]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/CodeGen/TargetRegisterInfo.h
Merge clang trunk r338150, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / CodeGen / TargetRegisterInfo.h
1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file.  This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
17 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/MC/LaneBitmask.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MachineValueType.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/Printable.h"
31 #include <cassert>
32 #include <cstdint>
33 #include <functional>
34
35 namespace llvm {
36
37 class BitVector;
38 class LiveRegMatrix;
39 class MachineFunction;
40 class MachineInstr;
41 class RegScavenger;
42 class VirtRegMap;
43 class LiveIntervals;
44
45 class TargetRegisterClass {
46 public:
47   using iterator = const MCPhysReg *;
48   using const_iterator = const MCPhysReg *;
49   using sc_iterator = const TargetRegisterClass* const *;
50
51   // Instance variables filled by tablegen, do not use!
52   const MCRegisterClass *MC;
53   const uint32_t *SubClassMask;
54   const uint16_t *SuperRegIndices;
55   const LaneBitmask LaneMask;
56   /// Classes with a higher priority value are assigned first by register
57   /// allocators using a greedy heuristic. The value is in the range [0,63].
58   const uint8_t AllocationPriority;
59   /// Whether the class supports two (or more) disjunct subregister indices.
60   const bool HasDisjunctSubRegs;
61   /// Whether a combination of subregisters can cover every register in the
62   /// class. See also the CoveredBySubRegs description in Target.td.
63   const bool CoveredBySubRegs;
64   const sc_iterator SuperClasses;
65   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
66
67   /// Return the register class ID number.
68   unsigned getID() const { return MC->getID(); }
69
70   /// begin/end - Return all of the registers in this class.
71   ///
72   iterator       begin() const { return MC->begin(); }
73   iterator         end() const { return MC->end(); }
74
75   /// Return the number of registers in this class.
76   unsigned getNumRegs() const { return MC->getNumRegs(); }
77
78   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
79   getRegisters() const {
80     return make_range(MC->begin(), MC->end());
81   }
82
83   /// Return the specified register in the class.
84   unsigned getRegister(unsigned i) const {
85     return MC->getRegister(i);
86   }
87
88   /// Return true if the specified register is included in this register class.
89   /// This does not include virtual registers.
90   bool contains(unsigned Reg) const {
91     return MC->contains(Reg);
92   }
93
94   /// Return true if both registers are in this class.
95   bool contains(unsigned Reg1, unsigned Reg2) const {
96     return MC->contains(Reg1, Reg2);
97   }
98
99   /// Return the cost of copying a value between two registers in this class.
100   /// A negative number means the register class is very expensive
101   /// to copy e.g. status flag register classes.
102   int getCopyCost() const { return MC->getCopyCost(); }
103
104   /// Return true if this register class may be used to create virtual
105   /// registers.
106   bool isAllocatable() const { return MC->isAllocatable(); }
107
108   /// Return true if the specified TargetRegisterClass
109   /// is a proper sub-class of this TargetRegisterClass.
110   bool hasSubClass(const TargetRegisterClass *RC) const {
111     return RC != this && hasSubClassEq(RC);
112   }
113
114   /// Returns true if RC is a sub-class of or equal to this class.
115   bool hasSubClassEq(const TargetRegisterClass *RC) const {
116     unsigned ID = RC->getID();
117     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
118   }
119
120   /// Return true if the specified TargetRegisterClass is a
121   /// proper super-class of this TargetRegisterClass.
122   bool hasSuperClass(const TargetRegisterClass *RC) const {
123     return RC->hasSubClass(this);
124   }
125
126   /// Returns true if RC is a super-class of or equal to this class.
127   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
128     return RC->hasSubClassEq(this);
129   }
130
131   /// Returns a bit vector of subclasses, including this one.
132   /// The vector is indexed by class IDs.
133   ///
134   /// To use it, consider the returned array as a chunk of memory that
135   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
136   /// contains a bitset of the ID of the subclasses in big-endian style.
137
138   /// I.e., the representation of the memory from left to right at the
139   /// bit level looks like:
140   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
141   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
142   /// Where the number represents the class ID and XXX bits that
143   /// should be ignored.
144   ///
145   /// See the implementation of hasSubClassEq for an example of how it
146   /// can be used.
147   const uint32_t *getSubClassMask() const {
148     return SubClassMask;
149   }
150
151   /// Returns a 0-terminated list of sub-register indices that project some
152   /// super-register class into this register class. The list has an entry for
153   /// each Idx such that:
154   ///
155   ///   There exists SuperRC where:
156   ///     For all Reg in SuperRC:
157   ///       this->contains(Reg:Idx)
158   const uint16_t *getSuperRegIndices() const {
159     return SuperRegIndices;
160   }
161
162   /// Returns a NULL-terminated list of super-classes.  The
163   /// classes are ordered by ID which is also a topological ordering from large
164   /// to small classes.  The list does NOT include the current class.
165   sc_iterator getSuperClasses() const {
166     return SuperClasses;
167   }
168
169   /// Return true if this TargetRegisterClass is a subset
170   /// class of at least one other TargetRegisterClass.
