]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/IR/ConstantRange.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / IR / ConstantRange.h
1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value.  This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range.  To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators.  When used with boolean values, the following are important
14 // ranges: :
15 //
16 //  [F, F) = {}     = Empty set
17 //  [T, F) = {T}
18 //  [F, T) = {F}
19 //  [T, T) = {F, T} = Full set
20 //
21 // The other integral ranges use min/max values for special range values. For
22 // example, for 8-bit types, it uses:
23 // [0, 0)     = {}       = Empty set
24 // [255, 255) = {0..255} = Full Set
25 //
26 // Note that ConstantRange can be used to represent either signed or
27 // unsigned ranges.
28 //
29 //===----------------------------------------------------------------------===//
30
31 #ifndef LLVM_IR_CONSTANTRANGE_H
32 #define LLVM_IR_CONSTANTRANGE_H
33
34 #include "llvm/ADT/APInt.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/Support/Compiler.h"
38 #include <cstdint>
39
40 namespace llvm {
41
42 class MDNode;
43 class raw_ostream;
44 struct KnownBits;
45
46 /// This class represents a range of values.
47 class LLVM_NODISCARD ConstantRange {
48   APInt Lower, Upper;
49
50   /// Create empty constant range with same bitwidth.
51   ConstantRange getEmpty() const {
52     return ConstantRange(getBitWidth(), false);
53   }
54
55   /// Create full constant range with same bitwidth.
56   ConstantRange getFull() const {
57     return ConstantRange(getBitWidth(), true);
58   }
59
60 public:
61   /// Initialize a full or empty set for the specified bit width.
62   explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
63
64   /// Initialize a range to hold the single specified value.
65   ConstantRange(APInt Value);
66
67   /// Initialize a range of values explicitly. This will assert out if
68   /// Lower==Upper and Lower != Min or Max value for its type. It will also
69   /// assert out if the two APInt's are not the same bit width.
70   ConstantRange(APInt Lower, APInt Upper);
71
72   /// Create empty constant range with the given bit width.
73   static ConstantRange getEmpty(uint32_t BitWidth) {
74     return ConstantRange(BitWidth, false);
75   }
76
77   /// Create full constant range with the given bit width.
78   static ConstantRange getFull(uint32_t BitWidth) {
79     return ConstantRange(BitWidth, true);
80   }
81
82   /// Create non-empty constant range with the given bounds. If Lower and
83   /// Upper are the same, a full range is returned.
84   static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
85     if (Lower == Upper)
86       return getFull(Lower.getBitWidth());
87     return ConstantRange(std::move(Lower), std::move(Upper));
88   }
89
90   /// Initialize a range based on a known bits constraint. The IsSigned flag
91   /// indicates whether the constant range should not wrap in the signed or
92   /// unsigned domain.
93   static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
94
95   /// Produce the smallest range such that all values that may satisfy the given
96   /// predicate with any value contained within Other is contained in the
97   /// returned range.  Formally, this returns a superset of
98   /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
99   /// answer is not representable as a ConstantRange, the return value will be a
100   /// proper superset of the above.
101   ///
102   /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
103   static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
104                                              const ConstantRange &Other);
105
106   /// Produce the largest range such that all values in the returned range
107   /// satisfy the given predicate with all values contained within Other.
108   /// Formally, this returns a subset of
109   /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
110   /// exact answer is not representable as a ConstantRange, the return value
111   /// will be a proper subset of the above.
112   ///
113   /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
114   static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
115                                                 const ConstantRange &Other);
116
117   /// Produce the exact range such that all values in the returned range satisfy
118   /// the given predicate with any value contained within Other. Formally, this
119   /// returns the exact answer when the superset of 'union over all y in Other
120   /// is exactly same as the subset of intersection over all y in Other.
121   /// { x : icmp op x y is true}'.
122   ///
123   /// Example: Pred = ult and Other = i8 3 returns [0, 3)
124   static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
125                                            const APInt &Other);
126
127   /// Produce the largest range containing all X such that "X BinOp Y" is
128   /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
129   /// be *some* Y in Other for which additional X not contained in the result
130   /// also do not overflow.
