]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/IR/Metadata.h
MFV r316864: 6392 zdb: introduce -V for verbatim import
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / IR / Metadata.h
1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for metadata subclasses.
12 /// They represent the different flavors of metadata that live in LLVM.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_METADATA_H
17 #define LLVM_IR_METADATA_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseMapInfo.h"
22 #include "llvm/ADT/None.h"
23 #include "llvm/ADT/PointerUnion.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/ilist_node.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/CBindingWrapping.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 #include <type_traits>
42 #include <utility>
43
44 namespace llvm {
45
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 class Type;
50
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54
55 /// \brief Root of the metadata hierarchy.
56 ///
57 /// This is a root class for typeless data in the IR.
58 class Metadata {
59   friend class ReplaceableMetadataImpl;
60
61   /// \brief RTTI.
62   const unsigned char SubclassID;
63
64 protected:
65   /// \brief Active type of storage.
66   enum StorageType { Uniqued, Distinct, Temporary };
67
68   /// \brief Storage flag for non-uniqued, otherwise unowned, metadata.
69   unsigned char Storage;
70   // TODO: expose remaining bits to subclasses.
71
72   unsigned short SubclassData16 = 0;
73   unsigned SubclassData32 = 0;
74
75 public:
76   enum MetadataKind {
77 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
78 #include "llvm/IR/Metadata.def"
79   };
80
81 protected:
82   Metadata(unsigned ID, StorageType Storage)
83       : SubclassID(ID), Storage(Storage) {
84     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
85   }
86
87   ~Metadata() = default;
88
89   /// \brief Default handling of a changed operand, which asserts.
90   ///
91   /// If subclasses pass themselves in as owners to a tracking node reference,
92   /// they must provide an implementation of this method.
93   void handleChangedOperand(void *, Metadata *) {
94     llvm_unreachable("Unimplemented in Metadata subclass");
95   }
96
97 public:
98   unsigned getMetadataID() const { return SubclassID; }
99
100   /// \brief User-friendly dump.
101   ///
102   /// If \c M is provided, metadata nodes will be numbered canonically;
103   /// otherwise, pointer addresses are substituted.
104   ///
105   /// Note: this uses an explicit overload instead of default arguments so that
106   /// the nullptr version is easy to call from a debugger.
107   ///
108   /// @{
109   void dump() const;
110   void dump(const Module *M) const;
111   /// @}
112
113   /// \brief Print.
114   ///
115   /// Prints definition of \c this.
116   ///
117   /// If \c M is provided, metadata nodes will be numbered canonically;
118   /// otherwise, pointer addresses are substituted.
119   /// @{
120   void print(raw_ostream &OS, const Module *M = nullptr,
121              bool IsForDebug = false) const;
122   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
123              bool IsForDebug = false) const;
124   /// @}
125
126   /// \brief Print as operand.
127   ///
128   /// Prints reference of \c this.
129   ///
130   /// If \c M is provided, metadata nodes will be numbered canonically;
131   /// otherwise, pointer addresses are substituted.
132   /// @{
133   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
134   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
135                       const Module *M = nullptr) const;
136   /// @}
137 };
138
139 // Create wrappers for C Binding types (see CBindingWrapping.h).
140 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
141
142 // Specialized opaque metadata conversions.
143 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
144   return reinterpret_cast<Metadata**>(MDs);
145 }
146
147 #define HANDLE_METADATA(CLASS) class CLASS;
148 #include "llvm/IR/Metadata.def"
149
150 // Provide specializations of isa so that we don't need definitions of
151 // subclasses to see if the metadata is a subclass.
152 #define HANDLE_METADATA_LEAF(CLASS)                                            \
153   template <> struct isa_impl<CLASS, Metadata> {                               \
154     static inline bool doit(const Metadata &MD) {                              \
155       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
156     }                                                                          \
157   };
158 #include "llvm/IR/Metadata.def"
159
160 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
161   MD.print(OS);
162   return OS;
163 }
164
165 /// \brief Metadata wrapper in the Value hierarchy.
166 ///
167 /// A member of the \a Value hierarchy to represent a reference to metadata.
168 /// This allows, e.g., instrinsics to have metadata as operands.
169 ///
170 /// Notably, this is the only thing in either hierarchy that is allowed to
171 /// reference \a LocalAsMetadata.
172 class MetadataAsValue : public Value {
173   friend class ReplaceableMetadataImpl;
174   friend class LLVMContextImpl;
175
176   Metadata *MD;
177
178   MetadataAsValue(Type *Ty, Metadata *MD);
179
180   /// \brief Drop use of metadata (during teardown).
181   void dropUse() { MD = nullptr; }
182
183 public:
184   ~MetadataAsValue();
185
186   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
187   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
188
189   Metadata *getMetadata() const { return MD; }
190
191   static bool classof(const Value *V) {
192     return V->getValueID() == MetadataAsValueVal;
193   }
194
195 private:
196   void handleChangedMetadata(Metadata *MD);
197   void track();
198   void untrack();
199 };
200
201 /// \brief API for tracking metadata references through RAUW and deletion.
202 ///
203 /// Shared API for updating \a Metadata pointers in subclasses that support
204 /// RAUW.