171   bool isASubClass() const {
172     return SuperClasses[0] != nullptr;
173   }
174
175   /// Returns the preferred order for allocating registers from this register
176   /// class in MF. The raw order comes directly from the .td file and may
177   /// include reserved registers that are not allocatable.
178   /// Register allocators should also make sure to allocate
179   /// callee-saved registers only after all the volatiles are used. The
180   /// RegisterClassInfo class provides filtered allocation orders with
181   /// callee-saved registers moved to the end.
182   ///
183   /// The MachineFunction argument can be used to tune the allocatable
184   /// registers based on the characteristics of the function, subtarget, or
185   /// other criteria.
186   ///
187   /// By default, this method returns all registers in the class.
188   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
189     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
190   }
191
192   /// Returns the combination of all lane masks of register in this class.
193   /// The lane masks of the registers are the combination of all lane masks
194   /// of their subregisters. Returns 1 if there are no subregisters.
195   LaneBitmask getLaneMask() const {
196     return LaneMask;
197   }
198 };
199
200 /// Extra information, not in MCRegisterDesc, about registers.
201 /// These are used by codegen, not by MC.
202 struct TargetRegisterInfoDesc {
203   unsigned CostPerUse;          // Extra cost of instructions using register.
204   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
205 };
206
207 /// Each TargetRegisterClass has a per register weight, and weight
208 /// limit which must be less than the limits of its pressure sets.
209 struct RegClassWeight {
210   unsigned RegWeight;
211   unsigned WeightLimit;
212 };
213
214 /// TargetRegisterInfo base class - We assume that the target defines a static
215 /// array of TargetRegisterDesc objects that represent all of the machine
216 /// registers that the target has.  As such, we simply have to track a pointer
217 /// to this array so that we can turn register number into a register
218 /// descriptor.
219 ///
220 class TargetRegisterInfo : public MCRegisterInfo {
221 public:
222   using regclass_iterator = const TargetRegisterClass * const *;
223   using vt_iterator = const MVT::SimpleValueType *;
224   struct RegClassInfo {
225     unsigned RegSize, SpillSize, SpillAlignment;
226     vt_iterator VTList;
227   };
228 private:
229   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
230   const char *const *SubRegIndexNames;        // Names of subreg indexes.
231   // Pointer to array of lane masks, one per sub-reg index.
232   const LaneBitmask *SubRegIndexLaneMasks;
233
234   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
235   LaneBitmask CoveringLanes;
236   const RegClassInfo *const RCInfos;
237   unsigned HwMode;
238
239 protected:
240   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
241                      regclass_iterator RCB,
242                      regclass_iterator RCE,
243                      const char *const *SRINames,
244                      const LaneBitmask *SRILaneMasks,
245                      LaneBitmask CoveringLanes,
246                      const RegClassInfo *const RCIs,
247                      unsigned Mode = 0);
248   virtual ~TargetRegisterInfo();
249
250 public:
251   // Register numbers can represent physical registers, virtual registers, and
252   // sometimes stack slots. The unsigned values are divided into these ranges:
253   //
254   //   0           Not a register, can be used as a sentinel.
255   //   [1;2^30)    Physical registers assigned by TableGen.
256   //   [2^30;2^31) Stack slots. (Rarely used.)
257   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
258   //
259   // Further sentinels can be allocated from the small negative integers.
260   // DenseMapInfo<unsigned> uses -1u and -2u.
261
262   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
263   /// frame index in a variable that normally holds a register. isStackSlot()
264   /// returns true if Reg is in the range used for stack slots.
265   ///
266   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
267   /// slots, so if a variable may contains a stack slot, always check
268   /// isStackSlot() first.
269   ///
270   static bool isStackSlot(unsigned Reg) {
271     return int(Reg) >= (1 << 30);
272   }
273
274   /// Compute the frame index from a register value representing a stack slot.
275   static int stackSlot2Index(unsigned Reg) {
276     assert(isStackSlot(Reg) && "Not a stack slot");
277     return int(Reg - (1u << 30));
278   }
279
280   /// Convert a non-negative frame index to a stack slot register value.
281   static unsigned index2StackSlot(int FI) {
282     assert(FI >= 0 && "Cannot hold a negative frame index.");
283     return FI + (1u << 30);
284   }
285
286   /// Return true if the specified register number is in
287   /// the physical register namespace.
288   static bool isPhysicalRegister(unsigned Reg) {
289     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
290     return int(Reg) > 0;
291   }
292
293   /// Return true if the specified register number is in
294   /// the virtual register namespace.
295   static bool isVirtualRegister(unsigned Reg) {
296     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
297     return int(Reg) < 0;
298   }
299
300   /// Convert a virtual register number to a 0-based index.
301   /// The first virtual register in a function will get the index 0.
302   static unsigned virtReg2Index(unsigned Reg) {
303     assert(isVirtualRegister(Reg) && "Not a virtual register");
304     return Reg & ~(1u << 31);
305   }
306
307   /// Convert a 0-based index to a virtual register number.
308   /// This is the inverse operation of VirtReg2IndexFunctor below.
309   static unsigned index2VirtReg(unsigned Index) {
310     return Index | (1u << 31);
311   }
312
313   /// Return the size in bits of a register from class RC.
