUE to be
813   /// deleted during LiveDebugVariables analysis.
814   void markUsesInDebugValueAsUndef(unsigned Reg) const;
815
816   /// Return true if the specified register is modified in this function.
817   /// This checks that no defining machine operands exist for the register or
818   /// any of its aliases. Definitions found on functions marked noreturn are
819   /// ignored, to consider them pass 'true' for optional parameter
820   /// SkipNoReturnDef. The register is also considered modified when it is set
821   /// in the UsedPhysRegMask.
822   bool isPhysRegModified(unsigned PhysReg, bool SkipNoReturnDef = false) const;
823
824   /// Return true if the specified register is modified or read in this
825   /// function. This checks that no machine operands exist for the register or
826   /// any of its aliases. The register is also considered used when it is set
827   /// in the UsedPhysRegMask.
828   bool isPhysRegUsed(unsigned PhysReg) const;
829
830   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
831   /// This corresponds to the bit mask attached to register mask operands.
832   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
833     UsedPhysRegMask.setBitsNotInMask(RegMask);
834   }
835
836   const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; }
837
838   //===--------------------------------------------------------------------===//
839   // Reserved Register Info
840   //===--------------------------------------------------------------------===//
841   //
842   // The set of reserved registers must be invariant during register
843   // allocation.  For example, the target cannot suddenly decide it needs a
844   // frame pointer when the register allocator has already used the frame
845   // pointer register for something else.
846   //
847   // These methods can be used by target hooks like hasFP() to avoid changing
848   // the reserved register set during register allocation.
849
850   /// freezeReservedRegs - Called by the register allocator to freeze the set
851   /// of reserved registers before allocation begins.
852   void freezeReservedRegs(const MachineFunction&);
853
854   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
855   /// to ensure the set of reserved registers stays constant.
856   bool reservedRegsFrozen() const {
857     return !ReservedRegs.empty();
858   }
859
860   /// canReserveReg - Returns true if PhysReg can be used as a reserved
861   /// register.  Any register can be reserved before freezeReservedRegs() is
862   /// called.
863   bool canReserveReg(unsigned PhysReg) const {
864     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
865   }
866
867   /// getReservedRegs - Returns a reference to the frozen set of reserved
868   /// registers. This method should always be preferred to calling
869   /// TRI::getReservedRegs() when possible.
870   const BitVector &getReservedRegs() const {
871     assert(reservedRegsFrozen() &&
872            "Reserved registers haven't been frozen yet. "
873            "Use TRI::getReservedRegs().");
874     return ReservedRegs;
875   }
876
877   /// isReserved - Returns true when PhysReg is a reserved register.
878   ///
879   /// Reserved registers may belong to an allocatable register class, but the
880   /// target has explicitly requested that they are not used.
881   bool isReserved(unsigned PhysReg) const {
882     return getReservedRegs().test(PhysReg);
883   }
884
885   /// Returns true when the given register unit is considered reserved.
886   ///
887   /// Register units are considered reserved when for at least one of their
888   /// root registers, the root register and all super registers are reserved.
889   /// This currently iterates the register hierarchy and may be slower than
890   /// expected.
891   bool isReservedRegUnit(unsigned Unit) const;
892
893   /// isAllocatable - Returns true when PhysReg belongs to an allocatable
894   /// register class and it hasn't been reserved.
895   ///
896   /// Allocatable registers may show up in the allocation order of some virtual
897   /// register, so a register allocator needs to track its liveness and
898   /// availability.
899   bool isAllocatable(unsigned PhysReg) const {
900     return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) &&
901       !isReserved(PhysReg);
902   }
903
904   //===--------------------------------------------------------------------===//
905   // LiveIn Management
906   //===--------------------------------------------------------------------===//
907
908   /// addLiveIn - Add the specified register as a live-in.  Note that it
909   /// is an error to add the same register to the same set more than once.
910   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
911     LiveIns.push_back(std::make_pair(Reg, vreg));
912   }
913
914   // Iteration support for the live-ins set.  It's kept in sorted order
915   // by register number.
916   using livein_iterator =
917       std::vector<std::pair<unsigned,unsigned>>::const_iterator;
918   livein_iterator livein_begin() const { return LiveIns.begin(); }
919   livein_iterator livein_end()   const { return LiveIns.end(); }
920   bool            livein_empty() const { return LiveIns.empty(); }
921
922   ArrayRef<std::pair<unsigned, unsigned>> liveins() const {
923     return LiveIns;
924   }
925
926   bool isLiveIn(unsigned Reg) const;
927
928   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
929   /// corresponding live-in physical register.
930   unsigned getLiveInPhysReg(unsigned VReg) const;
931
932   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
933   /// corresponding live-in physical register.