131   ///
132   /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
133   ///
134   /// Examples:
135   ///  typedef OverflowingBinaryOperator OBO;
136   ///  #define MGNR makeGuaranteedNoWrapRegion
137   ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
138   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
139   ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
140   ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
141   ///  MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
142   ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
143   static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
144                                                   const ConstantRange &Other,
145                                                   unsigned NoWrapKind);
146
147   /// Produce the range that contains X if and only if "X BinOp Other" does
148   /// not wrap.
149   static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
150                                              const APInt &Other,
151                                              unsigned NoWrapKind);
152
153   /// Set up \p Pred and \p RHS such that
154   /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
155   /// successful.
156   bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
157
158   /// Return the lower value for this range.
159   const APInt &getLower() const { return Lower; }
160
161   /// Return the upper value for this range.
162   const APInt &getUpper() const { return Upper; }
163
164   /// Get the bit width of this ConstantRange.
165   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
166
167   /// Return true if this set contains all of the elements possible
168   /// for this data-type.
169   bool isFullSet() const;
170
171   /// Return true if this set contains no members.
172   bool isEmptySet() const;
173
174   /// Return true if this set wraps around the unsigned domain. Special cases:
175   ///  * Empty set: Not wrapped.
176   ///  * Full set: Not wrapped.
177   ///  * [X, 0) == [X, Max]: Not wrapped.
178   bool isWrappedSet() const;
179
180   /// Return true if the exclusive upper bound wraps around the unsigned
181   /// domain. Special cases:
182   ///  * Empty set: Not wrapped.
183   ///  * Full set: Not wrapped.
184   ///  * [X, 0): Wrapped.
185   bool isUpperWrapped() const;
186
187   /// Return true if this set wraps around the signed domain. Special cases:
188   ///  * Empty set: Not wrapped.
189   ///  * Full set: Not wrapped.
190   ///  * [X, SignedMin) == [X, SignedMax]: Not wrapped.
191   bool isSignWrappedSet() const;
192
193   /// Return true if the (exclusive) upper bound wraps around the signed
194   /// domain. Special cases:
195   ///  * Empty set: Not wrapped.
196   ///  * Full set: Not wrapped.
197   ///  * [X, SignedMin): Wrapped.
198   bool isUpperSignWrapped() const;
199
200   /// Return true if the specified value is in the set.
201   bool contains(const APInt &Val) const;
202
203   /// Return true if the other range is a subset of this one.
204   bool contains(const ConstantRange &CR) const;
205
206   /// If this set contains a single element, return it, otherwise return null.
207   const APInt *getSingleElement() const {
208     if (Upper == Lower + 1)
209       return &Lower;
210     return nullptr;
211   }
212
213   /// If this set contains all but a single element, return it, otherwise return
214   /// null.
215   const APInt *getSingleMissingElement() const {
216     if (Lower == Upper + 1)
217       return &Upper;
218     return nullptr;
219   }
220
221   /// Return true if this set contains exactly one member.
222   bool isSingleElement() const { return getSingleElement() != nullptr; }
223
224   /// Compare set size of this range with the range CR.
225   bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
226
227   /// Compare set size of this range with Value.
228   bool isSizeLargerThan(uint64_t MaxSize) const;
229
230   /// Return true if all values in this range are negative.
231   bool isAllNegative() const;
232
233   /// Return true if all values in this range are non-negative.
234   bool isAllNonNegative() const;
235
236   /// Return the largest unsigned value contained in the ConstantRange.
237   APInt getUnsignedMax() const;
238
239   /// Return the smallest unsigned value contained in the ConstantRange.
240   APInt getUnsignedMin() const;
241
242   /// Return the largest signed value contained in the ConstantRange.
243   APInt getSignedMax() const;
244
245   /// Return the smallest signed value contained in the ConstantRange.
246   APInt getSignedMin() const;
247
248   /// Return true if this range is equal to another range.
249   bool operator==(const ConstantRange &CR) const {
250     return Lower == CR.Lower && Upper == CR.Upper;
251   }
252   bool operator!=(const ConstantRange &CR) const {
253     return !operator==(CR);
254   }
255
256   /// Subtract the specified constant from the endpoints of this constant range.
257   ConstantRange subtract(const APInt &CI) const;
258
259   /// Subtract the specified range from this range (aka relative complement of
260   /// the sets).