314   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
315     return getRegClassInfo(RC).RegSize;
316   }
317
318   /// Return the size in bytes of the stack slot allocated to hold a spilled
319   /// copy of a register from class RC.
320   unsigned getSpillSize(const TargetRegisterClass &RC) const {
321     return getRegClassInfo(RC).SpillSize / 8;
322   }
323
324   /// Return the minimum required alignment in bytes for a spill slot for
325   /// a register of this class.
326   unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
327     return getRegClassInfo(RC).SpillAlignment / 8;
328   }
329
330   /// Return true if the given TargetRegisterClass has the ValueType T.
331   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
332     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
333       if (MVT(*I) == T)
334         return true;
335     return false;
336   }
337
338   /// Loop over all of the value types that can be represented by values
339   /// in the given register class.
340   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
341     return getRegClassInfo(RC).VTList;
342   }
343
344   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
345     vt_iterator I = legalclasstypes_begin(RC);
346     while (*I != MVT::Other)
347       ++I;
348     return I;
349   }
350
351   /// Returns the Register Class of a physical register of the given type,
352   /// picking the most sub register class of the right type that contains this
353   /// physreg.
354   const TargetRegisterClass *
355     getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
356
357   /// Return the maximal subclass of the given register class that is
358   /// allocatable or NULL.
359   const TargetRegisterClass *
360     getAllocatableClass(const TargetRegisterClass *RC) const;
361
362   /// Returns a bitset indexed by register number indicating if a register is
363   /// allocatable or not. If a register class is specified, returns the subset
364   /// for the class.
365   BitVector getAllocatableSet(const MachineFunction &MF,
366                               const TargetRegisterClass *RC = nullptr) const;
367
368   /// Return the additional cost of using this register instead
369   /// of other registers in its class.
370   unsigned getCostPerUse(unsigned RegNo) const {
371     return InfoDesc[RegNo].CostPerUse;
372   }
373
374   /// Return true if the register is in the allocation of any register class.
375   bool isInAllocatableClass(unsigned RegNo) const {
376     return InfoDesc[RegNo].inAllocatableClass;
377   }
378
379   /// Return the human-readable symbolic target-specific
380   /// name for the specified SubRegIndex.
381   const char *getSubRegIndexName(unsigned SubIdx) const {
382     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
383            "This is not a subregister index");
384     return SubRegIndexNames[SubIdx-1];
385   }
386
387   /// Return a bitmask representing the parts of a register that are covered by
388   /// SubIdx \see LaneBitmask.
389   ///
390   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
391   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
392     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
393     return SubRegIndexLaneMasks[SubIdx];
394   }
395
396   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
397   /// used to determine if sub-registers overlap - they can't be used to
398   /// determine if a set of sub-registers completely cover another
399   /// sub-register.
400   ///
401   /// The X86 general purpose registers have two lanes corresponding to the
402   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
403   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
404   /// sub_32bit sub-register.
405   ///
406   /// On the other hand, the ARM NEON lanes fully cover their registers: The
407   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
408   /// This is related to the CoveredBySubRegs property on register definitions.
409   ///
410   /// This function returns a bit mask of lanes that completely cover their
411   /// sub-registers. More precisely, given:
412   ///
413   ///   Covering = getCoveringLanes();
414   ///   MaskA = getSubRegIndexLaneMask(SubA);
415   ///   MaskB = getSubRegIndexLaneMask(SubB);
416   ///
417   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
418   /// SubB.
419   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
420
421   /// Returns true if the two registers are equal or alias each other.
422   /// The registers may be virtual registers.
423   bool regsOverlap(unsigned regA, unsigned regB) const {
424     if (regA == regB) return true;
425     if (isVirtualRegister(regA) || isVirtualRegister(regB))
426       return false;
427
428     // Regunits are numerically ordered. Find a common unit.
429     MCRegUnitIterator RUA(regA, this);
430     MCRegUnitIterator RUB(regB, this);
431     do {
432       if (*RUA == *RUB) return true;
433       if (*RUA < *RUB) ++RUA;
434       else             ++RUB;
435     } while (RUA.isValid() && RUB.isValid());
436     return false;
437   }
438
439   /// Returns true if Reg contains RegUnit.
440   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
441     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
442       if (*Units == RegUnit)
443         return true;
444     return false;
445   }
446
447   /// Returns the original SrcReg unless it is the target of a copy-like
448   /// operation, in which case we chain backwards through all such operations
449   /// to the ultimate source register.  If a physical register is encountered,
450   /// we stop the search.
451   virtual unsigned lookThruCopyLike(unsigned SrcReg,
452                                     const MachineRegisterInfo *MRI) const;
453
454   /// Return a null-terminated list of all of the callee-saved registers on
455   /// this target. The register should be in the order of desired callee-save
456   /// stack frame offset. The first register is closest to the incoming stack
457   /// pointer if stack grows down, and vice versa.
458   /// Notice: This function does not take into account disabled CSRs.
