]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/include/llvm/MC/MCInstrDesc.h
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / include / llvm / MC / MCInstrDesc.h
1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the MCOperandInfo and MCInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_MC_MCINSTRDESC_H
16 #define LLVM_MC_MCINSTRDESC_H
17
18 #include "llvm/MC/MCRegisterInfo.h"
19 #include "llvm/Support/DataTypes.h"
20 #include <string>
21
22 namespace llvm {
23   class MCInst;
24   class MCSubtargetInfo;
25   class FeatureBitset;
26
27 //===----------------------------------------------------------------------===//
28 // Machine Operand Flags and Description
29 //===----------------------------------------------------------------------===//
30
31 namespace MCOI {
32 // Operand constraints
33 enum OperandConstraint {
34   TIED_TO = 0,  // Must be allocated the same register as.
35   EARLY_CLOBBER // Operand is an early clobber register operand
36 };
37
38 /// These are flags set on operands, but should be considered
39 /// private, all access should go through the MCOperandInfo accessors.
40 /// See the accessors for a description of what these are.
41 enum OperandFlags { LookupPtrRegClass = 0, Predicate, OptionalDef };
42
43 /// Operands are tagged with one of the values of this enum.
44 enum OperandType {
45   OPERAND_UNKNOWN = 0,
46   OPERAND_IMMEDIATE = 1,
47   OPERAND_REGISTER = 2,
48   OPERAND_MEMORY = 3,
49   OPERAND_PCREL = 4,
50
51   OPERAND_FIRST_GENERIC = 6,
52   OPERAND_GENERIC_0 = 6,
53   OPERAND_GENERIC_1 = 7,
54   OPERAND_GENERIC_2 = 8,
55   OPERAND_GENERIC_3 = 9,
56   OPERAND_GENERIC_4 = 10,
57   OPERAND_GENERIC_5 = 11,
58   OPERAND_LAST_GENERIC = 11,
59
60   OPERAND_FIRST_TARGET = 12,
61 };
62
63 }
64
65 /// This holds information about one operand of a machine instruction,
66 /// indicating the register class for register operands, etc.
67 class MCOperandInfo {
68 public:
69   /// This specifies the register class enumeration of the operand
70   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
71   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
72   /// get a dynamic register class.
73   int16_t RegClass;
74
75   /// These are flags from the MCOI::OperandFlags enum.
76   uint8_t Flags;
77
78   /// Information about the type of the operand.
79   uint8_t OperandType;
80   /// The lower 16 bits are used to specify which constraints are set.
81   /// The higher 16 bits are used to specify the value of constraints (4 bits
82   /// each).
83   uint32_t Constraints;
84
85   /// Set if this operand is a pointer value and it requires a callback
86   /// to look up its register class.
87   bool isLookupPtrRegClass() const {
88     return Flags & (1 << MCOI::LookupPtrRegClass);
89   }
90
91   /// Set if this is one of the operands that made up of the predicate
92   /// operand that controls an isPredicable() instruction.
93   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
94
95   /// Set if this operand is a optional def.
96   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
97
98   bool isGenericType() const {
99     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
100            OperandType <= MCOI::OPERAND_LAST_GENERIC;
101   }
102
103   unsigned getGenericTypeIndex() const {
104     assert(isGenericType() && "non-generic types don't have an index");
105     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
106   }
107 };
108
109 //===----------------------------------------------------------------------===//
110 // Machine Instruction Flags and Description
111 //===----------------------------------------------------------------------===//
112
113 namespace MCID {
114 /// These should be considered private to the implementation of the
115 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
116 /// not use these directly.  These all correspond to bitfields in the
117 /// MCInstrDesc::Flags field.