205 ///
206 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
207 /// user-friendly tracking reference.
208 class MetadataTracking {
209 public:
210   /// \brief Track the reference to metadata.
211   ///
212   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
213   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
214   /// deleted, \c MD will be set to \c nullptr.
215   ///
216   /// If tracking isn't supported, \c *MD will not change.
217   ///
218   /// \return true iff tracking is supported by \c MD.
219   static bool track(Metadata *&MD) {
220     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
221   }
222
223   /// \brief Track the reference to metadata for \a Metadata.
224   ///
225   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
226   /// tell it that its operand changed.  This could trigger \c Owner being
227   /// re-uniqued.
228   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
229     return track(Ref, MD, &Owner);
230   }
231
232   /// \brief Track the reference to metadata for \a MetadataAsValue.
233   ///
234   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
235   /// tell it that its operand changed.  This could trigger \c Owner being
236   /// re-uniqued.
237   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
238     return track(Ref, MD, &Owner);
239   }
240
241   /// \brief Stop tracking a reference to metadata.
242   ///
243   /// Stops \c *MD from tracking \c MD.
244   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
245   static void untrack(void *Ref, Metadata &MD);
246
247   /// \brief Move tracking from one reference to another.
248   ///
249   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
250   /// except that ownership callbacks are maintained.
251   ///
252   /// Note: it is an error if \c *MD does not equal \c New.
253   ///
254   /// \return true iff tracking is supported by \c MD.
255   static bool retrack(Metadata *&MD, Metadata *&New) {
256     return retrack(&MD, *MD, &New);
257   }
258   static bool retrack(void *Ref, Metadata &MD, void *New);
259
260   /// \brief Check whether metadata is replaceable.
261   static bool isReplaceable(const Metadata &MD);
262
263   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
264
265 private:
266   /// \brief Track a reference to metadata for an owner.
267   ///
268   /// Generalized version of tracking.
269   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
270 };
271
272 /// \brief Shared implementation of use-lists for replaceable metadata.
273 ///
274 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
275 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
276 /// and \a TempMDNode).
277 class ReplaceableMetadataImpl {
278   friend class MetadataTracking;
279
280 public:
281   using OwnerTy = MetadataTracking::OwnerTy;
282
283 private:
284   LLVMContext &Context;
285   uint64_t NextIndex = 0;
286   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
287
288 public:
289   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
290
291   ~ReplaceableMetadataImpl() {
292     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
293   }
294
295   LLVMContext &getContext() const { return Context; }
296
297   /// \brief Replace all uses of this with MD.
298   ///
299   /// Replace all uses of this with \c MD, which is allowed to be null.
300   void replaceAllUsesWith(Metadata *MD);
301
302   /// \brief Resolve all uses of this.
303   ///
304   /// Resolve all uses of this, turning off RAUW permanently.  If \c
305   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
306   /// is resolved.
307   void resolveAllUses(bool ResolveUsers = true);
308
309 private:
310   void addRef(void *Ref, OwnerTy Owner);
311   void dropRef(void *Ref);
312   void moveRef(void *Ref, void *New, const Metadata &MD);
313
314   /// Lazily construct RAUW support on MD.
315   ///
316   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
317   /// ValueAsMetadata always has RAUW support.
318   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
319
320   /// Get RAUW support on MD, if it exists.
321   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
322
323   /// Check whether this node will support RAUW.
324   ///
325   /// Returns \c true unless getOrCreate() would return null.
326   static bool isReplaceable(const Metadata &MD);
327 };
328
329 /// \brief Value wrapper in the Metadata hierarchy.
330 ///
331 /// This is a custom value handle that allows other metadata to refer to
332 /// classes in the Value hierarchy.
333 ///
334 /// Because of full uniquing support, each value is only wrapped by a single \a
335 /// ValueAsMetadata object, so the lookup maps are far more efficient than
336 /// those using ValueHandleBase.
337 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
338   friend class ReplaceableMetadataImpl;
339   friend class LLVMContextImpl;
340
341   Value *V;
342
343   /// \brief Drop users without RAUW (during teardown).
344   void dropUsers() {
345     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
346   }
347
348 protected:
349   ValueAsMetadata(unsigned ID, Value *V)
350       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
351     assert(V && "Expected valid value");
352   }
353
354   ~ValueAsMetadata() = default;
355
356 public:
357   static ValueAsMetadata *get(Value *V);
358
359   static ConstantAsMetadata *getConstant(Value *C) {
360     return cast<ConstantAsMetadata>(get(C));
361   }
362
363   static LocalAsMetadata *getLocal(Value *Local) {
364     return cast<LocalAsMetadata>(get(Local));
365   }
366
367   static ValueAsMetadata *getIfExists(Value *V);
368
369   static ConstantAsMetadata *getConstantIfExists(Value *C) {
370     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
371   }
372
373   static LocalAsMetadata *getLocalIfExists(Value *Local) {
374     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
375   }
376
377   Value *getValue() const { return V; }
378   Type *getType() const { return V->getType(); }
379   LLVMContext &getContext() const { return V->getContext(); }
380
381   static void handleDeletion(Value *V);
382   static void handleRAUW(Value *From, Value *To);
383
384 protected:
385   /// \brief Handle collisions after \a Value::replaceAllUsesWith().