459   ///         In most cases you will want to use instead the function 
460   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
461   virtual const MCPhysReg*
462   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
463
464   /// Return a mask of call-preserved registers for the given calling convention
465   /// on the current function. The mask should include all call-preserved
466   /// aliases. This is used by the register allocator to determine which
467   /// registers can be live across a call.
468   ///
469   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
470   /// A set bit indicates that all bits of the corresponding register are
471   /// preserved across the function call.  The bit mask is expected to be
472   /// sub-register complete, i.e. if A is preserved, so are all its
473   /// sub-registers.
474   ///
475   /// Bits are numbered from the LSB, so the bit for physical register Reg can
476   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
477   ///
478   /// A NULL pointer means that no register mask will be used, and call
479   /// instructions should use implicit-def operands to indicate call clobbered
480   /// registers.
481   ///
482   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
483                                                CallingConv::ID) const {
484     // The default mask clobbers everything.  All targets should override.
485     return nullptr;
486   }
487
488   /// Return a register mask that clobbers everything.
489   virtual const uint32_t *getNoPreservedMask() const {
490     llvm_unreachable("target does not provide no preserved mask");
491   }
492
493   /// Return true if all bits that are set in mask \p mask0 are also set in
494   /// \p mask1.
495   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
496
497   /// Return all the call-preserved register masks defined for this target.
498   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
499   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
500
501   /// Returns a bitset indexed by physical register number indicating if a
502   /// register is a special register that has particular uses and should be
503   /// considered unavailable at all times, e.g. stack pointer, return address.
504   /// A reserved register:
505   /// - is not allocatable
506   /// - is considered always live
507   /// - is ignored by liveness tracking
508   /// It is often necessary to reserve the super registers of a reserved
509   /// register as well, to avoid them getting allocated indirectly. You may use
510   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
511   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
512
513   /// Returns true if PhysReg is unallocatable and constant throughout the
514   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
515   virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
516
517   /// Physical registers that may be modified within a function but are
518   /// guaranteed to be restored before any uses. This is useful for targets that
519   /// have call sequences where a GOT register may be updated by the caller
520   /// prior to a call and is guaranteed to be restored (also by the caller)
521   /// after the call. 
522   virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
523                                         const MachineFunction &MF) const {
524     return false;
525   }
526
527   /// Prior to adding the live-out mask to a stackmap or patchpoint
528   /// instruction, provide the target the opportunity to adjust it (mainly to
529   /// remove pseudo-registers that should be ignored).
530   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
531
532   /// Return a super-register of the specified register
533   /// Reg so its sub-register of index SubIdx is Reg.
534   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
535                                const TargetRegisterClass *RC) const {
536     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
537   }
538
539   /// Return a subclass of the specified register
540   /// class A so that each register in it has a sub-register of the
541   /// specified sub-register index which is in the specified register class B.
542   ///
543   /// TableGen will synthesize missing A sub-classes.
544   virtual const TargetRegisterClass *
545   getMatchingSuperRegClass(const TargetRegisterClass *A,
546                            const TargetRegisterClass *B, unsigned Idx) const;
547
548   // For a copy-like instruction that defines a register of class DefRC with
549   // subreg index DefSubReg, reading from another source with class SrcRC and
550   // subregister SrcSubReg return true if this is a preferable copy
551   // instruction or an earlier use should be used.
552   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
553                                     unsigned DefSubReg,
554                                     const TargetRegisterClass *SrcRC,
555                                     unsigned SrcSubReg) const;
556
557   /// Returns the largest legal sub-class of RC that
558   /// supports the sub-register index Idx.
559   /// If no such sub-class exists, return NULL.
560   /// If all registers in RC already have an Idx sub-register, return RC.
561   ///
562   /// TableGen generates a version of this function that is good enough in most
563   /// cases.  Targets can override if they have constraints that TableGen
564   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
565   /// supported by the full GR32 register class in 64-bit mode, but only by the
566   /// GR32_ABCD regiister class in 32-bit mode.
567   ///
568   /// TableGen will synthesize missing RC sub-classes.
569   virtual const TargetRegisterClass *
570   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
571     assert(Idx == 0 && "Target has no sub-registers");
572     return RC;
573   }
574
575   /// Return the subregister index you get from composing
576   /// two subregister indices.
577   ///
578   /// The special null sub-register index composes as the identity.
579   ///
580   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
581   /// returns c. Note that composeSubRegIndices does not tell you about illegal
582   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
583   /// b, composeSubRegIndices doesn't tell you.
584   ///
585   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
586   /// ssub_0:S0 - ssub_3:S3 subregs.
587   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
588   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
589     if (!a) return b;
590     if (!b) return a;
591     return composeSubRegIndicesImpl(a, b);
592   }
593
594   /// Transforms a LaneMask computed for one subregister to the lanemask that
595   /// would have been computed when composing the subsubregisters with IdxA
596   /// first. @sa composeSubRegIndices()
597   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
598                                          LaneBitmask Mask) const {
599     if (!IdxA)
600       return Mask;
601     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
602   }
603
604   /// Transform a lanemask given for a virtual register to the corresponding
605   /// lanemask before using subregister with index \p IdxA.