118 enum Flag {
119   Variadic = 0,
120   HasOptionalDef,
121   Pseudo,
122   Return,
123   Call,
124   Barrier,
125   Terminator,
126   Branch,
127   IndirectBranch,
128   Compare,
129   MoveImm,
130   MoveReg,
131   Bitcast,
132   Select,
133   DelaySlot,
134   FoldableAsLoad,
135   MayLoad,
136   MayStore,
137   Predicable,
138   NotDuplicable,
139   UnmodeledSideEffects,
140   Commutable,
141   ConvertibleTo3Addr,
142   UsesCustomInserter,
143   HasPostISelHook,
144   Rematerializable,
145   CheapAsAMove,
146   ExtraSrcRegAllocReq,
147   ExtraDefRegAllocReq,
148   RegSequence,
149   ExtractSubreg,
150   InsertSubreg,
151   Convergent,
152   Add,
153   Trap
154 };
155 }
156
157 /// Describe properties that are true of each instruction in the target
158 /// description file.  This captures information about side effects, register
159 /// use and many other things.  There is one instance of this struct for each
160 /// target instruction class, and the MachineInstr class points to this struct
161 /// directly to describe itself.
162 class MCInstrDesc {
163 public:
164   unsigned short Opcode;         // The opcode number
165   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
166   unsigned char NumDefs;         // Num of args that are definitions
167   unsigned char Size;            // Number of bytes in encoding.
168   unsigned short SchedClass;     // enum identifying instr sched class
169   uint64_t Flags;                // Flags identifying machine instr class
170   uint64_t TSFlags;              // Target Specific Flag values
171   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
172   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
173   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
174   // Subtarget feature that this is deprecated on, if any
175   // -1 implies this is not deprecated by any single feature. It may still be
176   // deprecated due to a "complex" reason, below.
177   int64_t DeprecatedFeature;
178
179   // A complex method to determine if a certain instruction is deprecated or
180   // not, and return the reason for deprecation.
181   bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &,
182                                  std::string &);
183
184   /// Returns the value of the specific constraint if
185   /// it is set. Returns -1 if it is not set.
186   int getOperandConstraint(unsigned OpNum,
187                            MCOI::OperandConstraint Constraint) const {
188     if (OpNum < NumOperands &&
189         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
190       unsigned Pos = 16 + Constraint * 4;
191       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
192     }
193     return -1;
194   }
195
196   /// Returns true if a certain instruction is deprecated and if so
197   /// returns the reason in \p Info.
198   bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI,
199                          std::string &Info) const;
200
201   /// Return the opcode number for this descriptor.
202   unsigned getOpcode() const { return Opcode; }
203
204   /// Return the number of declared MachineOperands for this
205   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
206   /// instructions may have additional operands at the end of the list, and note
207   /// that the machine instruction may include implicit register def/uses as
208   /// well.
209   unsigned getNumOperands() const { return NumOperands; }
210
211   using const_opInfo_iterator = const MCOperandInfo *;
212
213   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
214   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
215
216   iterator_range<const_opInfo_iterator> operands() const {
217     return make_range(opInfo_begin(), opInfo_end());
218   }
219
220   /// Return the number of MachineOperands that are register
221   /// definitions.  Register definitions always occur at the start of the
222   /// machine operand list.  This is the number of "outs" in the .td file,
223   /// and does not include implicit defs.
224   unsigned getNumDefs() const { return NumDefs; }
225
226   /// Return flags of this instruction.
227   uint64_t getFlags() const { return Flags; }
228
229   /// Return true if this instruction can have a variable number of
230   /// operands.  In this case, the variable operands will be after the normal
231   /// operands but before the implicit definitions and uses (if any are
232   /// present).
233   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
234
235   /// Set if this instruction has an optional definition, e.g.
236   /// ARM instructions which can set condition code if 's' bit is set.
237   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
238
239   /// Return true if this is a pseudo instruction that doesn't
240   /// correspond to a real machine instruction.
241   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
242
243   /// Return true if the instruction is a return.
244   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
245
246   /// Return true if the instruction is an add instruction.
247   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
248
249   /// Return true if this instruction is a trap.
250   bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
251
252   /// Return true if the instruction is a register to register move.
253   bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
254
255   ///  Return true if the instruction is a call.
