]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/ExecutionEngine/ExecutionEngine.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / ExecutionEngine / ExecutionEngine.h
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the abstract interface that implements execution support
10 // for LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16
17 #include "llvm-c/ExecutionEngine.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringMap.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ExecutionEngine/JITSymbol.h"
24 #include "llvm/ExecutionEngine/OrcV1Deprecation.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Object/Binary.h"
28 #include "llvm/Support/CBindingWrapping.h"
29 #include "llvm/Support/CodeGen.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/Mutex.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include <algorithm>
35 #include <cstdint>
36 #include <functional>
37 #include <map>
38 #include <memory>
39 #include <string>
40 #include <vector>
41
42 namespace llvm {
43
44 class Constant;
45 class Function;
46 struct GenericValue;
47 class GlobalValue;
48 class GlobalVariable;
49 class JITEventListener;
50 class MCJITMemoryManager;
51 class ObjectCache;
52 class RTDyldMemoryManager;
53 class Triple;
54 class Type;
55
56 namespace object {
57
58 class Archive;
59 class ObjectFile;
60
61 } // end namespace object
62
63 /// Helper class for helping synchronize access to the global address map
64 /// table.  Access to this class should be serialized under a mutex.
65 class ExecutionEngineState {
66 public:
67   using GlobalAddressMapTy = StringMap<uint64_t>;
68
69 private:
70   /// GlobalAddressMap - A mapping between LLVM global symbol names values and
71   /// their actualized version...
72   GlobalAddressMapTy GlobalAddressMap;
73
74   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75   /// used to convert raw addresses into the LLVM global value that is emitted
76   /// at the address.  This map is not computed unless getGlobalValueAtAddress
77   /// is called at some point.
78   std::map<uint64_t, std::string> GlobalAddressReverseMap;
79
80 public:
81   GlobalAddressMapTy &getGlobalAddressMap() {
82     return GlobalAddressMap;
83   }
84
85   std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
86     return GlobalAddressReverseMap;
87   }
88
89   /// Erase an entry from the mapping table.
90   ///
91   /// \returns The address that \p ToUnmap was happed to.
92   uint64_t RemoveMapping(StringRef Name);
93 };
94
95 using FunctionCreator = std::function<void *(const std::string &)>;
96
97 /// Abstract interface for implementation execution of LLVM modules,
98 /// designed to support both interpreter and just-in-time (JIT) compiler
99 /// implementations.
100 class ExecutionEngine {
101   /// The state object holding the global address mapping, which must be
102   /// accessed synchronously.
103   //
104   // FIXME: There is no particular need the entire map needs to be
105   // synchronized.  Wouldn't a reader-writer design be better here?
106   ExecutionEngineState EEState;
107
108   /// The target data for the platform for which execution is being performed.
109   ///
110   /// Note: the DataLayout is LLVMContext specific because it has an
111   /// internal cache based on type pointers. It makes unsafe to reuse the
112   /// ExecutionEngine across context, we don't enforce this rule but undefined
113   /// behavior can occurs if the user tries to do it.
114   const DataLayout DL;
115
116   /// Whether lazy JIT compilation is enabled.
117   bool CompilingLazily;
118
119   /// Whether JIT compilation of external global variables is allowed.
120   bool GVCompilationDisabled;
121
122   /// Whether the JIT should perform lookups of external symbols (e.g.,
123   /// using dlsym).
124   bool SymbolSearchingDisabled;
125
126   /// Whether the JIT should verify IR modules during compilation.
127   bool VerifyModules;
128
129   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
130
131 protected:
132   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
133   /// optimize for the case where there is only one module.
134   SmallVector<std::unique_ptr<Module>, 1> Modules;
135
136   /// getMemoryforGV - Allocate memory for a global variable.