606   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
607   /// valie lane mask (no invalid bits set) the following holds:
608   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
609   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
610   /// => X1 == Mask
611   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
612                                                 LaneBitmask LaneMask) const {
613     if (!IdxA)
614       return LaneMask;
615     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
616   }
617
618   /// Debugging helper: dump register in human readable form to dbgs() stream.
619   static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
620                       const TargetRegisterInfo* TRI = nullptr);
621
622 protected:
623   /// Overridden by TableGen in targets that have sub-registers.
624   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
625     llvm_unreachable("Target has no sub-registers");
626   }
627
628   /// Overridden by TableGen in targets that have sub-registers.
629   virtual LaneBitmask
630   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
631     llvm_unreachable("Target has no sub-registers");
632   }
633
634   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
635                                                             LaneBitmask) const {
636     llvm_unreachable("Target has no sub-registers");
637   }
638
639 public:
640   /// Find a common super-register class if it exists.
641   ///
642   /// Find a register class, SuperRC and two sub-register indices, PreA and
643   /// PreB, such that:
644   ///
645   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
646   ///
647   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
648   ///
649   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
650   ///
651   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
652   /// requirements, and there is no register class with a smaller spill size
653   /// that satisfies the requirements.
654   ///
655   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
656   ///
657   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
658   /// that case, the returned register class will be a sub-class of the
659   /// corresponding argument register class.
660   ///
661   /// The function returns NULL if no register class can be found.
662   const TargetRegisterClass*
663   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
664                          const TargetRegisterClass *RCB, unsigned SubB,
665                          unsigned &PreA, unsigned &PreB) const;
666
667   //===--------------------------------------------------------------------===//
668   // Register Class Information
669   //
670 protected:
671   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
672     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
673   }
674
675 public:
676   /// Register class iterators
677   regclass_iterator regclass_begin() const { return RegClassBegin; }
678   regclass_iterator regclass_end() const { return RegClassEnd; }
679   iterator_range<regclass_iterator> regclasses() const {
680     return make_range(regclass_begin(), regclass_end());
681   }
682
683   unsigned getNumRegClasses() const {
684     return (unsigned)(regclass_end()-regclass_begin());
685   }
686
687   /// Returns the register class associated with the enumeration value.
688   /// See class MCOperandInfo.
689   const TargetRegisterClass *getRegClass(unsigned i) const {
690     assert(i < getNumRegClasses() && "Register Class ID out of range");
691     return RegClassBegin[i];
692   }
693
694   /// Returns the name of the register class.
695   const char *getRegClassName(const TargetRegisterClass *Class) const {
696     return MCRegisterInfo::getRegClassName(Class->MC);
697   }
698
699   /// Find the largest common subclass of A and B.
700   /// Return NULL if there is no common subclass.
701   /// The common subclass should contain
702   /// simple value type SVT if it is not the Any type.
703   const TargetRegisterClass *
704   getCommonSubClass(const TargetRegisterClass *A,
705                     const TargetRegisterClass *B,
706                     const MVT::SimpleValueType SVT =
707                     MVT::SimpleValueType::Any) const;
708
709   /// Returns a TargetRegisterClass used for pointer values.
710   /// If a target supports multiple different pointer register classes,
711   /// kind specifies which one is indicated.
712   virtual const TargetRegisterClass *
713   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
714     llvm_unreachable("Target didn't implement getPointerRegClass!");
715   }
716
717   /// Returns a legal register class to copy a register in the specified class
718   /// to or from. If it is possible to copy the register directly without using
719   /// a cross register class copy, return the specified RC. Returns NULL if it
720   /// is not possible to copy between two registers of the specified class.
721   virtual const TargetRegisterClass *
722   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
723     return RC;
724   }
725
726   /// Returns the largest super class of RC that is legal to use in the current
727   /// sub-target and has the same spill size.
728   /// The returned register class can be used to create virtual registers which
729   /// means that all its registers can be copied and spilled.
730   virtual const TargetRegisterClass *
731   getLargestLegalSuperClass(const TargetRegisterClass *RC,
732                             const MachineFunction &) const {
733     /// The default implementation is very conservative and doesn't allow the
734     /// register allocator to inflate register classes.
735     return RC;
736   }
737
738   /// Return the register pressure "high water mark" for the specific register
739   /// class. The scheduler is in high register pressure mode (for the specific
740   /// register class) if it goes over the limit.
741   ///
742   /// Note: this is the old register pressure model that relies on a manually
743   /// specified representative register class per value type.
744   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
745                                        MachineFunction &MF) const {
746     return 0;
747   }
748
749   /// Return a heuristic for the machine scheduler to compare the profitability
750   /// of increasing one register pressure set versus another.  The scheduler
751   /// will prefer increasing the register pressure of the set which returns
752   /// the largest value for this function.
753   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
754                                           unsigned PSetID) const {
755     return PSetID;
756   }
757
758   /// Get the weight in units of pressure for this register class.
759   virtual const RegClassWeight &getRegClassWeight(
760     const TargetRegisterClass *RC) const = 0;
761
762   /// Returns size in bits of a phys/virtual/generic register.
763   unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
764
765   /// Get the weight in units of pressure for this register unit.