386   ///
387   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
388   /// \a Value gets RAUW'ed and the target already exists, this is used to
389   /// merge the two metadata nodes.
390   void replaceAllUsesWith(Metadata *MD) {
391     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
392   }
393
394 public:
395   static bool classof(const Metadata *MD) {
396     return MD->getMetadataID() == LocalAsMetadataKind ||
397            MD->getMetadataID() == ConstantAsMetadataKind;
398   }
399 };
400
401 class ConstantAsMetadata : public ValueAsMetadata {
402   friend class ValueAsMetadata;
403
404   ConstantAsMetadata(Constant *C)
405       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
406
407 public:
408   static ConstantAsMetadata *get(Constant *C) {
409     return ValueAsMetadata::getConstant(C);
410   }
411
412   static ConstantAsMetadata *getIfExists(Constant *C) {
413     return ValueAsMetadata::getConstantIfExists(C);
414   }
415
416   Constant *getValue() const {
417     return cast<Constant>(ValueAsMetadata::getValue());
418   }
419
420   static bool classof(const Metadata *MD) {
421     return MD->getMetadataID() == ConstantAsMetadataKind;
422   }
423 };
424
425 class LocalAsMetadata : public ValueAsMetadata {
426   friend class ValueAsMetadata;
427
428   LocalAsMetadata(Value *Local)
429       : ValueAsMetadata(LocalAsMetadataKind, Local) {
430     assert(!isa<Constant>(Local) && "Expected local value");
431   }
432
433 public:
434   static LocalAsMetadata *get(Value *Local) {
435     return ValueAsMetadata::getLocal(Local);
436   }
437
438   static LocalAsMetadata *getIfExists(Value *Local) {
439     return ValueAsMetadata::getLocalIfExists(Local);
440   }
441
442   static bool classof(const Metadata *MD) {
443     return MD->getMetadataID() == LocalAsMetadataKind;
444   }
445 };
446
447 /// \brief Transitional API for extracting constants from Metadata.
448 ///
449 /// This namespace contains transitional functions for metadata that points to
450 /// \a Constants.
451 ///
452 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
453 /// operands could refer to any \a Value.  There's was a lot of code like this:
454 ///
455 /// \code
456 ///     MDNode *N = ...;
457 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
458 /// \endcode
459 ///
460 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
461 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
462 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
463 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
464 /// requires subtle control flow changes.
465 ///
466 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
467 /// so that metadata can refer to numbers without traversing a bridge to the \a
468 /// Value hierarchy.  In this final state, the code above would look like this:
469 ///
470 /// \code
471 ///     MDNode *N = ...;
472 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
473 /// \endcode
474 ///
475 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
476 /// yet, and even once it does, changing each metadata schema to use it is its
477 /// own mini-project.  In the meantime this API prevents us from introducing
478 /// complex and bug-prone control flow that will disappear in the end.  In
479 /// particular, the above code looks like this:
480 ///
481 /// \code
482 ///     MDNode *N = ...;
483 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
484 /// \endcode
485 ///
486 /// The full set of provided functions includes:
487 ///
488 ///   mdconst::hasa                <=> isa
489 ///   mdconst::extract             <=> cast
490 ///   mdconst::extract_or_null     <=> cast_or_null
491 ///   mdconst::dyn_extract         <=> dyn_cast
492 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
493 ///
494 /// The target of the cast must be a subclass of \a Constant.
495 namespace mdconst {
496
497 namespace detail {
498
499 template <class T> T &make();
500 template <class T, class Result> struct HasDereference {
501   using Yes = char[1];
502   using No = char[2];
503   template <size_t N> struct SFINAE {};
504
505   template <class U, class V>
506   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
507   template <class U, class V> static No &hasDereference(...);
508
509   static const bool value =
510       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
511 };
512 template <class V, class M> struct IsValidPointer {
513   static const bool value = std::is_base_of<Constant, V>::value &&
514                             HasDereference<M, const Metadata &>::value;
515 };
516 template <class V, class M> struct IsValidReference {
517   static const bool value = std::is_base_of<Constant, V>::value &&
518                             std::is_convertible<M, const Metadata &>::value;
519 };
520
521 } // end namespace detail
522
523 /// \brief Check whether Metadata has a Value.
524 ///
525 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
526 /// type \c X.
527 template <class X, class Y>
528 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, bool>::type
529 hasa(Y &&MD) {
530   assert(MD && "Null pointer sent into hasa");
531   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
532     return isa<X>(V->getValue());
533   return false;
534 }
535 template <class X, class Y>
536 inline
537     typename std::enable_if<detail::IsValidReference<X, Y &>::value, bool>::type
538     hasa(Y &MD) {
539   return hasa(&MD);
540 }
541
542 /// \brief Extract a Value from Metadata.
543 ///
544 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
545 template <class X, class Y>
546 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
547 extract(Y &&MD) {
548   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
549 }
550 template <class X, class Y>
551 inline
552     typename std::enable_if<detail::IsValidReference<X, Y &>::value, X *>::type
553     extract(Y &MD) {
554   return extract(&MD);
555 }
556
557 /// \brief Extract a Value from Metadata, allowing null.