261   ConstantRange difference(const ConstantRange &CR) const;
262
263   /// If represented precisely, the result of some range operations may consist
264   /// of multiple disjoint ranges. As only a single range may be returned, any
265   /// range covering these disjoint ranges constitutes a valid result, but some
266   /// may be more useful than others depending on context. The preferred range
267   /// type specifies whether a range that is non-wrapping in the unsigned or
268   /// signed domain, or has the smallest size, is preferred. If a signedness is
269   /// preferred but all ranges are non-wrapping or all wrapping, then the
270   /// smallest set size is preferred. If there are multiple smallest sets, any
271   /// one of them may be returned.
272   enum PreferredRangeType { Smallest, Unsigned, Signed };
273
274   /// Return the range that results from the intersection of this range with
275   /// another range. If the intersection is disjoint, such that two results
276   /// are possible, the preferred range is determined by the PreferredRangeType.
277   ConstantRange intersectWith(const ConstantRange &CR,
278                               PreferredRangeType Type = Smallest) const;
279
280   /// Return the range that results from the union of this range
281   /// with another range.  The resultant range is guaranteed to include the
282   /// elements of both sets, but may contain more.  For example, [3, 9) union
283   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
284   /// in either set before.
285   ConstantRange unionWith(const ConstantRange &CR,
286                           PreferredRangeType Type = Smallest) const;
287
288   /// Return a new range representing the possible values resulting
289   /// from an application of the specified cast operator to this range. \p
290   /// BitWidth is the target bitwidth of the cast.  For casts which don't
291   /// change bitwidth, it must be the same as the source bitwidth.  For casts
292   /// which do change bitwidth, the bitwidth must be consistent with the
293   /// requested cast and source bitwidth.
294   ConstantRange castOp(Instruction::CastOps CastOp,
295                        uint32_t BitWidth) const;
296
297   /// Return a new range in the specified integer type, which must
298   /// be strictly larger than the current type.  The returned range will
299   /// correspond to the possible range of values if the source range had been
300   /// zero extended to BitWidth.
301   ConstantRange zeroExtend(uint32_t BitWidth) const;
302
303   /// Return a new range in the specified integer type, which must
304   /// be strictly larger than the current type.  The returned range will
305   /// correspond to the possible range of values if the source range had been
306   /// sign extended to BitWidth.
307   ConstantRange signExtend(uint32_t BitWidth) const;
308
309   /// Return a new range in the specified integer type, which must be
310   /// strictly smaller than the current type.  The returned range will
311   /// correspond to the possible range of values if the source range had been
312   /// truncated to the specified type.
313   ConstantRange truncate(uint32_t BitWidth) const;
314
315   /// Make this range have the bit width given by \p BitWidth. The
316   /// value is zero extended, truncated, or left alone to make it that width.
317   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
318
319   /// Make this range have the bit width given by \p BitWidth. The
320   /// value is sign extended, truncated, or left alone to make it that width.
321   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
322
323   /// Return a new range representing the possible values resulting
324   /// from an application of the specified binary operator to an left hand side
325   /// of this range and a right hand side of \p Other.
326   ConstantRange binaryOp(Instruction::BinaryOps BinOp,
327                          const ConstantRange &Other) const;
328
329   /// Return a new range representing the possible values resulting
330   /// from an addition of a value in this range and a value in \p Other.
331   ConstantRange add(const ConstantRange &Other) const;
332
333   /// Return a new range representing the possible values resulting from a
334   /// known NSW addition of a value in this range and \p Other constant.
335   ConstantRange addWithNoSignedWrap(const APInt &Other) const;
336
337   /// Return a new range representing the possible values resulting
338   /// from a subtraction of a value in this range and a value in \p Other.
339   ConstantRange sub(const ConstantRange &Other) const;
340
341   /// Return a new range representing the possible values resulting
342   /// from a multiplication of a value in this range and a value in \p Other,
343   /// treating both this and \p Other as unsigned ranges.
344   ConstantRange multiply(const ConstantRange &Other) const;
345
346   /// Return a new range representing the possible values resulting
347   /// from a signed maximum of a value in this range and a value in \p Other.
348   ConstantRange smax(const ConstantRange &Other) const;
349
350   /// Return a new range representing the possible values resulting
351   /// from an unsigned maximum of a value in this range and a value in \p Other.
352   ConstantRange umax(const ConstantRange &Other) const;
353
354   /// Return a new range representing the possible values resulting
355   /// from a signed minimum of a value in this range and a value in \p Other.