137   virtual char *getMemoryForGV(const GlobalVariable *GV);
138
139   static ExecutionEngine *(*MCJITCtor)(
140       std::unique_ptr<Module> M, std::string *ErrorStr,
141       std::shared_ptr<MCJITMemoryManager> MM,
142       std::shared_ptr<LegacyJITSymbolResolver> SR,
143       std::unique_ptr<TargetMachine> TM);
144
145   static ExecutionEngine *(*OrcMCJITReplacementCtor)(
146       std::string *ErrorStr, std::shared_ptr<MCJITMemoryManager> MM,
147       std::shared_ptr<LegacyJITSymbolResolver> SR,
148       std::unique_ptr<TargetMachine> TM);
149
150   static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
151                                         std::string *ErrorStr);
152
153   /// LazyFunctionCreator - If an unknown function is needed, this function
154   /// pointer is invoked to create it.  If this returns null, the JIT will
155   /// abort.
156   FunctionCreator LazyFunctionCreator;
157
158   /// getMangledName - Get mangled name.
159   std::string getMangledName(const GlobalValue *GV);
160
161 public:
162   /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
163   /// be held while changing the internal state of any of those classes.
164   sys::Mutex lock;
165
166   //===--------------------------------------------------------------------===//
167   //  ExecutionEngine Startup
168   //===--------------------------------------------------------------------===//
169
170   virtual ~ExecutionEngine();
171
172   /// Add a Module to the list of modules that we can JIT from.
173   virtual void addModule(std::unique_ptr<Module> M) {
174     Modules.push_back(std::move(M));
175   }
176
177   /// addObjectFile - Add an ObjectFile to the execution engine.
178   ///
179   /// This method is only supported by MCJIT.  MCJIT will immediately load the
180   /// object into memory and adds its symbols to the list used to resolve
181   /// external symbols while preparing other objects for execution.
182   ///
183   /// Objects added using this function will not be made executable until
184   /// needed by another object.
185   ///
186   /// MCJIT will take ownership of the ObjectFile.
187   virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
188   virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
189
190   /// addArchive - Add an Archive to the execution engine.
191   ///
192   /// This method is only supported by MCJIT.  MCJIT will use the archive to
193   /// resolve external symbols in objects it is loading.  If a symbol is found
194   /// in the Archive the contained object file will be extracted (in memory)
195   /// and loaded for possible execution.
196   virtual void addArchive(object::OwningBinary<object::Archive> A);
197
198   //===--------------------------------------------------------------------===//
199
200   const DataLayout &getDataLayout() const { return DL; }
201
202   /// removeModule - Removes a Module from the list of modules, but does not
203   /// free the module's memory. Returns true if M is found, in which case the
204   /// caller assumes responsibility for deleting the module.
205   //
206   // FIXME: This stealth ownership transfer is horrible. This will probably be
207   //        fixed by deleting ExecutionEngine.
208   virtual bool removeModule(Module *M);
209
210   /// FindFunctionNamed - Search all of the active modules to find the function that
211   /// defines FnName.  This is very slow operation and shouldn't be used for
212   /// general code.
213   virtual Function *FindFunctionNamed(StringRef FnName);
214
215   /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
216   /// that defines Name.  This is very slow operation and shouldn't be used for
217   /// general code.
218   virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
219
220   /// runFunction - Execute the specified function with the specified arguments,
221   /// and return the result.
222   ///
223   /// For MCJIT execution engines, clients are encouraged to use the
224   /// "GetFunctionAddress" method (rather than runFunction) and cast the
225   /// returned uint64_t to the desired function pointer type. However, for
226   /// backwards compatibility MCJIT's implementation can execute 'main-like'
227   /// function (i.e. those returning void or int, and taking either no
228   /// arguments or (int, char*[])).
229   virtual GenericValue runFunction(Function *F,
230                                    ArrayRef<GenericValue> ArgValues) = 0;
231
232   /// getPointerToNamedFunction - This method returns the address of the
233   /// specified function by using the dlsym function call.  As such it is only
234   /// useful for resolving library symbols, not code generated symbols.
235   ///
236   /// If AbortOnFailure is false and no function with the given name is
237   /// found, this function silently returns a null pointer. Otherwise,
238   /// it prints a message to stderr and aborts.
239   ///
240   /// This function is deprecated for the MCJIT execution engine.