558 ///
559 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
560 /// from \c MD, allowing \c MD to be null.
561 template <class X, class Y>
562 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
563 extract_or_null(Y &&MD) {
564   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
565     return cast<X>(V->getValue());
566   return nullptr;
567 }
568
569 /// \brief Extract a Value from Metadata, if any.
570 ///
571 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
572 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
573 /// Value it does contain is of the wrong subclass.
574 template <class X, class Y>
575 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
576 dyn_extract(Y &&MD) {
577   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
578     return dyn_cast<X>(V->getValue());
579   return nullptr;
580 }
581
582 /// \brief Extract a Value from Metadata, if any, allowing null.
583 ///
584 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
585 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
586 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
587 template <class X, class Y>
588 inline typename std::enable_if<detail::IsValidPointer<X, Y>::value, X *>::type
589 dyn_extract_or_null(Y &&MD) {
590   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
591     return dyn_cast<X>(V->getValue());
592   return nullptr;
593 }
594
595 } // end namespace mdconst
596
597 //===----------------------------------------------------------------------===//
598 /// \brief A single uniqued string.
599 ///
600 /// These are used to efficiently contain a byte sequence for metadata.
601 /// MDString is always unnamed.
602 class MDString : public Metadata {
603   friend class StringMapEntry<MDString>;
604
605   StringMapEntry<MDString> *Entry = nullptr;
606
607   MDString() : Metadata(MDStringKind, Uniqued) {}
608
609 public:
610   MDString(const MDString &) = delete;
611   MDString &operator=(MDString &&) = delete;
612   MDString &operator=(const MDString &) = delete;
613
614   static MDString *get(LLVMContext &Context, StringRef Str);
615   static MDString *get(LLVMContext &Context, const char *Str) {
616     return get(Context, Str ? StringRef(Str) : StringRef());
617   }
618
619   StringRef getString() const;
620
621   unsigned getLength() const { return (unsigned)getString().size(); }
622
623   using iterator = StringRef::iterator;
624
625   /// \brief Pointer to the first byte of the string.
626   iterator begin() const { return getString().begin(); }
627
628   /// \brief Pointer to one byte past the end of the string.
629   iterator end() const { return getString().end(); }
630
631   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
632   const unsigned char *bytes_end() const { return getString().bytes_end(); }
633
634   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
635   static bool classof(const Metadata *MD) {
636     return MD->getMetadataID() == MDStringKind;
637   }
638 };
639
640 /// \brief A collection of metadata nodes that might be associated with a
641 /// memory access used by the alias-analysis infrastructure.
642 struct AAMDNodes {
643   explicit AAMDNodes(MDNode *T = nullptr, MDNode *S = nullptr,
644                      MDNode *N = nullptr)
645       : TBAA(T), Scope(S), NoAlias(N) {}
646
647   bool operator==(const AAMDNodes &A) const {
648     return TBAA == A.TBAA && Scope == A.Scope && NoAlias == A.NoAlias;
649   }
650
651   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
652
653   explicit operator bool() const { return TBAA || Scope || NoAlias; }
654
655   /// \brief The tag for type-based alias analysis.
656   MDNode *TBAA;
657
658   /// \brief The tag for alias scope specification (used with noalias).
659   MDNode *Scope;
660
661   /// \brief The tag specifying the noalias scope.
662   MDNode *NoAlias;
663
664   /// \brief Given two sets of AAMDNodes that apply to the same pointer,
665   /// give the best AAMDNodes that are compatible with both (i.e. a set of
666   /// nodes whose allowable aliasing conclusions are a subset of those
667   /// allowable by both of the inputs). However, for efficiency
668   /// reasons, do not create any new MDNodes.
669   AAMDNodes intersect(const AAMDNodes &Other) {
670     AAMDNodes Result;
671     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
672     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
673     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
674     return Result;
675   }
676 };
677
678 // Specialize DenseMapInfo for AAMDNodes.
679 template<>
680 struct DenseMapInfo<AAMDNodes> {
681   static inline AAMDNodes getEmptyKey() {
682     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
683                      nullptr, nullptr);
684   }
685
686   static inline AAMDNodes getTombstoneKey() {
687     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
688                      nullptr, nullptr);
689   }
690
691   static unsigned getHashValue(const AAMDNodes &Val) {
692     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
693            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
694            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
695   }
696
697   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
698     return LHS == RHS;
699   }
700 };
701
702 /// \brief Tracking metadata reference owned by Metadata.
703 ///
704 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
705 /// of \a Metadata, which has the option of registering itself for callbacks to
706 /// re-unique itself.
707 ///
708 /// In particular, this is used by \a MDNode.