356   ConstantRange smin(const ConstantRange &Other) const;
357
358   /// Return a new range representing the possible values resulting
359   /// from an unsigned minimum of a value in this range and a value in \p Other.
360   ConstantRange umin(const ConstantRange &Other) const;
361
362   /// Return a new range representing the possible values resulting
363   /// from an unsigned division of a value in this range and a value in
364   /// \p Other.
365   ConstantRange udiv(const ConstantRange &Other) const;
366
367   /// Return a new range representing the possible values resulting
368   /// from a signed division of a value in this range and a value in
369   /// \p Other. Division by zero and division of SignedMin by -1 are considered
370   /// undefined behavior, in line with IR, and do not contribute towards the
371   /// result.
372   ConstantRange sdiv(const ConstantRange &Other) const;
373
374   /// Return a new range representing the possible values resulting
375   /// from an unsigned remainder operation of a value in this range and a
376   /// value in \p Other.
377   ConstantRange urem(const ConstantRange &Other) const;
378
379   /// Return a new range representing the possible values resulting
380   /// from a signed remainder operation of a value in this range and a
381   /// value in \p Other.
382   ConstantRange srem(const ConstantRange &Other) const;
383
384   /// Return a new range representing the possible values resulting
385   /// from a binary-and of a value in this range by a value in \p Other.
386   ConstantRange binaryAnd(const ConstantRange &Other) const;
387
388   /// Return a new range representing the possible values resulting
389   /// from a binary-or of a value in this range by a value in \p Other.
390   ConstantRange binaryOr(const ConstantRange &Other) const;
391
392   /// Return a new range representing the possible values resulting
393   /// from a left shift of a value in this range by a value in \p Other.
394   /// TODO: This isn't fully implemented yet.
395   ConstantRange shl(const ConstantRange &Other) const;
396
397   /// Return a new range representing the possible values resulting from a
398   /// logical right shift of a value in this range and a value in \p Other.
399   ConstantRange lshr(const ConstantRange &Other) const;
400
401   /// Return a new range representing the possible values resulting from a
402   /// arithmetic right shift of a value in this range and a value in \p Other.
403   ConstantRange ashr(const ConstantRange &Other) const;
404
405   /// Perform an unsigned saturating addition of two constant ranges.
406   ConstantRange uadd_sat(const ConstantRange &Other) const;
407
408   /// Perform a signed saturating addition of two constant ranges.
409   ConstantRange sadd_sat(const ConstantRange &Other) const;
410
411   /// Perform an unsigned saturating subtraction of two constant ranges.
412   ConstantRange usub_sat(const ConstantRange &Other) const;
413
414   /// Perform a signed saturating subtraction of two constant ranges.
415   ConstantRange ssub_sat(const ConstantRange &Other) const;
416
417   /// Return a new range that is the logical not of the current set.
418   ConstantRange inverse() const;
419
420   /// Calculate absolute value range. If the original range contains signed
421   /// min, then the resulting range will also contain signed min.
422   ConstantRange abs() const;
423
424   /// Represents whether an operation on the given constant range is known to
425   /// always or never overflow.
426   enum class OverflowResult {
427     /// Always overflows in the direction of signed/unsigned min value.
428     AlwaysOverflowsLow,
429     /// Always overflows in the direction of signed/unsigned max value.
430     AlwaysOverflowsHigh,
431     /// May or may not overflow.
432     MayOverflow,
433     /// Never overflows.
434     NeverOverflows,
435   };
436
437   /// Return whether unsigned add of the two ranges always/never overflows.
438   OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
439
440   /// Return whether signed add of the two ranges always/never overflows.
441   OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
442
443   /// Return whether unsigned sub of the two ranges always/never overflows.
444   OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
445
446   /// Return whether signed sub of the two ranges always/never overflows.
447   OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
448
449   /// Return whether unsigned mul of the two ranges always/never overflows.
450   OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
451
452   /// Print out the bounds to a stream.
453   void print(raw_ostream &OS) const;
454
455   /// Allow printing from a debugger easily.
456   void dump() const;
457 };
458
459 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
460   CR.print(OS);
461   return OS;
462 }
463
464 /// Parse out a conservative ConstantRange from !range metadata.
465 ///
466 /// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
467 ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
468
469 } // end namespace llvm
470
471 #endif // LLVM_IR_CONSTANTRANGE_H