241   virtual void *getPointerToNamedFunction(StringRef Name,
242                                           bool AbortOnFailure = true) = 0;
243
244   /// mapSectionAddress - map a section to its target address space value.
245   /// Map the address of a JIT section as returned from the memory manager
246   /// to the address in the target process as the running code will see it.
247   /// This is the address which will be used for relocation resolution.
248   virtual void mapSectionAddress(const void *LocalAddress,
249                                  uint64_t TargetAddress) {
250     llvm_unreachable("Re-mapping of section addresses not supported with this "
251                      "EE!");
252   }
253
254   /// generateCodeForModule - Run code generation for the specified module and
255   /// load it into memory.
256   ///
257   /// When this function has completed, all code and data for the specified
258   /// module, and any module on which this module depends, will be generated
259   /// and loaded into memory, but relocations will not yet have been applied
260   /// and all memory will be readable and writable but not executable.
261   ///
262   /// This function is primarily useful when generating code for an external
263   /// target, allowing the client an opportunity to remap section addresses
264   /// before relocations are applied.  Clients that intend to execute code
265   /// locally can use the getFunctionAddress call, which will generate code
266   /// and apply final preparations all in one step.
267   ///
268   /// This method has no effect for the interpeter.
269   virtual void generateCodeForModule(Module *M) {}
270
271   /// finalizeObject - ensure the module is fully processed and is usable.
272   ///
273   /// It is the user-level function for completing the process of making the
274   /// object usable for execution.  It should be called after sections within an
275   /// object have been relocated using mapSectionAddress.  When this method is
276   /// called the MCJIT execution engine will reapply relocations for a loaded
277   /// object.  This method has no effect for the interpeter.
278   virtual void finalizeObject() {}
279
280   /// runStaticConstructorsDestructors - This method is used to execute all of
281   /// the static constructors or destructors for a program.
282   ///
283   /// \param isDtors - Run the destructors instead of constructors.
284   virtual void runStaticConstructorsDestructors(bool isDtors);
285
286   /// This method is used to execute all of the static constructors or
287   /// destructors for a particular module.
288   ///
289   /// \param isDtors - Run the destructors instead of constructors.
290   void runStaticConstructorsDestructors(Module &module, bool isDtors);
291
292
293   /// runFunctionAsMain - This is a helper function which wraps runFunction to
294   /// handle the common task of starting up main with the specified argc, argv,
295   /// and envp parameters.
296   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
297                         const char * const * envp);
298
299
300   /// addGlobalMapping - Tell the execution engine that the specified global is
301   /// at the specified location.  This is used internally as functions are JIT'd
302   /// and as global variables are laid out in memory.  It can and should also be
303   /// used by clients of the EE that want to have an LLVM global overlay
304   /// existing data in memory. Values to be mapped should be named, and have
305   /// external or weak linkage. Mappings are automatically removed when their
306   /// GlobalValue is destroyed.
307   void addGlobalMapping(const GlobalValue *GV, void *Addr);
308   void addGlobalMapping(StringRef Name, uint64_t Addr);
309
310   /// clearAllGlobalMappings - Clear all global mappings and start over again,
311   /// for use in dynamic compilation scenarios to move globals.
312   void clearAllGlobalMappings();
313
314   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
315   /// particular module, because it has been removed from the JIT.
316   void clearGlobalMappingsFromModule(Module *M);
317
318   /// updateGlobalMapping - Replace an existing mapping for GV with a new
319   /// address.  This updates both maps as required.  If "Addr" is null, the
320   /// entry for the global is removed from the mappings.  This returns the old
321   /// value of the pointer, or null if it was not in the map.
322   uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
323   uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
324
325   /// getAddressToGlobalIfAvailable - This returns the address of the specified
326   /// global symbol.
327   uint64_t getAddressToGlobalIfAvailable(StringRef S);
328
329   /// getPointerToGlobalIfAvailable - This returns the address of the specified
330   /// global value if it is has already been codegen'd, otherwise it returns
331   /// null.
332   void *getPointerToGlobalIfAvailable(StringRef S);
333   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
334
335   /// getPointerToGlobal - This returns the address of the specified global
336   /// value. This may involve code generation if it's a function.