256   bool isCall() const { return Flags & (1ULL << MCID::Call); }
257
258   /// Returns true if the specified instruction stops control flow
259   /// from executing the instruction immediately following it.  Examples include
260   /// unconditional branches and return instructions.
261   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
262
263   /// Returns true if this instruction part of the terminator for
264   /// a basic block.  Typically this is things like return and branch
265   /// instructions.
266   ///
267   /// Various passes use this to insert code into the bottom of a basic block,
268   /// but before control flow occurs.
269   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
270
271   /// Returns true if this is a conditional, unconditional, or
272   /// indirect branch.  Predicates below can be used to discriminate between
273   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
274   /// get more information.
275   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
276
277   /// Return true if this is an indirect branch, such as a
278   /// branch through a register.
279   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
280
281   /// Return true if this is a branch which may fall
282   /// through to the next instruction or may transfer control flow to some other
283   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
284   /// information about this branch.
285   bool isConditionalBranch() const {
286     return isBranch() & !isBarrier() & !isIndirectBranch();
287   }
288
289   /// Return true if this is a branch which always
290   /// transfers control flow to some other block.  The
291   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
292   /// about this branch.
293   bool isUnconditionalBranch() const {
294     return isBranch() & isBarrier() & !isIndirectBranch();
295   }
296
297   /// Return true if this is a branch or an instruction which directly
298   /// writes to the program counter. Considered 'may' affect rather than
299   /// 'does' affect as things like predication are not taken into account.
300   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
301
302   /// Return true if this instruction has a predicate operand
303   /// that controls execution. It may be set to 'always', or may be set to other
304   /// values. There are various methods in TargetInstrInfo that can be used to
305   /// control and modify the predicate in this instruction.
306   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
307
308   /// Return true if this instruction is a comparison.
309   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
310
311   /// Return true if this instruction is a move immediate
312   /// (including conditional moves) instruction.
313   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
314
315   /// Return true if this instruction is a bitcast instruction.
316   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
317
318   /// Return true if this is a select instruction.
319   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
320
321   /// Return true if this instruction cannot be safely
322   /// duplicated.  For example, if the instruction has a unique labels attached
323   /// to it, duplicating it would cause multiple definition errors.
324   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
325
326   /// Returns true if the specified instruction has a delay slot which
327   /// must be filled by the code generator.
328   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
329
330   /// Return true for instructions that can be folded as memory operands
331   /// in other instructions. The most common use for this is instructions that
332   /// are simple loads from memory that don't modify the loaded value in any
333   /// way, but it can also be used for instructions that can be expressed as
334   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
335   /// folded when it is beneficial.  This should only be set on instructions
336   /// that return a value in their only virtual register definition.
337   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
338
339   /// Return true if this instruction behaves
340   /// the same way as the generic REG_SEQUENCE instructions.
341   /// E.g., on ARM,
342   /// dX VMOVDRR rY, rZ
343   /// is equivalent to
344   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
345   ///
346   /// Note that for the optimizers to be able to take advantage of
347   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
348   /// override accordingly.
349   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
350
351   /// Return true if this instruction behaves
352   /// the same way as the generic EXTRACT_SUBREG instructions.
353   /// E.g., on ARM,
354   /// rX, rY VMOVRRD dZ
355   /// is equivalent to two EXTRACT_SUBREG:
356   /// rX = EXTRACT_SUBREG dZ, ssub_0
357   /// rY = EXTRACT_SUBREG dZ, ssub_1
358   ///
359   /// Note that for the optimizers to be able to take advantage of
360   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
361   /// override accordingly.
362   bool isExtractSubregLike() const {
363     return Flags & (1ULL << MCID::ExtractSubreg);
364   }
365
366   /// Return true if this instruction behaves
367   /// the same way as the generic INSERT_SUBREG instructions.
368   /// E.g., on ARM,
369   /// dX = VSETLNi32 dY, rZ, Imm
370   /// is equivalent to a INSERT_SUBREG:
371   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
372   ///
373   /// Note that for the optimizers to be able to take advantage of
374   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
375   /// override accordingly.