709 class MDOperand {
710   Metadata *MD = nullptr;
711
712 public:
713   MDOperand() = default;
714   MDOperand(MDOperand &&) = delete;
715   MDOperand(const MDOperand &) = delete;
716   MDOperand &operator=(MDOperand &&) = delete;
717   MDOperand &operator=(const MDOperand &) = delete;
718   ~MDOperand() { untrack(); }
719
720   Metadata *get() const { return MD; }
721   operator Metadata *() const { return get(); }
722   Metadata *operator->() const { return get(); }
723   Metadata &operator*() const { return *get(); }
724
725   void reset() {
726     untrack();
727     MD = nullptr;
728   }
729   void reset(Metadata *MD, Metadata *Owner) {
730     untrack();
731     this->MD = MD;
732     track(Owner);
733   }
734
735 private:
736   void track(Metadata *Owner) {
737     if (MD) {
738       if (Owner)
739         MetadataTracking::track(this, *MD, *Owner);
740       else
741         MetadataTracking::track(MD);
742     }
743   }
744
745   void untrack() {
746     assert(static_cast<void *>(this) == &MD && "Expected same address");
747     if (MD)
748       MetadataTracking::untrack(MD);
749   }
750 };
751
752 template <> struct simplify_type<MDOperand> {
753   using SimpleType = Metadata *;
754
755   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
756 };
757
758 template <> struct simplify_type<const MDOperand> {
759   using SimpleType = Metadata *;
760
761   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
762 };
763
764 /// \brief Pointer to the context, with optional RAUW support.
765 ///
766 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
767 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
768 class ContextAndReplaceableUses {
769   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
770
771 public:
772   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
773   ContextAndReplaceableUses(
774       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
775       : Ptr(ReplaceableUses.release()) {
776     assert(getReplaceableUses() && "Expected non-null replaceable uses");
777   }
778   ContextAndReplaceableUses() = delete;
779   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
780   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
781   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
782   ContextAndReplaceableUses &
783   operator=(const ContextAndReplaceableUses &) = delete;
784   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
785
786   operator LLVMContext &() { return getContext(); }
787
788   /// \brief Whether this contains RAUW support.
789   bool hasReplaceableUses() const {
790     return Ptr.is<ReplaceableMetadataImpl *>();
791   }
792
793   LLVMContext &getContext() const {
794     if (hasReplaceableUses())
795       return getReplaceableUses()->getContext();
796     return *Ptr.get<LLVMContext *>();
797   }
798
799   ReplaceableMetadataImpl *getReplaceableUses() const {
800     if (hasReplaceableUses())
801       return Ptr.get<ReplaceableMetadataImpl *>();
802     return nullptr;
803   }
804
805   /// Ensure that this has RAUW support, and then return it.
806   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
807     if (!hasReplaceableUses())
808       makeReplaceable(llvm::make_unique<ReplaceableMetadataImpl>(getContext()));
809     return getReplaceableUses();
810   }
811
812   /// \brief Assign RAUW support to this.
813   ///
814   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
815   /// not be null).
816   void
817   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
818     assert(ReplaceableUses && "Expected non-null replaceable uses");
819     assert(&ReplaceableUses->getContext() == &getContext() &&
820            "Expected same context");
821     delete getReplaceableUses();
822     Ptr = ReplaceableUses.release();
823   }
824
825   /// \brief Drop RAUW support.
826   ///
827   /// Cede ownership of RAUW support, returning it.
828   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
829     assert(hasReplaceableUses() && "Expected to own replaceable uses");
830     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
831         getReplaceableUses());
832     Ptr = &ReplaceableUses->getContext();
833     return ReplaceableUses;
834   }
835 };
836
837 struct TempMDNodeDeleter {
838   inline void operator()(MDNode *Node) const;
839 };
840
841 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
842   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
843 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
844 #include "llvm/IR/Metadata.def"
845
846 /// \brief Metadata node.
847 ///
848 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
849 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
850 /// until forward references are known.  The basic metadata node is an \a
851 /// MDTuple.
852 ///
853 /// There is limited support for RAUW at construction time.  At construction
854 /// time, if any operand is a temporary node (or an unresolved uniqued node,
855 /// which indicates a transitive temporary operand), the node itself will be
856 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
857 /// support permanently.
858 ///
859 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
860 /// to be called on some member of the cycle once all temporary nodes have been
861 /// replaced.
862 class MDNode : public Metadata {
863   friend class ReplaceableMetadataImpl;
864   friend class LLVMContextImpl;
865
866   unsigned NumOperands;
867   unsigned NumUnresolved;
868
869   ContextAndReplaceableUses Context;
870
871 protected:
872   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
873          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
874   ~MDNode() = default;
875
876   void *operator new(size_t Size, unsigned NumOps);
877   void operator delete(void *Mem);
878
879   /// \brief Required by std, but never called.
880   void operator delete(void *, unsigned) {
881     llvm_unreachable("Constructor throws?");
882   }
883
884   /// \brief Required by std, but never called.
885   void operator delete(void *, unsigned, bool) {
886     llvm_unreachable("Constructor throws?");
887   }
888
889   void dropAllReferences();
890
891   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
892   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
893
894   using mutable_op_range = iterator_range<MDOperand *>;
895
896   mutable_op_range mutable_operands() {
897     return mutable_op_range(mutable_begin(), mutable_end());
898   }
899
900 public:
901   MDNode(const MDNode &) = delete;
902   void operator=(const MDNode &) = delete;
903   void *operator new(size_t) = delete;
904
905   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
906   static inline MDTuple *getIfExists(LLVMContext &Context,
907                                      ArrayRef<Metadata *> MDs);
908   static inline MDTuple *getDistinct(LLVMContext &Context,
909                                      ArrayRef<Metadata *> MDs);
910   static inline TempMDTuple getTemporary(LLVMContext &Context,
911                                          ArrayRef<Metadata *> MDs);
912
913   /// \brief Create a (temporary) clone of this.