766   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
767
768   /// Get the number of dimensions of register pressure.
769   virtual unsigned getNumRegPressureSets() const = 0;
770
771   /// Get the name of this register unit pressure set.
772   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
773
774   /// Get the register unit pressure limit for this dimension.
775   /// This limit must be adjusted dynamically for reserved registers.
776   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
777                                           unsigned Idx) const = 0;
778
779   /// Get the dimensions of register pressure impacted by this register class.
780   /// Returns a -1 terminated array of pressure set IDs.
781   virtual const int *getRegClassPressureSets(
782     const TargetRegisterClass *RC) const = 0;
783
784   /// Get the dimensions of register pressure impacted by this register unit.
785   /// Returns a -1 terminated array of pressure set IDs.
786   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
787
788   /// Get a list of 'hint' registers that the register allocator should try
789   /// first when allocating a physical register for the virtual register
790   /// VirtReg. These registers are effectively moved to the front of the
791   /// allocation order. If true is returned, regalloc will try to only use
792   /// hints to the greatest extent possible even if it means spilling.
793   ///
794   /// The Order argument is the allocation order for VirtReg's register class
795   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
796   /// come from Order, and they must not be reserved.
797   ///
798   /// The default implementation of this function will only add target
799   /// independent register allocation hints. Targets that override this
800   /// function should typically call this default implementation as well and
801   /// expect to see generic copy hints added.
802   virtual bool getRegAllocationHints(unsigned VirtReg,
803                                      ArrayRef<MCPhysReg> Order,
804                                      SmallVectorImpl<MCPhysReg> &Hints,
805                                      const MachineFunction &MF,
806                                      const VirtRegMap *VRM = nullptr,
807                                      const LiveRegMatrix *Matrix = nullptr)
808     const;
809
810   /// A callback to allow target a chance to update register allocation hints
811   /// when a register is "changed" (e.g. coalesced) to another register.
812   /// e.g. On ARM, some virtual registers should target register pairs,
813   /// if one of pair is coalesced to another register, the allocation hint of
814   /// the other half of the pair should be changed to point to the new register.
815   virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
816                                   MachineFunction &MF) const {
817     // Do nothing.
818   }
819
820   /// The creation of multiple copy hints have been implemented in
821   /// weightCalcHelper(), but since this affects so many tests for many
822   /// targets, this is temporarily disabled per default. THIS SHOULD BE
823   /// "GENERAL GOODNESS" and hopefully all targets will update their tests
824   /// and enable this soon. This hook should then be removed.
825   virtual bool enableMultipleCopyHints() const { return false; }
826
827   /// Allow the target to reverse allocation order of local live ranges. This
828   /// will generally allocate shorter local live ranges first. For targets with
829   /// many registers, this could reduce regalloc compile time by a large
830   /// factor. It is disabled by default for three reasons:
831   /// (1) Top-down allocation is simpler and easier to debug for targets that
832   /// don't benefit from reversing the order.
833   /// (2) Bottom-up allocation could result in poor evicition decisions on some
834   /// targets affecting the performance of compiled code.
835   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
836   virtual bool reverseLocalAssignment() const { return false; }
837
838   /// Allow the target to override the cost of using a callee-saved register for
839   /// the first time. Default value of 0 means we will use a callee-saved
840   /// register if it is available.
841   virtual unsigned getCSRFirstUseCost() const { return 0; }
842
843   /// Returns true if the target requires (and can make use of) the register
844   /// scavenger.
845   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
846     return false;
847   }
848
849   /// Returns true if the target wants to use frame pointer based accesses to
850   /// spill to the scavenger emergency spill slot.
851   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
852     return true;
853   }
854
855   /// Returns true if the target requires post PEI scavenging of registers for
856   /// materializing frame index constants.
857   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
858     return false;
859   }
860
861   /// Returns true if the target requires using the RegScavenger directly for
862   /// frame elimination despite using requiresFrameIndexScavenging.
863   virtual bool requiresFrameIndexReplacementScavenging(
864       const MachineFunction &MF) const {
865     return false;
866   }
867
868   /// Returns true if the target wants the LocalStackAllocation pass to be run
869   /// and virtual base registers used for more efficient stack access.
870   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
871     return false;
872   }
873
874   /// Return true if target has reserved a spill slot in the stack frame of
875   /// the given function for the specified register. e.g. On x86, if the frame
876   /// register is required, the first fixed stack object is reserved as its
877   /// spill slot. This tells PEI not to create a new stack frame
878   /// object for the given register. It should be called only after
879   /// determineCalleeSaves().
880   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
881                                     int &FrameIdx) const {
882     return false;
883   }
884
885   /// Returns true if the live-ins should be tracked after register allocation.
886   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
887     return false;
888   }
889
890   /// True if the stack can be realigned for the target.
891   virtual bool canRealignStack(const MachineFunction &MF) const;
892
893   /// True if storage within the function requires the stack pointer to be
894   /// aligned more than the normal calling convention calls for.
895   /// This cannot be overriden by the target, but canRealignStack can be
896   /// overridden.
897   bool needsStackRealignment(const MachineFunction &MF) const;
898
899   /// Get the offset from the referenced frame index in the instruction,
900   /// if there is one.
