]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/IR/ValueMap.h
Merge content currently under test from ^/vendor/NetBSD/tests/dist/@r312123
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / IR / ValueMap.h
1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ValueMap class.  ValueMap maps Value* or any subclass
11 // to an arbitrary other type.  It provides the DenseMap interface but updates
12 // itself to remain safe when keys are RAUWed or deleted.  By default, when a
13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new
14 // mapping V2->target is added.  If V2 already existed, its old target is
15 // overwritten.  When a key is deleted, its mapping is removed.
16 //
17 // You can override a ValueMap's Config parameter to control exactly what
18 // happens on RAUW and destruction and to get called back on each event.  It's
19 // legal to call back into the ValueMap from a Config's callbacks.  Config
20 // parameters should inherit from ValueMapConfig<KeyT> to get default
21 // implementations of all the methods ValueMap uses.  See ValueMapConfig for
22 // documentation of the functions you can override.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #ifndef LLVM_IR_VALUEMAP_H
27 #define LLVM_IR_VALUEMAP_H
28
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/IR/TrackingMDRef.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Support/Mutex.h"
34 #include "llvm/Support/UniqueLock.h"
35 #include "llvm/Support/type_traits.h"
36 #include <iterator>
37 #include <memory>
38
39 namespace llvm {
40
41 template<typename KeyT, typename ValueT, typename Config>
42 class ValueMapCallbackVH;
43
44 template<typename DenseMapT, typename KeyT>
45 class ValueMapIterator;
46 template<typename DenseMapT, typename KeyT>
47 class ValueMapConstIterator;
48
49 /// This class defines the default behavior for configurable aspects of
50 /// ValueMap<>.  User Configs should inherit from this class to be as compatible
51 /// as possible with future versions of ValueMap.
52 template<typename KeyT, typename MutexT = sys::Mutex>
53 struct ValueMapConfig {
54   typedef MutexT mutex_type;
55
56   /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's
57   /// false, the ValueMap will leave the original mapping in place.
58   enum { FollowRAUW = true };
59
60   // All methods will be called with a first argument of type ExtraData.  The
61   // default implementations in this class take a templated first argument so
62   // that users' subclasses can use any type they want without having to
63   // override all the defaults.
64   struct ExtraData {};
65
66   template<typename ExtraDataT>
67   static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {}
68   template<typename ExtraDataT>
69   static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {}
70
71   /// Returns a mutex that should be acquired around any changes to the map.
72   /// This is only acquired from the CallbackVH (and held around calls to onRAUW
73   /// and onDelete) and not inside other ValueMap methods.  NULL means that no
74   /// mutex is necessary.
75   template<typename ExtraDataT>
76   static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; }
77 };
78
79 /// See the file comment.
80 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> >
81 class ValueMap {
82   friend class ValueMapCallbackVH<KeyT, ValueT, Config>;
83   typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH;
84   typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT;
85   typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
86   typedef typename Config::ExtraData ExtraData;
87   MapT Map;
88   Optional<MDMapT> MDMap;
89   ExtraData Data;
90
91   bool MayMapMetadata = true;
92
93   ValueMap(const ValueMap&) = delete;
94   ValueMap& operator=(const ValueMap&) = delete;
95 public:
96   typedef KeyT key_type;
97   typedef ValueT mapped_type;
98   typedef std::pair<KeyT, ValueT> value_type;
99   typedef unsigned size_type;
100
101   explicit ValueMap(unsigned NumInitBuckets = 64)
102       : Map(NumInitBuckets), Data() {}
103   explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64)
104       : Map(NumInitBuckets), Data(Data) {}
105
106   bool hasMD() const { return bool(MDMap); }
107   MDMapT &MD() {
108     if (!MDMap)
109       MDMap.emplace();
110     return *MDMap;
111   }
112   Optional<MDMapT> &getMDMap() { return MDMap; }
113
114   bool mayMapMetadata() const { return MayMapMetadata; }
115   void enableMapMetadata() { MayMapMetadata = true; }
116   void disableMapMetadata() { MayMapMetadata = false; }
117
118   /// Get the mapped metadata, if it's in the map.
119   Optional<Metadata *> getMappedMD(const Metadata *MD) const {
120     if (!MDMap)
121       return None;
122     auto Where = MDMap->find(MD);
123     if (Where == MDMap->end())
124       return None;
125     return Where->second.get();
126   }
127
128   typedef ValueMapIterator<MapT, KeyT> iterator;
129   typedef ValueMapConstIterator<MapT, KeyT> const_iterator;
130   inline iterator begin() { return iterator(Map.begin()); }
131   inline iterator end() { return iterator(Map.end()); }
132   inline const_iterator begin() const { return const_iterator(Map.begin()); }
133   inline const_iterator end() const { return const_iterator(Map.end()); }
134
135   bool empty() const { return Map.empty(); }
136   size_type size() const { return Map.size(); }
137
138   /// Grow the map so that it has at least Size buckets. Does not shrink
139   void resize(size_t Size) { Map.resize(Size); }
140
141   void clear() {
142     Map.clear();
143     MDMap.reset();
144   }
145
146   /// Return 1 if the specified key is in the map, 0 otherwise.