914   TempMDNode clone() const;
915
916   /// \brief Deallocate a node created by getTemporary.
917   ///
918   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
919   /// references will be reset.
920   static void deleteTemporary(MDNode *N);
921
922   LLVMContext &getContext() const { return Context.getContext(); }
923
924   /// \brief Replace a specific operand.
925   void replaceOperandWith(unsigned I, Metadata *New);
926
927   /// \brief Check if node is fully resolved.
928   ///
929   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
930   /// this always returns \c true.
931   ///
932   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
933   /// support (because all operands are resolved).
934   ///
935   /// As forward declarations are resolved, their containers should get
936   /// resolved automatically.  However, if this (or one of its operands) is
937   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
938   bool isResolved() const { return !isTemporary() && !NumUnresolved; }
939
940   bool isUniqued() const { return Storage == Uniqued; }
941   bool isDistinct() const { return Storage == Distinct; }
942   bool isTemporary() const { return Storage == Temporary; }
943
944   /// \brief RAUW a temporary.
945   ///
946   /// \pre \a isTemporary() must be \c true.
947   void replaceAllUsesWith(Metadata *MD) {
948     assert(isTemporary() && "Expected temporary node");
949     if (Context.hasReplaceableUses())
950       Context.getReplaceableUses()->replaceAllUsesWith(MD);
951   }
952
953   /// \brief Resolve cycles.
954   ///
955   /// Once all forward declarations have been resolved, force cycles to be
956   /// resolved.
957   ///
958   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
959   void resolveCycles();
960
961   /// \brief Replace a temporary node with a permanent one.
962   ///
963   /// Try to create a uniqued version of \c N -- in place, if possible -- and
964   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
965   template <class T>
966   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
967   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
968     return cast<T>(N.release()->replaceWithPermanentImpl());
969   }
970
971   /// \brief Replace a temporary node with a uniqued one.
972   ///
973   /// Create a uniqued version of \c N -- in place, if possible -- and return
974   /// it.  Takes ownership of the temporary node.
975   ///
976   /// \pre N does not self-reference.
977   template <class T>
978   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
979   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
980     return cast<T>(N.release()->replaceWithUniquedImpl());
981   }
982
983   /// \brief Replace a temporary node with a distinct one.
984   ///
985   /// Create a distinct version of \c N -- in place, if possible -- and return
986   /// it.  Takes ownership of the temporary node.
987   template <class T>
988   static typename std::enable_if<std::is_base_of<MDNode, T>::value, T *>::type
989   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
990     return cast<T>(N.release()->replaceWithDistinctImpl());
991   }
992
993 private:
994   MDNode *replaceWithPermanentImpl();
995   MDNode *replaceWithUniquedImpl();
996   MDNode *replaceWithDistinctImpl();
997
998 protected:
999   /// \brief Set an operand.
1000   ///
1001   /// Sets the operand directly, without worrying about uniquing.
1002   void setOperand(unsigned I, Metadata *New);
1003
1004   void storeDistinctInContext();
1005   template <class T, class StoreT>
1006   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1007   template <class T> static T *storeImpl(T *N, StorageType Storage);
1008
1009 private:
1010   void handleChangedOperand(void *Ref, Metadata *New);
1011
1012   /// Resolve a unique, unresolved node.
1013   void resolve();
1014
1015   /// Drop RAUW support, if any.
1016   void dropReplaceableUses();
1017
1018   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1019   void decrementUnresolvedOperandCount();
1020   void countUnresolvedOperands();
1021
1022   /// \brief Mutate this to be "uniqued".
1023   ///
1024   /// Mutate this so that \a isUniqued().
1025   /// \pre \a isTemporary().
1026   /// \pre already added to uniquing set.
1027   void makeUniqued();
1028
1029   /// \brief Mutate this to be "distinct".
1030   ///
1031   /// Mutate this so that \a isDistinct().
1032   /// \pre \a isTemporary().
1033   void makeDistinct();
1034
1035   void deleteAsSubclass();
1036   MDNode *uniquify();
1037   void eraseFromStore();
1038
1039   template <class NodeTy> struct HasCachedHash;
1040   template <class NodeTy>
1041   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1042     N->recalculateHash();
1043   }
1044   template <class NodeTy>
1045   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1046   template <class NodeTy>
1047   static void dispatchResetHash(NodeTy *N, std::true_type) {
1048     N->setHash(0);
1049   }
1050   template <class NodeTy>
1051   static void dispatchResetHash(NodeTy *, std::false_type) {}
1052
1053 public:
1054   using op_iterator = const MDOperand *;
1055   using op_range = iterator_range<op_iterator>;
1056
1057   op_iterator op_begin() const {
1058     return const_cast<MDNode *>(this)->mutable_begin();
1059   }
1060
1061   op_iterator op_end() const {
1062     return const_cast<MDNode *>(this)->mutable_end();
1063   }
1064
1065   op_range operands() const { return op_range(op_begin(), op_end()); }
1066
1067   const MDOperand &getOperand(unsigned I) const {
1068     assert(I < NumOperands && "Out of range");
1069     return op_begin()[I];
1070   }
1071
1072   /// \brief Return number of MDNode operands.