901   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
902                                            int Idx) const {
903     return 0;
904   }
905
906   /// Returns true if the instruction's frame index reference would be better
907   /// served by a base register other than FP or SP.
908   /// Used by LocalStackFrameAllocation to determine which frame index
909   /// references it should create new base registers for.
910   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
911     return false;
912   }
913
914   /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
915   /// before insertion point I.
916   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
917                                             unsigned BaseReg, int FrameIdx,
918                                             int64_t Offset) const {
919     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
920                      "target");
921   }
922
923   /// Resolve a frame index operand of an instruction
924   /// to reference the indicated base register plus offset instead.
925   virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
926                                  int64_t Offset) const {
927     llvm_unreachable("resolveFrameIndex does not exist on this target");
928   }
929
930   /// Determine whether a given base register plus offset immediate is
931   /// encodable to resolve a frame index.
932   virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
933                                   int64_t Offset) const {
934     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
935   }
936
937   /// Spill the register so it can be used by the register scavenger.
938   /// Return true if the register was spilled, false otherwise.
939   /// If this function does not spill the register, the scavenger
940   /// will instead spill it to the emergency spill slot.
941   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
942                                      MachineBasicBlock::iterator I,
943                                      MachineBasicBlock::iterator &UseMI,
944                                      const TargetRegisterClass *RC,
945                                      unsigned Reg) const {
946     return false;
947   }
948
949   /// This method must be overriden to eliminate abstract frame indices from
950   /// instructions which may use them. The instruction referenced by the
951   /// iterator contains an MO_FrameIndex operand which must be eliminated by
952   /// this method. This method may modify or replace the specified instruction,
953   /// as long as it keeps the iterator pointing at the finished product.
954   /// SPAdj is the SP adjustment due to call frame setup instruction.
955   /// FIOperandNum is the FI operand number.
956   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
957                                    int SPAdj, unsigned FIOperandNum,
958                                    RegScavenger *RS = nullptr) const = 0;
959
960   /// Return the assembly name for \p Reg.
961   virtual StringRef getRegAsmName(unsigned Reg) const {
962     // FIXME: We are assuming that the assembly name is equal to the TableGen
963     // name converted to lower case
964     //
965     // The TableGen name is the name of the definition for this register in the
966     // target's tablegen files.  For example, the TableGen name of
967     // def EAX : Register <...>; is "EAX"
968     return StringRef(getName(Reg));
969   }
970
971   //===--------------------------------------------------------------------===//
972   /// Subtarget Hooks
973
974   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
975   virtual bool shouldCoalesce(MachineInstr *MI,
976                               const TargetRegisterClass *SrcRC,
977                               unsigned SubReg,
978                               const TargetRegisterClass *DstRC,
979                               unsigned DstSubReg,
980                               const TargetRegisterClass *NewRC,
981                               LiveIntervals &LIS) const
982   { return true; }
983
984   //===--------------------------------------------------------------------===//
985   /// Debug information queries.
986
987   /// getFrameRegister - This method should return the register used as a base
988   /// for values allocated in the current stack frame.
989   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
990
991   /// Mark a register and all its aliases as reserved in the given set.
992   void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
993
994   /// Returns true if for every register in the set all super registers are part
995   /// of the set as well.
996   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
997       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
998
999   virtual const TargetRegisterClass *
1000   getConstrainedRegClassForOperand(const MachineOperand &MO,
1001                                    const MachineRegisterInfo &MRI) const {
1002     return nullptr;
1003   }
1004 };
1005
1006 //===----------------------------------------------------------------------===//
1007 //                           SuperRegClassIterator
1008 //===----------------------------------------------------------------------===//
1009 //
1010 // Iterate over the possible super-registers for a given register class. The
1011 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1012 // possible classes of super-registers.
1013 //
1014 // Each bit mask will have at least one set bit, and each set bit in Mask
1015 // corresponds to a SuperRC such that:
1016 //
1017 //   For all Reg in SuperRC: Reg:Idx is in RC.
1018 //
1019 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1020 // also satisfies the above requirement, assuming Reg:0 == Reg.
1021 //
1022 class SuperRegClassIterator {
1023   const unsigned RCMaskWords;
1024   unsigned SubReg = 0;
1025   const uint16_t *Idx;
1026   const uint32_t *Mask;
1027
1028 public:
1029   /// Create a SuperRegClassIterator that visits all the super-register classes
1030   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1031   SuperRegClassIterator(const TargetRegisterClass *RC,
1032                         const TargetRegisterInfo *TRI,
1033                         bool IncludeSelf = false)
1034     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1035       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1036     if (!IncludeSelf)
1037       ++*this;
1038   }
1039
1040   /// Returns true if this iterator is still pointing at a valid entry.
1041   bool isValid() const { return Idx; }
1042
1043   /// Returns the current sub-register index.
1044   unsigned getSubReg() const { return SubReg; }
1045
1046   /// Returns the bit mask of register classes that getSubReg() projects into
1047   /// RC.
1048   /// See TargetRegisterClass::getSubClassMask() for how to use it.