337   ///
338   /// This function is deprecated for the MCJIT execution engine.  Use
339   /// getGlobalValueAddress instead.
340   void *getPointerToGlobal(const GlobalValue *GV);
341
342   /// getPointerToFunction - The different EE's represent function bodies in
343   /// different ways.  They should each implement this to say what a function
344   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
345   /// remove its global mapping and free any machine code.  Be sure no threads
346   /// are running inside F when that happens.
347   ///
348   /// This function is deprecated for the MCJIT execution engine.  Use
349   /// getFunctionAddress instead.
350   virtual void *getPointerToFunction(Function *F) = 0;
351
352   /// getPointerToFunctionOrStub - If the specified function has been
353   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
354   /// a stub to implement lazy compilation if available.  See
355   /// getPointerToFunction for the requirements on destroying F.
356   ///
357   /// This function is deprecated for the MCJIT execution engine.  Use
358   /// getFunctionAddress instead.
359   virtual void *getPointerToFunctionOrStub(Function *F) {
360     // Default implementation, just codegen the function.
361     return getPointerToFunction(F);
362   }
363
364   /// getGlobalValueAddress - Return the address of the specified global
365   /// value. This may involve code generation.
366   ///
367   /// This function should not be called with the interpreter engine.
368   virtual uint64_t getGlobalValueAddress(const std::string &Name) {
369     // Default implementation for the interpreter.  MCJIT will override this.
370     // JIT and interpreter clients should use getPointerToGlobal instead.
371     return 0;
372   }
373
374   /// getFunctionAddress - Return the address of the specified function.
375   /// This may involve code generation.
376   virtual uint64_t getFunctionAddress(const std::string &Name) {
377     // Default implementation for the interpreter.  MCJIT will override this.
378     // Interpreter clients should use getPointerToFunction instead.
379     return 0;
380   }
381
382   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
383   /// at the specified address.
384   ///
385   const GlobalValue *getGlobalValueAtAddress(void *Addr);
386
387   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
388   /// Ptr is the address of the memory at which to store Val, cast to
389   /// GenericValue *.  It is not a pointer to a GenericValue containing the
390   /// address at which to store Val.
391   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
392                           Type *Ty);
393
394   void InitializeMemory(const Constant *Init, void *Addr);
395
396   /// getOrEmitGlobalVariable - Return the address of the specified global
397   /// variable, possibly emitting it to memory if needed.  This is used by the
398   /// Emitter.
399   ///
400   /// This function is deprecated for the MCJIT execution engine.  Use
401   /// getGlobalValueAddress instead.
402   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
403     return getPointerToGlobal((const GlobalValue *)GV);
404   }
405
406   /// Registers a listener to be called back on various events within
407   /// the JIT.  See JITEventListener.h for more details.  Does not
408   /// take ownership of the argument.  The argument may be NULL, in
409   /// which case these functions do nothing.
410   virtual void RegisterJITEventListener(JITEventListener *) {}
411   virtual void UnregisterJITEventListener(JITEventListener *) {}
412
413   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
414   /// not changed.  Supported by MCJIT but not the interpreter.
415   virtual void setObjectCache(ObjectCache *) {
416     llvm_unreachable("No support for an object cache");
417   }
418
419   /// setProcessAllSections (MCJIT Only): By default, only sections that are
420   /// "required for execution" are passed to the RTDyldMemoryManager, and other
421   /// sections are discarded. Passing 'true' to this method will cause
422   /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
423   /// of whether they are "required to execute" in the usual sense.
424   ///
425   /// Rationale: Some MCJIT clients want to be able to inspect metadata
426   /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
427   /// performance. Passing these sections to the memory manager allows the
428   /// client to make policy about the relevant sections, rather than having
429   /// MCJIT do it.
430   virtual void setProcessAllSections(bool ProcessAllSections) {
431     llvm_unreachable("No support for ProcessAllSections option");
432   }
433
434   /// Return the target machine (if available).