934   unsigned getLiveInVirtReg(unsigned PReg) const;
935
936   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
937   /// into the given entry block.
938   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
939                         const TargetRegisterInfo &TRI,
940                         const TargetInstrInfo &TII);
941
942   /// Returns a mask covering all bits that can appear in lane masks of
943   /// subregisters of the virtual register @p Reg.
944   LaneBitmask getMaxLaneMaskForVReg(unsigned Reg) const;
945
946   /// defusechain_iterator - This class provides iterator support for machine
947   /// operands in the function that use or define a specific register.  If
948   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
949   /// returns defs.  If neither are true then you are silly and it always
950   /// returns end().  If SkipDebug is true it skips uses marked Debug
951   /// when incrementing.
952   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
953            bool ByOperand, bool ByInstr, bool ByBundle>
954   class defusechain_iterator
955     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
956     friend class MachineRegisterInfo;
957
958     MachineOperand *Op = nullptr;
959
960     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
961       // If the first node isn't one we're interested in, advance to one that
962       // we are interested in.
963       if (op) {
964         if ((!ReturnUses && op->isUse()) ||
965             (!ReturnDefs && op->isDef()) ||
966             (SkipDebug && op->isDebug()))
967           advance();
968       }
969     }
970
971     void advance() {
972       assert(Op && "Cannot increment end iterator!");
973       Op = getNextOperandForReg(Op);
974
975       // All defs come before the uses, so stop def_iterator early.
976       if (!ReturnUses) {
977         if (Op) {
978           if (Op->isUse())
979             Op = nullptr;
980           else
981             assert(!Op->isDebug() && "Can't have debug defs");
982         }
983       } else {
984         // If this is an operand we don't care about, skip it.
985         while (Op && ((!ReturnDefs && Op->isDef()) ||
986                       (SkipDebug && Op->isDebug())))
987           Op = getNextOperandForReg(Op);
988       }
989     }
990
991   public:
992     using reference = std::iterator<std::forward_iterator_tag,
993                                     MachineInstr, ptrdiff_t>::reference;
994     using pointer = std::iterator<std::forward_iterator_tag,
995                                   MachineInstr, ptrdiff_t>::pointer;
996
997     defusechain_iterator() = default;
998
999     bool operator==(const defusechain_iterator &x) const {
1000       return Op == x.Op;
1001     }
1002     bool operator!=(const defusechain_iterator &x) const {
1003       return !operator==(x);
1004     }
1005
1006     /// atEnd - return true if this iterator is equal to reg_end() on the value.
1007     bool atEnd() const { return Op == nullptr; }
1008
1009     // Iterator traversal: forward iteration only
1010     defusechain_iterator &operator++() {          // Preincrement
1011       assert(Op && "Cannot increment end iterator!");
1012       if (ByOperand)
1013         advance();
1014       else if (ByInstr) {
1015         MachineInstr *P = Op->getParent();
1016         do {
1017           advance();
1018         } while (Op && Op->getParent() == P);
1019       } else if (ByBundle) {
1020         MachineBasicBlock::instr_iterator P =
1021             getBundleStart(Op->getParent()->getIterator());
1022         do {
1023           advance();
1024         } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
1025       }
1026
1027       return *this;
1028     }
1029     defusechain_iterator operator++(int) {        // Postincrement
1030       defusechain_iterator tmp = *this; ++*this; return tmp;
1031     }
1032
1033     /// getOperandNo - Return the operand # of this MachineOperand in its
1034     /// MachineInstr.
1035     unsigned getOperandNo() const {
1036       assert(Op && "Cannot dereference end iterator!");
1037       return Op - &Op->getParent()->getOperand(0);
1038     }
1039
1040     // Retrieve a reference to the current operand.
1041     MachineOperand &operator*() const {
1042       assert(Op && "Cannot dereference end iterator!");
1043       return *Op;
1044     }
1045
1046     MachineOperand *operator->() const {
1047       assert(Op && "Cannot dereference end iterator!");
1048       return Op;
1049     }
1050   };
1051
1052   /// defusechain_iterator - This class provides iterator support for machine
1053   /// operands in the function that use or define a specific register.  If
1054   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
1055   /// returns defs.  If neither are true then you are silly and it always
1056   /// returns end().  If SkipDebug is true it skips uses marked Debug
1057   /// when incrementing.
1058   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug,
1059            bool ByOperand, bool ByInstr, bool ByBundle>
1060   class defusechain_instr_iterator
1061     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
1062     friend class MachineRegisterInfo;
1063
1064     MachineOperand *Op = nullptr;
1065
1066     explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) {
1067       // If the first node isn't one we're interested in, advance to one that
1068       // we are interested in.