376   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
377
378
379   /// Return true if this instruction is convergent.
380   ///
381   /// Convergent instructions may not be made control-dependent on any
382   /// additional values.
383   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
384
385   //===--------------------------------------------------------------------===//
386   // Side Effect Analysis
387   //===--------------------------------------------------------------------===//
388
389   /// Return true if this instruction could possibly read memory.
390   /// Instructions with this flag set are not necessarily simple load
391   /// instructions, they may load a value and modify it, for example.
392   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
393
394   /// Return true if this instruction could possibly modify memory.
395   /// Instructions with this flag set are not necessarily simple store
396   /// instructions, they may store a modified value based on their operands, or
397   /// may not actually modify anything, for example.
398   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
399
400   /// Return true if this instruction has side
401   /// effects that are not modeled by other flags.  This does not return true
402   /// for instructions whose effects are captured by:
403   ///
404   ///  1. Their operand list and implicit definition/use list.  Register use/def
405   ///     info is explicit for instructions.
406   ///  2. Memory accesses.  Use mayLoad/mayStore.
407   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
408   ///
409   /// Examples of side effects would be modifying 'invisible' machine state like
410   /// a control register, flushing a cache, modifying a register invisible to
411   /// LLVM, etc.
412   bool hasUnmodeledSideEffects() const {
413     return Flags & (1ULL << MCID::UnmodeledSideEffects);
414   }
415
416   //===--------------------------------------------------------------------===//
417   // Flags that indicate whether an instruction can be modified by a method.
418   //===--------------------------------------------------------------------===//
419
420   /// Return true if this may be a 2- or 3-address instruction (of the
421   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
422   /// exchanged.  If this flag is set, then the
423   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
424   /// instruction.
425   ///
426   /// Note that this flag may be set on instructions that are only commutable
427   /// sometimes.  In these cases, the call to commuteInstruction will fail.
428   /// Also note that some instructions require non-trivial modification to
429   /// commute them.
430   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
431
432   /// Return true if this is a 2-address instruction which can be changed
433   /// into a 3-address instruction if needed.  Doing this transformation can be
434   /// profitable in the register allocator, because it means that the
435   /// instruction can use a 2-address form if possible, but degrade into a less
436   /// efficient form if the source and dest register cannot be assigned to the
437   /// same register.  For example, this allows the x86 backend to turn a "shl
438   /// reg, 3" instruction into an LEA instruction, which is the same speed as
439   /// the shift but has bigger code size.
440   ///
441   /// If this returns true, then the target must implement the
442   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
443   /// is allowed to fail if the transformation isn't valid for this specific
444   /// instruction (e.g. shl reg, 4 on x86).
445   ///
446   bool isConvertibleTo3Addr() const {
447     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
448   }
449
450   /// Return true if this instruction requires custom insertion support
451   /// when the DAG scheduler is inserting it into a machine basic block.  If
452   /// this is true for the instruction, it basically means that it is a pseudo
453   /// instruction used at SelectionDAG time that is expanded out into magic code
454   /// by the target when MachineInstrs are formed.
455   ///
456   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
457   /// is used to insert this into the MachineBasicBlock.
458   bool usesCustomInsertionHook() const {
459     return Flags & (1ULL << MCID::UsesCustomInserter);
460   }
461
462   /// Return true if this instruction requires *adjustment* after
463   /// instruction selection by calling a target hook. For example, this can be
464   /// used to fill in ARM 's' optional operand depending on whether the
465   /// conditional flag register is used.
466   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
467
468   /// Returns true if this instruction is a candidate for remat. This
469   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
470   ///
471   /// If this flag is set, the isReallyTriviallyReMaterializable()
472   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
473   /// the instruction is really rematable.
474   bool isRematerializable() const {
475     return Flags & (1ULL << MCID::Rematerializable);
476   }
477
478   /// Returns true if this instruction has the same cost (or less) than a
479   /// move instruction. This is useful during certain types of optimizations
480   /// (e.g., remat during two-address conversion or machine licm) where we would
481   /// like to remat or hoist the instruction, but not if it costs more than
482   /// moving the instruction into the appropriate register. Note, we are not
483   /// marking copies from and to the same register class with this flag.