435   virtual TargetMachine *getTargetMachine() { return nullptr; }
436
437   /// DisableLazyCompilation - When lazy compilation is off (the default), the
438   /// JIT will eagerly compile every function reachable from the argument to
439   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
440   /// compile the one function and emit stubs to compile the rest when they're
441   /// first called.  If lazy compilation is turned off again while some lazy
442   /// stubs are still around, and one of those stubs is called, the program will
443   /// abort.
444   ///
445   /// In order to safely compile lazily in a threaded program, the user must
446   /// ensure that 1) only one thread at a time can call any particular lazy
447   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
448   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
449   /// lazy stub.  See http://llvm.org/PR5184 for details.
450   void DisableLazyCompilation(bool Disabled = true) {
451     CompilingLazily = !Disabled;
452   }
453   bool isCompilingLazily() const {
454     return CompilingLazily;
455   }
456
457   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
458   /// allocate space and populate a GlobalVariable that is not internal to
459   /// the module.
460   void DisableGVCompilation(bool Disabled = true) {
461     GVCompilationDisabled = Disabled;
462   }
463   bool isGVCompilationDisabled() const {
464     return GVCompilationDisabled;
465   }
466
467   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
468   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
469   /// resolve symbols in a custom way.
470   void DisableSymbolSearching(bool Disabled = true) {
471     SymbolSearchingDisabled = Disabled;
472   }
473   bool isSymbolSearchingDisabled() const {
474     return SymbolSearchingDisabled;
475   }
476
477   /// Enable/Disable IR module verification.
478   ///
479   /// Note: Module verification is enabled by default in Debug builds, and
480   /// disabled by default in Release. Use this method to override the default.
481   void setVerifyModules(bool Verify) {
482     VerifyModules = Verify;
483   }
484   bool getVerifyModules() const {
485     return VerifyModules;
486   }
487
488   /// InstallLazyFunctionCreator - If an unknown function is needed, the
489   /// specified function pointer is invoked to create it.  If it returns null,
490   /// the JIT will abort.
491   void InstallLazyFunctionCreator(FunctionCreator C) {
492     LazyFunctionCreator = std::move(C);
493   }
494
495 protected:
496   ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
497   explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
498   explicit ExecutionEngine(std::unique_ptr<Module> M);
499
500   void emitGlobals();
501
502   void EmitGlobalVariable(const GlobalVariable *GV);
503
504   GenericValue getConstantValue(const Constant *C);
505   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
506                            Type *Ty);
507
508 private:
509   void Init(std::unique_ptr<Module> M);
510 };
511
512 namespace EngineKind {
513
514   // These are actually bitmasks that get or-ed together.
515   enum Kind {
516     JIT         = 0x1,
517     Interpreter = 0x2
518   };
519   const static Kind Either = (Kind)(JIT | Interpreter);
520
521 } // end namespace EngineKind
522
523 /// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
524 /// chaining the various set* methods, and terminating it with a .create()
525 /// call.
526 class EngineBuilder {
527 private:
528   std::unique_ptr<Module> M;
529   EngineKind::Kind WhichEngine;
530   std::string *ErrorStr;
531   CodeGenOpt::Level OptLevel;
532   std::shared_ptr<MCJITMemoryManager> MemMgr;
533   std::shared_ptr<LegacyJITSymbolResolver> Resolver;
534   TargetOptions Options;
535   Optional<Reloc::Model> RelocModel;
536   Optional<CodeModel::Model> CMModel;
537   std::string MArch;
538   std::string MCPU;
539   SmallVector<std::string, 4> MAttrs;
540   bool VerifyModules;
541   bool UseOrcMCJITReplacement;
542   bool EmulatedTLS = true;
543
544 public:
545   /// Default constructor for EngineBuilder.
546   EngineBuilder();
547
548   /// Constructor for EngineBuilder.
549   EngineBuilder(std::unique_ptr<Module> M);
550
551   // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
552   ~EngineBuilder();
553
554   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
555   /// or whichever engine works.  This option defaults to EngineKind::Either.