147   size_type count(const KeyT &Val) const {
148     return Map.find_as(Val) == Map.end() ? 0 : 1;
149   }
150
151   iterator find(const KeyT &Val) {
152     return iterator(Map.find_as(Val));
153   }
154   const_iterator find(const KeyT &Val) const {
155     return const_iterator(Map.find_as(Val));
156   }
157
158   /// lookup - Return the entry for the specified key, or a default
159   /// constructed value if no such entry exists.
160   ValueT lookup(const KeyT &Val) const {
161     typename MapT::const_iterator I = Map.find_as(Val);
162     return I != Map.end() ? I->second : ValueT();
163   }
164
165   // Inserts key,value pair into the map if the key isn't already in the map.
166   // If the key is already in the map, it returns false and doesn't update the
167   // value.
168   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
169     auto MapResult = Map.insert(std::make_pair(Wrap(KV.first), KV.second));
170     return std::make_pair(iterator(MapResult.first), MapResult.second);
171   }
172
173   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
174     auto MapResult =
175         Map.insert(std::make_pair(Wrap(KV.first), std::move(KV.second)));
176     return std::make_pair(iterator(MapResult.first), MapResult.second);
177   }
178
179   /// insert - Range insertion of pairs.
180   template<typename InputIt>
181   void insert(InputIt I, InputIt E) {
182     for (; I != E; ++I)
183       insert(*I);
184   }
185
186
187   bool erase(const KeyT &Val) {
188     typename MapT::iterator I = Map.find_as(Val);
189     if (I == Map.end())
190       return false;
191
192     Map.erase(I);
193     return true;
194   }
195   void erase(iterator I) {
196     return Map.erase(I.base());
197   }
198
199   value_type& FindAndConstruct(const KeyT &Key) {
200     return Map.FindAndConstruct(Wrap(Key));
201   }
202
203   ValueT &operator[](const KeyT &Key) {
204     return Map[Wrap(Key)];
205   }
206
207   /// isPointerIntoBucketsArray - Return true if the specified pointer points
208   /// somewhere into the ValueMap's array of buckets (i.e. either to a key or
209   /// value in the ValueMap).
210   bool isPointerIntoBucketsArray(const void *Ptr) const {
211     return Map.isPointerIntoBucketsArray(Ptr);
212   }
213
214   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
215   /// array.  In conjunction with the previous method, this can be used to
216   /// determine whether an insertion caused the ValueMap to reallocate.
217   const void *getPointerIntoBucketsArray() const {
218     return Map.getPointerIntoBucketsArray();
219   }
220
221 private:
222   // Takes a key being looked up in the map and wraps it into a
223   // ValueMapCallbackVH, the actual key type of the map.  We use a helper
224   // function because ValueMapCVH is constructed with a second parameter.
225   ValueMapCVH Wrap(KeyT key) const {
226     // The only way the resulting CallbackVH could try to modify *this (making
227     // the const_cast incorrect) is if it gets inserted into the map.  But then
228     // this function must have been called from a non-const method, making the
229     // const_cast ok.
230     return ValueMapCVH(key, const_cast<ValueMap*>(this));
231   }
232 };
233
234 // This CallbackVH updates its ValueMap when the contained Value changes,
235 // according to the user's preferences expressed through the Config object.
236 template <typename KeyT, typename ValueT, typename Config>
237 class ValueMapCallbackVH final : public CallbackVH {
238   friend class ValueMap<KeyT, ValueT, Config>;
239   friend struct DenseMapInfo<ValueMapCallbackVH>;
240   typedef ValueMap<KeyT, ValueT, Config> ValueMapT;
241   typedef typename std::remove_pointer<KeyT>::type KeySansPointerT;
242
243   ValueMapT *Map;
244
245   ValueMapCallbackVH(KeyT Key, ValueMapT *Map)
246       : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))),
247         Map(Map) {}
248
249   // Private constructor used to create empty/tombstone DenseMap keys.
250   ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {}
251
252 public:
253   KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); }
254
255   void deleted() override {
256     // Make a copy that won't get changed even when *this is destroyed.
257     ValueMapCallbackVH Copy(*this);
258     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
259     unique_lock<typename Config::mutex_type> Guard;
260     if (M)
261       Guard = unique_lock<typename Config::mutex_type>(*M);
262     Config::onDelete(Copy.Map->Data, Copy.Unwrap());  // May destroy *this.
263     Copy.Map->Map.erase(Copy);  // Definitely destroys *this.
264   }
265   void allUsesReplacedWith(Value *new_key) override {
266     assert(isa<KeySansPointerT>(new_key) &&
267            "Invalid RAUW on key of ValueMap<>");
268     // Make a copy that won't get changed even when *this is destroyed.