484   ///
485   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
486   /// for different subtargets.
487   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
488
489   /// Returns true if this instruction source operands have special
490   /// register allocation requirements that are not captured by the operand
491   /// register classes. e.g. ARM::STRD's two source registers must be an even /
492   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
493   /// allocation passes should not attempt to change allocations for sources of
494   /// instructions with this flag.
495   bool hasExtraSrcRegAllocReq() const {
496     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
497   }
498
499   /// Returns true if this instruction def operands have special register
500   /// allocation requirements that are not captured by the operand register
501   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
502   /// ARM::LDM registers have to be in ascending order.  Post-register
503   /// allocation passes should not attempt to change allocations for definitions
504   /// of instructions with this flag.
505   bool hasExtraDefRegAllocReq() const {
506     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
507   }
508
509   /// Return a list of registers that are potentially read by any
510   /// instance of this machine instruction.  For example, on X86, the "adc"
511   /// instruction adds two register operands and adds the carry bit in from the
512   /// flags register.  In this case, the instruction is marked as implicitly
513   /// reading the flags.  Likewise, the variable shift instruction on X86 is
514   /// marked as implicitly reading the 'CL' register, which it always does.
515   ///
516   /// This method returns null if the instruction has no implicit uses.
517   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
518
519   /// Return the number of implicit uses this instruction has.
520   unsigned getNumImplicitUses() const {
521     if (!ImplicitUses)
522       return 0;
523     unsigned i = 0;
524     for (; ImplicitUses[i]; ++i) /*empty*/
525       ;
526     return i;
527   }
528
529   /// Return a list of registers that are potentially written by any
530   /// instance of this machine instruction.  For example, on X86, many
531   /// instructions implicitly set the flags register.  In this case, they are
532   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
533   /// their result in a physical register.  For example, the X86 divide
534   /// instruction always deposits the quotient and remainder in the EAX/EDX
535   /// registers.  For that instruction, this will return a list containing the
536   /// EAX/EDX/EFLAGS registers.
537   ///
538   /// This method returns null if the instruction has no implicit defs.
539   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
540
541   /// Return the number of implicit defs this instruct has.
542   unsigned getNumImplicitDefs() const {
543     if (!ImplicitDefs)
544       return 0;
545     unsigned i = 0;
546     for (; ImplicitDefs[i]; ++i) /*empty*/
547       ;
548     return i;
549   }
550
551   /// Return true if this instruction implicitly
552   /// uses the specified physical register.
553   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
554     if (const MCPhysReg *ImpUses = ImplicitUses)
555       for (; *ImpUses; ++ImpUses)
556         if (*ImpUses == Reg)
557           return true;
558     return false;
559   }
560
561   /// Return true if this instruction implicitly
562   /// defines the specified physical register.
563   bool hasImplicitDefOfPhysReg(unsigned Reg,
564                                const MCRegisterInfo *MRI = nullptr) const;
565
566   /// Return the scheduling class for this instruction.  The
567   /// scheduling class is an index into the InstrItineraryData table.  This
568   /// returns zero if there is no known scheduling information for the
569   /// instruction.
570   unsigned getSchedClass() const { return SchedClass; }
571
572   /// Return the number of bytes in the encoding of this instruction,
573   /// or zero if the encoding size cannot be known from the opcode.
574   unsigned getSize() const { return Size; }
575
576   /// Find the index of the first operand in the
577   /// operand list that is used to represent the predicate. It returns -1 if
578   /// none is found.
579   int findFirstPredOperandIdx() const {
580     if (isPredicable()) {
581       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
582         if (OpInfo[i].isPredicate())
583           return i;
584     }
585     return -1;
586   }
587
588   /// Return true if this instruction defines the specified physical
589   /// register, either explicitly or implicitly.
590   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
591                        const MCRegisterInfo &RI) const;
592 };
593
594 } // end namespace llvm
595
596 #endif