556   EngineBuilder &setEngineKind(EngineKind::Kind w) {
557     WhichEngine = w;
558     return *this;
559   }
560
561   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
562   /// clients to customize their memory allocation policies for the MCJIT. This
563   /// is only appropriate for the MCJIT; setting this and configuring the builder
564   /// to create anything other than MCJIT will cause a runtime error. If create()
565   /// is called and is successful, the created engine takes ownership of the
566   /// memory manager. This option defaults to NULL.
567   EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
568
569   EngineBuilder&
570   setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
571
572   EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
573
574   /// setErrorStr - Set the error string to write to on error.  This option
575   /// defaults to NULL.
576   EngineBuilder &setErrorStr(std::string *e) {
577     ErrorStr = e;
578     return *this;
579   }
580
581   /// setOptLevel - Set the optimization level for the JIT.  This option
582   /// defaults to CodeGenOpt::Default.
583   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
584     OptLevel = l;
585     return *this;
586   }
587
588   /// setTargetOptions - Set the target options that the ExecutionEngine
589   /// target is using. Defaults to TargetOptions().
590   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
591     Options = Opts;
592     return *this;
593   }
594
595   /// setRelocationModel - Set the relocation model that the ExecutionEngine
596   /// target is using. Defaults to target specific default "Reloc::Default".
597   EngineBuilder &setRelocationModel(Reloc::Model RM) {
598     RelocModel = RM;
599     return *this;
600   }
601
602   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
603   /// data is using. Defaults to target specific default
604   /// "CodeModel::JITDefault".
605   EngineBuilder &setCodeModel(CodeModel::Model M) {
606     CMModel = M;
607     return *this;
608   }
609
610   /// setMArch - Override the architecture set by the Module's triple.
611   EngineBuilder &setMArch(StringRef march) {
612     MArch.assign(march.begin(), march.end());
613     return *this;
614   }
615
616   /// setMCPU - Target a specific cpu type.
617   EngineBuilder &setMCPU(StringRef mcpu) {
618     MCPU.assign(mcpu.begin(), mcpu.end());
619     return *this;
620   }
621
622   /// setVerifyModules - Set whether the JIT implementation should verify
623   /// IR modules during compilation.
624   EngineBuilder &setVerifyModules(bool Verify) {
625     VerifyModules = Verify;
626     return *this;
627   }
628
629   /// setMAttrs - Set cpu-specific attributes.
630   template<typename StringSequence>
631   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
632     MAttrs.clear();
633     MAttrs.append(mattrs.begin(), mattrs.end());
634     return *this;
635   }
636
637   // Use OrcMCJITReplacement instead of MCJIT. Off by default.
638   LLVM_ATTRIBUTE_DEPRECATED(
639       inline void setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement),
640       "ORCv1 utilities (including OrcMCJITReplacement) are deprecated. Please "
641       "use ORCv2/LLJIT instead (see docs/ORCv2.rst)");
642
643   void setUseOrcMCJITReplacement(ORCv1DeprecationAcknowledgement,
644                                  bool UseOrcMCJITReplacement) {
645     this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
646   }
647
648   void setEmulatedTLS(bool EmulatedTLS) {
649     this->EmulatedTLS = EmulatedTLS;
650   }
651
652   TargetMachine *selectTarget();
653
654   /// selectTarget - Pick a target either via -march or by guessing the native
655   /// arch.  Add any CPU features specified via -mcpu or -mattr.
656   TargetMachine *selectTarget(const Triple &TargetTriple,
657                               StringRef MArch,
658                               StringRef MCPU,
659                               const SmallVectorImpl<std::string>& MAttrs);
660
661   ExecutionEngine *create() {
662     return create(selectTarget());
663   }
664
665   ExecutionEngine *create(TargetMachine *TM);
666 };
667
668 void EngineBuilder::setUseOrcMCJITReplacement(bool UseOrcMCJITReplacement) {
669   this->UseOrcMCJITReplacement = UseOrcMCJITReplacement;
670 }
671
672 // Create wrappers for C Binding types (see CBindingWrapping.h).
673 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
674
675 } // end namespace llvm
676
677 #endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H