1069       if (op) {
1070         if ((!ReturnUses && op->isUse()) ||
1071             (!ReturnDefs && op->isDef()) ||
1072             (SkipDebug && op->isDebug()))
1073           advance();
1074       }
1075     }
1076
1077     void advance() {
1078       assert(Op && "Cannot increment end iterator!");
1079       Op = getNextOperandForReg(Op);
1080
1081       // All defs come before the uses, so stop def_iterator early.
1082       if (!ReturnUses) {
1083         if (Op) {
1084           if (Op->isUse())
1085             Op = nullptr;
1086           else
1087             assert(!Op->isDebug() && "Can't have debug defs");
1088         }
1089       } else {
1090         // If this is an operand we don't care about, skip it.
1091         while (Op && ((!ReturnDefs && Op->isDef()) ||
1092                       (SkipDebug && Op->isDebug())))
1093           Op = getNextOperandForReg(Op);
1094       }
1095     }
1096
1097   public:
1098     using reference = std::iterator<std::forward_iterator_tag,
1099                                     MachineInstr, ptrdiff_t>::reference;
1100     using pointer = std::iterator<std::forward_iterator_tag,
1101                                   MachineInstr, ptrdiff_t>::pointer;
1102
1103     defusechain_instr_iterator() = default;
1104
1105     bool operator==(const defusechain_instr_iterator &x) const {
1106       return Op == x.Op;
1107     }
1108     bool operator!=(const defusechain_instr_iterator &x) const {
1109       return !operator==(x);
1110     }
1111
1112     /// atEnd - return true if this iterator is equal to reg_end() on the value.
1113     bool atEnd() const { return Op == nullptr; }
1114
1115     // Iterator traversal: forward iteration only
1116     defusechain_instr_iterator &operator++() {          // Preincrement
1117       assert(Op && "Cannot increment end iterator!");
1118       if (ByOperand)
1119         advance();
1120       else if (ByInstr) {
1121         MachineInstr *P = Op->getParent();
1122         do {
1123           advance();
1124         } while (Op && Op->getParent() == P);
1125       } else if (ByBundle) {
1126         MachineBasicBlock::instr_iterator P =
1127             getBundleStart(Op->getParent()->getIterator());
1128         do {
1129           advance();
1130         } while (Op && getBundleStart(Op->getParent()->getIterator()) == P);
1131       }
1132
1133       return *this;
1134     }
1135     defusechain_instr_iterator operator++(int) {        // Postincrement
1136       defusechain_instr_iterator tmp = *this; ++*this; return tmp;
1137     }
1138
1139     // Retrieve a reference to the current operand.
1140     MachineInstr &operator*() const {
1141       assert(Op && "Cannot dereference end iterator!");
1142       if (ByBundle)
1143         return *getBundleStart(Op->getParent()->getIterator());
1144       return *Op->getParent();
1145     }
1146
1147     MachineInstr *operator->() const { return &operator*(); }
1148   };
1149 };
1150
1151 /// Iterate over the pressure sets affected by the given physical or virtual
1152 /// register. If Reg is physical, it must be a register unit (from
1153 /// MCRegUnitIterator).
1154 class PSetIterator {
1155   const int *PSet = nullptr;
1156   unsigned Weight = 0;
1157
1158 public:
1159   PSetIterator() = default;
1160
1161   PSetIterator(unsigned RegUnit, const MachineRegisterInfo *MRI) {
1162     const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1163     if (TargetRegisterInfo::isVirtualRegister(RegUnit)) {
1164       const TargetRegisterClass *RC = MRI->getRegClass(RegUnit);
1165       PSet = TRI->getRegClassPressureSets(RC);
1166       Weight = TRI->getRegClassWeight(RC).RegWeight;
1167     }
1168     else {
1169       PSet = TRI->getRegUnitPressureSets(RegUnit);
1170       Weight = TRI->getRegUnitWeight(RegUnit);
1171     }
1172     if (*PSet == -1)
1173       PSet = nullptr;
1174   }
1175
1176   bool isValid() const { return PSet; }
1177
1178   unsigned getWeight() const { return Weight; }
1179
1180   unsigned operator*() const { return *PSet; }
1181
1182   void operator++() {
1183     assert(isValid() && "Invalid PSetIterator.");
1184     ++PSet;
1185     if (*PSet == -1)
1186       PSet = nullptr;
1187   }
1188 };
1189
1190 inline PSetIterator MachineRegisterInfo::
1191 getPressureSets(unsigned RegUnit) const {
1192   return PSetIterator(RegUnit, this);
1193 }
1194
1195 } // end namespace llvm
1196
1197 #endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H