1073   unsigned getNumOperands() const { return NumOperands; }
1074
1075   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
1076   static bool classof(const Metadata *MD) {
1077     switch (MD->getMetadataID()) {
1078     default:
1079       return false;
1080 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1081   case CLASS##Kind:                                                            \
1082     return true;
1083 #include "llvm/IR/Metadata.def"
1084     }
1085   }
1086
1087   /// \brief Check whether MDNode is a vtable access.
1088   bool isTBAAVtableAccess() const;
1089
1090   /// \brief Methods for metadata merging.
1091   static MDNode *concatenate(MDNode *A, MDNode *B);
1092   static MDNode *intersect(MDNode *A, MDNode *B);
1093   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1094   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1095   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1096   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1097   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1098 };
1099
1100 /// \brief Tuple of metadata.
1101 ///
1102 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1103 /// default based on their operands.
1104 class MDTuple : public MDNode {
1105   friend class LLVMContextImpl;
1106   friend class MDNode;
1107
1108   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1109           ArrayRef<Metadata *> Vals)
1110       : MDNode(C, MDTupleKind, Storage, Vals) {
1111     setHash(Hash);
1112   }
1113
1114   ~MDTuple() { dropAllReferences(); }
1115
1116   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1117   void recalculateHash();
1118
1119   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1120                           StorageType Storage, bool ShouldCreate = true);
1121
1122   TempMDTuple cloneImpl() const {
1123     return getTemporary(getContext(),
1124                         SmallVector<Metadata *, 4>(op_begin(), op_end()));
1125   }
1126
1127 public:
1128   /// \brief Get the hash, if any.
1129   unsigned getHash() const { return SubclassData32; }
1130
1131   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1132     return getImpl(Context, MDs, Uniqued);
1133   }
1134
1135   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1136     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1137   }
1138
1139   /// \brief Return a distinct node.
1140   ///
1141   /// Return a distinct node -- i.e., a node that is not uniqued.
1142   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1143     return getImpl(Context, MDs, Distinct);
1144   }
1145
1146   /// \brief Return a temporary node.
1147   ///
1148   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1149   /// not uniqued, may be RAUW'd, and must be manually deleted with
1150   /// deleteTemporary.
1151   static TempMDTuple getTemporary(LLVMContext &Context,
1152                                   ArrayRef<Metadata *> MDs) {
1153     return TempMDTuple(getImpl(Context, MDs, Temporary));
1154   }
1155
1156   /// \brief Return a (temporary) clone of this.
1157   TempMDTuple clone() const { return cloneImpl(); }
1158
1159   static bool classof(const Metadata *MD) {
1160     return MD->getMetadataID() == MDTupleKind;
1161   }
1162 };
1163
1164 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1165   return MDTuple::get(Context, MDs);
1166 }
1167
1168 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1169   return MDTuple::getIfExists(Context, MDs);
1170 }
1171
1172 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1173   return MDTuple::getDistinct(Context, MDs);
1174 }
1175
1176 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1177                                  ArrayRef<Metadata *> MDs) {
1178   return MDTuple::getTemporary(Context, MDs);
1179 }
1180
1181 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1182   MDNode::deleteTemporary(Node);
1183 }
1184
1185 /// \brief Typed iterator through MDNode operands.
1186 ///
1187 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1188 /// particular Metadata subclass.
1189 template <class T>
1190 class TypedMDOperandIterator
1191     : std::iterator<std::input_iterator_tag, T *, std::ptrdiff_t, void, T *> {
1192   MDNode::op_iterator I = nullptr;
1193
1194 public:
1195   TypedMDOperandIterator() = default;
1196   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1197
1198   T *operator*() const { return cast_or_null<T>(*I); }
1199
1200   TypedMDOperandIterator &operator++() {
1201     ++I;
1202     return *this;
1203   }
1204
1205   TypedMDOperandIterator operator++(int) {
1206     TypedMDOperandIterator Temp(*this);
1207     ++I;
1208     return Temp;
1209   }
1210
1211   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1212   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1213 };
1214
1215 /// \brief Typed, array-like tuple of metadata.
1216 ///
1217 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1218 /// particular type of metadata.
1219 template <class T> class MDTupleTypedArrayWrapper {
1220   const MDTuple *N = nullptr;
1221
1222 public:
1223   MDTupleTypedArrayWrapper() = default;
1224   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1225
1226   template <class U>
1227   MDTupleTypedArrayWrapper(
1228       const MDTupleTypedArrayWrapper<U> &Other,
1229       typename std::enable_if<std::is_convertible<U *, T *>::value>::type * =
1230           nullptr)
1231       : N(Other.get()) {}
1232
1233   template <class U>
1234   explicit MDTupleTypedArrayWrapper(
1235       const MDTupleTypedArrayWrapper<U> &Other,
1236       typename std::enable_if<!std::is_convertible<U *, T *>::value>::type * =
1237           nullptr)
1238       : N(Other.get()) {}
1239
1240   explicit operator bool() const { return get(); }
1241   explicit operator MDTuple *() const { return get(); }
1242
1243   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1244   MDTuple *operator->() const { return get(); }
1245   MDTuple &operator*() const { return *get(); }
1246
1247   // FIXME: Fix callers and remove condition on N.