1049   const uint32_t *getMask() const { return Mask; }
1050
1051   /// Advance iterator to the next entry.
1052   void operator++() {
1053     assert(isValid() && "Cannot move iterator past end.");
1054     Mask += RCMaskWords;
1055     SubReg = *Idx++;
1056     if (!SubReg)
1057       Idx = nullptr;
1058   }
1059 };
1060
1061 //===----------------------------------------------------------------------===//
1062 //                           BitMaskClassIterator
1063 //===----------------------------------------------------------------------===//
1064 /// This class encapuslates the logic to iterate over bitmask returned by
1065 /// the various RegClass related APIs.
1066 /// E.g., this class can be used to iterate over the subclasses provided by
1067 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1068 class BitMaskClassIterator {
1069   /// Total number of register classes.
1070   const unsigned NumRegClasses;
1071   /// Base index of CurrentChunk.
1072   /// In other words, the number of bit we read to get at the
1073   /// beginning of that chunck.
1074   unsigned Base = 0;
1075   /// Adjust base index of CurrentChunk.
1076   /// Base index + how many bit we read within CurrentChunk.
1077   unsigned Idx = 0;
1078   /// Current register class ID.
1079   unsigned ID = 0;
1080   /// Mask we are iterating over.
1081   const uint32_t *Mask;
1082   /// Current chunk of the Mask we are traversing.
1083   uint32_t CurrentChunk;
1084
1085   /// Move ID to the next set bit.
1086   void moveToNextID() {
1087     // If the current chunk of memory is empty, move to the next one,
1088     // while making sure we do not go pass the number of register
1089     // classes.
1090     while (!CurrentChunk) {
1091       // Move to the next chunk.
1092       Base += 32;
1093       if (Base >= NumRegClasses) {
1094         ID = NumRegClasses;
1095         return;
1096       }
1097       CurrentChunk = *++Mask;
1098       Idx = Base;
1099     }
1100     // Otherwise look for the first bit set from the right
1101     // (representation of the class ID is big endian).
1102     // See getSubClassMask for more details on the representation.
1103     unsigned Offset = countTrailingZeros(CurrentChunk);
1104     // Add the Offset to the adjusted base number of this chunk: Idx.
1105     // This is the ID of the register class.
1106     ID = Idx + Offset;
1107
1108     // Consume the zeros, if any, and the bit we just read
1109     // so that we are at the right spot for the next call.
1110     // Do not do Offset + 1 because Offset may be 31 and 32
1111     // will be UB for the shift, though in that case we could
1112     // have make the chunk being equal to 0, but that would
1113     // have introduced a if statement.
1114     moveNBits(Offset);
1115     moveNBits(1);
1116   }
1117
1118   /// Move \p NumBits Bits forward in CurrentChunk.
1119   void moveNBits(unsigned NumBits) {
1120     assert(NumBits < 32 && "Undefined behavior spotted!");
1121     // Consume the bit we read for the next call.
1122     CurrentChunk >>= NumBits;
1123     // Adjust the base for the chunk.
1124     Idx += NumBits;
1125   }
1126
1127 public:
1128   /// Create a BitMaskClassIterator that visits all the register classes
1129   /// represented by \p Mask.
1130   ///
1131   /// \pre \p Mask != nullptr
1132   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1133       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1134     // Move to the first ID.
1135     moveToNextID();
1136   }
1137
1138   /// Returns true if this iterator is still pointing at a valid entry.
1139   bool isValid() const { return getID() != NumRegClasses; }
1140
1141   /// Returns the current register class ID.
1142   unsigned getID() const { return ID; }
1143
1144   /// Advance iterator to the next entry.
1145   void operator++() {
1146     assert(isValid() && "Cannot move iterator past end.");
1147     moveToNextID();
1148   }
1149 };
1150
1151 // This is useful when building IndexedMaps keyed on virtual registers
1152 struct VirtReg2IndexFunctor {
1153   using argument_type = unsigned;
1154   unsigned operator()(unsigned Reg) const {
1155     return TargetRegisterInfo::virtReg2Index(Reg);
1156   }
1157 };
1158
1159 /// Prints virtual and physical registers with or without a TRI instance.
1160 ///
1161 /// The format is:
1162 ///   %noreg          - NoRegister
1163 ///   %5              - a virtual register.
1164 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1165 ///   %eax            - a physical register
1166 ///   %physreg17      - a physical register when no TRI instance given.
1167 ///
1168 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1169 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
1170                    unsigned SubIdx = 0,
1171                    const MachineRegisterInfo *MRI = nullptr);
1172
1173 /// Create Printable object to print register units on a \ref raw_ostream.
1174 ///
1175 /// Register units are named after their root registers:
1176 ///
1177 ///   al      - Single root.
1178 ///   fp0~st7 - Dual roots.
1179 ///
1180 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1181 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1182
1183 /// Create Printable object to print virtual registers and physical
1184 /// registers on a \ref raw_ostream.
1185 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1186
1187 /// Create Printable object to print register classes or register banks
1188 /// on a \ref raw_ostream.
1189 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
1190                               const TargetRegisterInfo *TRI);
1191
1192 } // end namespace llvm
1193
1194 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H