269     ValueMapCallbackVH Copy(*this);
270     typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data);
271     unique_lock<typename Config::mutex_type> Guard;
272     if (M)
273       Guard = unique_lock<typename Config::mutex_type>(*M);
274
275     KeyT typed_new_key = cast<KeySansPointerT>(new_key);
276     // Can destroy *this:
277     Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key);
278     if (Config::FollowRAUW) {
279       typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy);
280       // I could == Copy.Map->Map.end() if the onRAUW callback already
281       // removed the old mapping.
282       if (I != Copy.Map->Map.end()) {
283         ValueT Target(std::move(I->second));
284         Copy.Map->Map.erase(I);  // Definitely destroys *this.
285         Copy.Map->insert(std::make_pair(typed_new_key, std::move(Target)));
286       }
287     }
288   }
289 };
290
291 template<typename KeyT, typename ValueT, typename Config>
292 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > {
293   typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH;
294
295   static inline VH getEmptyKey() {
296     return VH(DenseMapInfo<Value *>::getEmptyKey());
297   }
298   static inline VH getTombstoneKey() {
299     return VH(DenseMapInfo<Value *>::getTombstoneKey());
300   }
301   static unsigned getHashValue(const VH &Val) {
302     return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap());
303   }
304   static unsigned getHashValue(const KeyT &Val) {
305     return DenseMapInfo<KeyT>::getHashValue(Val);
306   }
307   static bool isEqual(const VH &LHS, const VH &RHS) {
308     return LHS == RHS;
309   }
310   static bool isEqual(const KeyT &LHS, const VH &RHS) {
311     return LHS == RHS.getValPtr();
312   }
313 };
314
315
316 template<typename DenseMapT, typename KeyT>
317 class ValueMapIterator :
318     public std::iterator<std::forward_iterator_tag,
319                          std::pair<KeyT, typename DenseMapT::mapped_type>,
320                          ptrdiff_t> {
321   typedef typename DenseMapT::iterator BaseT;
322   typedef typename DenseMapT::mapped_type ValueT;
323   BaseT I;
324 public:
325   ValueMapIterator() : I() {}
326
327   ValueMapIterator(BaseT I) : I(I) {}
328
329   BaseT base() const { return I; }
330
331   struct ValueTypeProxy {
332     const KeyT first;
333     ValueT& second;
334     ValueTypeProxy *operator->() { return this; }
335     operator std::pair<KeyT, ValueT>() const {
336       return std::make_pair(first, second);
337     }
338   };
339
340   ValueTypeProxy operator*() const {
341     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
342     return Result;
343   }
344
345   ValueTypeProxy operator->() const {
346     return operator*();
347   }
348
349   bool operator==(const ValueMapIterator &RHS) const {
350     return I == RHS.I;
351   }
352   bool operator!=(const ValueMapIterator &RHS) const {
353     return I != RHS.I;
354   }
355
356   inline ValueMapIterator& operator++() {  // Preincrement
357     ++I;
358     return *this;
359   }
360   ValueMapIterator operator++(int) {  // Postincrement
361     ValueMapIterator tmp = *this; ++*this; return tmp;
362   }
363 };
364
365 template<typename DenseMapT, typename KeyT>
366 class ValueMapConstIterator :
367     public std::iterator<std::forward_iterator_tag,
368                          std::pair<KeyT, typename DenseMapT::mapped_type>,
369                          ptrdiff_t> {
370   typedef typename DenseMapT::const_iterator BaseT;
371   typedef typename DenseMapT::mapped_type ValueT;
372   BaseT I;
373 public:
374   ValueMapConstIterator() : I() {}
375   ValueMapConstIterator(BaseT I) : I(I) {}
376   ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other)
377     : I(Other.base()) {}
378
379   BaseT base() const { return I; }
380
381   struct ValueTypeProxy {
382     const KeyT first;
383     const ValueT& second;
384     ValueTypeProxy *operator->() { return this; }
385     operator std::pair<KeyT, ValueT>() const {
386       return std::make_pair(first, second);
387     }
388   };
389
390   ValueTypeProxy operator*() const {
391     ValueTypeProxy Result = {I->first.Unwrap(), I->second};
392     return Result;
393   }
394
395   ValueTypeProxy operator->() const {
396     return operator*();
397   }
398
399   bool operator==(const ValueMapConstIterator &RHS) const {
400     return I == RHS.I;
401   }
402   bool operator!=(const ValueMapConstIterator &RHS) const {
403     return I != RHS.I;
404   }
405
406   inline ValueMapConstIterator& operator++() {  // Preincrement
407     ++I;
408     return *this;
409   }
410   ValueMapConstIterator operator++(int) {  // Postincrement
411     ValueMapConstIterator tmp = *this; ++*this; return tmp;
412   }
413 };
414
415 } // end namespace llvm
416
417 #endif