1248   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1249   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1250   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1251
1252   // FIXME: Fix callers and remove condition on N.
1253   using iterator = TypedMDOperandIterator<T>;
1254
1255   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1256   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1257 };
1258
1259 #define HANDLE_METADATA(CLASS)                                                 \
1260   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1261 #include "llvm/IR/Metadata.def"
1262
1263 /// Placeholder metadata for operands of distinct MDNodes.
1264 ///
1265 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1266 /// purpose is to help track forward references when creating a distinct node.
1267 /// This allows distinct nodes involved in a cycle to be constructed before
1268 /// their operands without requiring a heavyweight temporary node with
1269 /// full-blown RAUW support.
1270 ///
1271 /// Each placeholder supports only a single MDNode user.  Clients should pass
1272 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1273 /// should be replaced with.
1274 ///
1275 /// While it would be possible to implement move operators, they would be
1276 /// fairly expensive.  Leave them unimplemented to discourage their use
1277 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1278 class DistinctMDOperandPlaceholder : public Metadata {
1279   friend class MetadataTracking;
1280
1281   Metadata **Use = nullptr;
1282
1283 public:
1284   explicit DistinctMDOperandPlaceholder(unsigned ID)
1285       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1286     SubclassData32 = ID;
1287   }
1288
1289   DistinctMDOperandPlaceholder() = delete;
1290   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1291   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1292
1293   ~DistinctMDOperandPlaceholder() {
1294     if (Use)
1295       *Use = nullptr;
1296   }
1297
1298   unsigned getID() const { return SubclassData32; }
1299
1300   /// Replace the use of this with MD.
1301   void replaceUseWith(Metadata *MD) {
1302     if (!Use)
1303       return;
1304     *Use = MD;
1305     Use = nullptr;
1306   }
1307 };
1308
1309 //===----------------------------------------------------------------------===//
1310 /// \brief A tuple of MDNodes.
1311 ///
1312 /// Despite its name, a NamedMDNode isn't itself an MDNode. NamedMDNodes belong
1313 /// to modules, have names, and contain lists of MDNodes.
1314 ///
1315 /// TODO: Inherit from Metadata.
1316 class NamedMDNode : public ilist_node<NamedMDNode> {
1317   friend class LLVMContextImpl;
1318   friend class Module;
1319
1320   std::string Name;
1321   Module *Parent = nullptr;
1322   void *Operands; // SmallVector<TrackingMDRef, 4>
1323
1324   void setParent(Module *M) { Parent = M; }
1325
1326   explicit NamedMDNode(const Twine &N);
1327
1328   template<class T1, class T2>
1329   class op_iterator_impl :
1330       public std::iterator<std::bidirectional_iterator_tag, T2> {
1331     friend class NamedMDNode;
1332
1333     const NamedMDNode *Node = nullptr;
1334     unsigned Idx = 0;
1335
1336     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1337
1338   public:
1339     op_iterator_impl() = default;
1340
1341     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1342     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1343
1344     op_iterator_impl &operator++() {
1345       ++Idx;
1346       return *this;
1347     }
1348
1349     op_iterator_impl operator++(int) {
1350       op_iterator_impl tmp(*this);
1351       operator++();
1352       return tmp;
1353     }
1354
1355     op_iterator_impl &operator--() {
1356       --Idx;
1357       return *this;
1358     }
1359
1360     op_iterator_impl operator--(int) {
1361       op_iterator_impl tmp(*this);
1362       operator--();
1363       return tmp;
1364     }
1365
1366     T1 operator*() const { return Node->getOperand(Idx); }
1367   };
1368
1369 public:
1370   NamedMDNode(const NamedMDNode &) = delete;
1371   ~NamedMDNode();
1372
1373   /// \brief Drop all references and remove the node from parent module.
1374   void eraseFromParent();
1375
1376   /// Remove all uses and clear node vector.
1377   void dropAllReferences() { clearOperands(); }
1378   /// Drop all references to this node's operands.
1379   void clearOperands();
1380
1381   /// \brief Get the module that holds this named metadata collection.
1382   inline Module *getParent() { return Parent; }
1383   inline const Module *getParent() const { return Parent; }
1384
1385   MDNode *getOperand(unsigned i) const;
1386   unsigned getNumOperands() const;
1387   void addOperand(MDNode *M);
1388   void setOperand(unsigned I, MDNode *New);
1389   StringRef getName() const;
1390   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1391   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1392              bool IsForDebug = false) const;
1393   void dump() const;
1394
1395   // ---------------------------------------------------------------------------
1396   // Operand Iterator interface...
1397   //
1398   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1399
1400   op_iterator op_begin() { return op_iterator(this, 0); }
1401   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1402
1403   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1404
1405   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1406   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1407
1408   inline iterator_range<op_iterator>  operands() {
1409     return make_range(op_begin(), op_end());
1410   }
1411   inline iterator_range<const_op_iterator> operands() const {
1412     return make_range(op_begin(), op_end());
1413   }
1414 };
1415
1416 } // end namespace llvm
1417
1418 #endif // LLVM_IR_METADATA_H